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1. Introduction and mathematical preliminaries

The present paper is about the existence and stability of coupled fixed point sets
associated with certain multivalued mappings defined on complete metric spaces. The
idea of a coupled fixed point was introduced by Guo et al. [19] and received much
attention after the appearance of the work of Bhaskar et al. [18]. Following the
work of Neito et al. [28], Bhaskar et al. [18] studied the existence of coupled fixed
points of mappings with mixed monotone property in a metric space endowed with a
partial order. While an early result on fixed points in partially ordered metric spaces
appeared in the work of Turinici [40], progress in this direction took place following
the works of Ran et al. [34] and Neito et al. [28]. For some recent works from this area
see [7, 14, 20, 27]. The main idea in this approach is that for the existence of fixed
points the various types of contractive inequality conditions need only be satisfied by
the elements of the metric space related through the partial order.
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For some recent works that extended the study of coupled fixed points and the
related properties of different types of mappings in various types of spaces, see [8, 9,
10, 15, 36]. The notion of coupled fixed point was extended to multivalued mappings
in [41] and was followed up in [23, 29, 32, 33, 37]. In particular, Petrusel et al. studied
the coupled fixed point problems for multi valued mappings in b-metric spaces (see
[30, 31] with applications to systems of integral inclusions.

On the other hand, Samet et al. [38] showed that the above purpose of introducing
the partial order can be also served by a set of conditions called admissibility condi-
tions. These conditions, rather than introducing a new structure like partial order in
metric spaces, are requirements on the operator under consideration. For some recent
contributions in this direction [1, 11, 13, 16, 21, 22].

Several different types of contractive mappings are considered in fixed point theory.
Contraction mappings defined implicitly through a function of several variables are
used in [2, 3, 4, 39]. While the motivation for this approach may be to generalize and
combine several existing results, it also makes it possible to apply this type of results
to a wider class of problems.

Convergence of fixed point sets of a sequence of mappings, known as the stability
of fixed points, has also been widely studied in various settings [5, 6, 24, 25, 26].
The fixed point sets of a sequence of mappings are said to be stable if they converge
to the set of fixed point of the limit mapping in the Hausdorff metric. The study
of fixed point sets of multivalued mappings is more involved than their singlevalued
counterparts [24, 25, 26] and is of interest.

Motivated by the different approaches mentioned above, and with an intent to
develop suitable results that may be of use in the study of Set Differential Equations
(see [17]), in this paper we establish a fixed point result for coupled multivalued
mappings on complete metric spaces. Further, we perform the stability analysis of
the fixed point sets corresponding to a convergent sequence of coupled multivalued
mappings. We begin with the following definition.

Definition 1.1. LetX be a nonempty set and T : X×X → X. A point (x, y) ∈ X×X
is said to be a coupled fixed point of T if x = T (x, y) and y = T (y, x).

In the following we discuss some concepts and definitions that are used in the
paper.

Let (X, d) be a metric space. Then X×X is also a metric space under the metric ρ
defined by ρ((x, y), (u, v)) = max {d(x, u), d(y, v)} for all (x, y) and (u, v) ∈ X ×X.

Let N(X) denote the collection of all nonempty subsets of X, CB(X) denote the
collection of all nonempty closed and bounded subsets of X, and C(X) denote the
collection of all compact subsets of X. We use following notations and definitions:

D(x,B) = inf {d(x, y) : y ∈ B}, where x ∈ X and B ∈ CB(X),

D(A,B) = inf {d(a, b) : a ∈ A, b ∈ B}, where A,B ∈ CB(X),

H(A,B) = max {sup
x∈A

D(x,B), sup
y∈B

D(y,A)}, where A,B ∈ CB(X).
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H is known as the Hausdorff metric on CB(X) [26]. Further, if (X, d) is complete
then (CB(X), H) is also complete and so is (X × X, ρ). Let Hρ be the Hausdorff
metric induced by ρ.

Lemma 1.1 ([12]). Let B ∈ C(X). Then for every x ∈ X there exists y ∈ B such
that d(x, y) = D(x,B).

Definition 1.2. Let T : X × X → N(X) be a multivalued mapping. A point
(x, y) ∈ X ×X is said to be a coupled fixed point of T if x ∈ T (x, y) and y ∈ T (y, x).

We denote the set of coupled fixed points of the mapping T by F (T ).

Let {Tn : X×X → CB(X)} be a sequence of multivalued mappings that converges
to a mapping T : X ×X → CB(X), that is, T = lim

n→∞
Tn. That is,

Mn = sup
(x,y)∈X×X

H(Tn(x, y), T (x, y))→ 0 as n→∞.

Analogous to the notion of stability of fixed points in [24, 25, 26], we propose the
following definition of stability of coupled fixed point sets.

Definition 1.3. Suppose that {F (Tn)} is the sequence of coupled fixed point sets of
the sequence of mappings {Tn} and F (T ) is the coupled fixed point set of T . We say
that the coupled fixed point sets of {Tn} are stable if

lim
n→∞

Hρ(F (Tn), F (T )) = 0.

As mentioned in the introduction, various admissibility criteria were introduced in
the study of fixed points of mappings. In particular, we refer the reader to [1] and
[38].

For our study, we introduce the cyclic (α, β)- admissibility for singlevalued and
multivalued coupled mappings.

Definition 1.4. Let T : X ×X → X and α, β : X → [0, ∞). We say that T is a
cyclic (α, β)- admissible mapping if for (x, y) ∈ X ×X,

(i) α(x) ≥ 1 and β(y) ≥ 1 =⇒ β(T (x, y)) ≥ 1,
(ii) β(x) ≥ 1 and α(y) ≥ 1 =⇒ α(T (x, y)) ≥ 1.

Definition 1.5. Let T : X ×X → N(X) be a multivalued mapping and α, β : X →
[0, ∞). We say that T is a cyclic (α, β)- admissible mapping if for (x, y) ∈ X ×X,

(i) α(x) ≥ 1 and β(y) ≥ 1 =⇒ β(u) ≥ 1 for all u ∈ T (x, y),
(ii) β(x) ≥ 1 and α(y) ≥ 1 =⇒ α(v) ≥ 1 for all v ∈ T (x, y).

Example 1.1. Let X = [0, 1] be equipped with usual metric, denoted as d. Let
T : X × X → C(X) be defined as T (x, y) = [0, x+y

16 ]. Let α, β : X → [0, ∞) be
defined as

α(x) =

{
ex, if 0 ≤ x ≤ 1

2 ,
0, otherwise

and β(x) =

{
ex+e−x

2 , if 0 ≤ x ≤ 1
2 ,

0, otherwise.

Suppose that (x, y) ∈ X × X and α(x) ≥ 1 and β(y) ≥ 1. Then x, y ∈ [0, 1
2 ] and

T (x, y) = [0, x+y
16 ] ⊆ [0, 1

16 ] ⊆ [0, 1
2 ]. It follows that β(u) ≥ 1 for all u ∈ T (x, y).
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Similarly, if (x, y) ∈ X × X and β(x) ≥ 1 and α(y) ≥ 1, it can be shown that
α(v) ≥ 1 for all v ∈ T (x, y). Therefore, T is a cyclic (α, β)- admissible mapping.

Definition 1.6. We say that the metric space (X, d) has regular property with respect
to a mapping α : X → [0,∞) if for every sequence {xn} converging to x ∈ X,
α(xn) ≥ 1 for all n =⇒ α(x) ≥ 1.

Remark 1.1. For the metric space X and the mappings α, β as in Example 1.1, it
can be easily verified that X is regular with respect to α and β. In fact, α(x) ≥ 1
and β(x) ≥ 1 for every x ∈ [0, 1

2 ].

Next we describe two classes of functions in the following.
Let Φ denote the collection of all functions φ : [0,∞) −→ [0,∞) such that

(P1): φ is nondecreasing;

(P2):
∑∞

n=1 φ
n(t) <∞ for t ≥ 0 and φ(0) = 0.

Let Γ denote the collection of all functions G : [0,∞)7 → R such that
(P1): G is continuous;
(P2): G is nondecreasing in first coordinate and nonincreasing in sixth and seventh

coordinates;
(P3): there exists a function φ ∈ Φ (defined above) such that

G(u, v, w, v, w, 0, 0) ≤ 0 =⇒ u ≤ φ(max {v, w}).

Thus Γ is a collection of functions which is defined corresponding to a definite
choice of φ from the class Φ.

2. Existence of coupled fixed points

Let (X, d) be a complete metric space and α, β : X → [0, ∞). Denote

∆(x, y, u, v) = α(x)β(y)β(u)α(v) or β(x)α(y)α(u)β(v).

We assume the following for the rest of the paper:
(A1) X has regular property with respect to α and β;
(A2) There exists (x0, y0) ∈ X ×X such that α(x0) ≥ 1 and β(y0) ≥ 1.
We establish the existence of coupled fixed points for mappings defined on the

product space X ×X under certain admissibility conditions.

Theorem 2.1. Let T : X × X → C(X) be a multivalued, cyclic (α, β)- admissible
mapping. Suppose there exist φ ∈ Φ and G ∈ Γ corresponding to the function φ such
that for (x, y), (u, v) ∈ X ×X with ∆(x, y, u, v) ≥ 1,

G
(
H(T (x, y), T (u, v)), d(x, u), d(y, v), D(x, T (x, y)), D(y, T (y, x)),

D(u, T (x, y)), D(v, T (y, x))
)
≤ 0.

Then T has a coupled fixed point.

Before proceeding to the proof of Theorem 2.1, we present a few special cases
illustrating the applicability of the theorem.
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Remark 2.1. In Theorem 2.1, taking α(x) = β(x) = 1 for all x ∈ X, with φ(t) = kt,
where 0 ≤ k < 1, and choosing

(i) G(t1, t2, t3, t4, t5, t6, t7) = t1 − k max {t2, t3} ,
(ii) G(t1, t2, t3, t4, t5, t6, t7) = t1 − k max {t4, t5},
(iii) G(t1, t2, t3, t4, t5, t6, t7) = t1 − k max {t2, t3, t4, t5, t6, t7},
respectively, we have the following corollaries.

Corollary 2.1. Let T : X ×X → C(X). If there exists k ∈ [0, 1) for which

H(T (x, y), T (u, v)) ≤ k max {d(x, u), d(y, v)}, for (x, y), (u, v) ∈ X ×X,

then T has a coupled fixed point.

Corollary 2.2. Let T : X ×X → C(X). If there exists k ∈ [0, 1) for which

H(T (x, y), T (u, v)) ≤ k max {D(x, T (x, y)), D(y, T (y, x))}, for (x, y), (u, v) ∈ X×X,

then T has a coupled fixed point.

Corollary 2.3. Let T : X ×X → C(X). Suppose there exists k ∈ [0, 1) such that
for (x, y), (u, v) ∈ X ×X,

H(T (x, y), T (u, v)) ≤ k max
{
d(x, u), d(y, v), D(x, T (x, y)), D(y, T (y, x))

D(u, T (x, y)), D(v, T (y, x))
}
.

Then T has a coupled fixed point.

Further, we present the following illustrative example that verifies the requirements
of Theorem 2.1.

Example 2.1. Using the metric space X, mappings α, β and the mapping T as in
Example 1.1, we see that X = [0, 1] is regular with respect to α and β (see Remark
1.1). Also, we know that T is a cyclic (α, β)- admissible mapping. Now, let φ(t) = t

2

and define G : [0, ∞)7 → R as

G(t1, t2, t3, t4, t5, t6, t7) = t1 −
1

2
max {t2, t3, t4, t5} − (et6t7 − 1).

Clearly, φ ∈ Φ and G ∈ Γ. Let (x, y), (u, v) ∈ X × X such that ∆(x, y, u, v) ≥ 1.
Now, ∆(x, y, u, v) ≥ 1 implies that x, y, u, v ∈ [0, 1

2 ]. So, we now check the validity

of the inequality in Theorem 2.1 for x, y, u, v ∈ [0, 1
2 ]. Let x, y, u, v ∈ [0, 1

2 ]. Now,

H(T (x, y), T (u, v)) =
| x+ y − u− v |

16
≤ | x− u |

16
+
| y − v |

16

≤ 1

8
max{| x− u |, | y − v |}.

Then it follows that

H(T (x, y), T (u, v))− 1

2
max {d(x, u), d(y, v), D(x, T (x, y)), D(y, T (y, x))}

− [eD(u,T (x,y)).D(v,T (y,x)) − 1] ≤ 0.
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That is,

G
(
H(T (x, y), T (u, v)), d(x, u), d(y, v), D(x, T (x, y)), D(y, T (y, x)),

D(u, T (x, y)), D(v, T (y, x))
)
≤ 0,

is satisfied for all (x, y), (u, v) ∈ X×X with ∆(x, y, u, v) ≥ 1. Hence all the conditions
of Theorem 2.1 are satisfied and (0, 0) is a coupled fixed point of T .

We now present the proof of Theorem 2.1.
Proof of Theorem 2.1. Let (x0, y0) ∈ X × X such that α(x0) ≥ 1 and
β(y0) ≥ 1. Since T (x0, y0), T (y0, x0) ∈ C(X), by Lemma 1.1, there exist
x1 ∈ T (x0, y0) and y1 ∈ T (y0, x0) such that d(x0, x1) = D(x0, T (x0, y0)) and
d(y0, y1) = D(y0, T (y0, x0)). Since T is a cyclic (α, β)- admissible mapping,
α(x0) ≥ 1 and β(y0) ≥ 1, implies β(x1) ≥ 1 and α(y1) ≥ 1. Similarly, as
T (x1, y1), T (y1, x1) ∈ C(X), there exist x2 ∈ T (x1, y1) and y2 ∈ T (y1, x1) such
that d(x1, x2) = D(x1, T (x1, y1)) and d(y1, y2) = D(y1, T (y1, x1)). Further,
β(x1) ≥ 1 and α(y1) ≥ 1, implies α(x2) ≥ 1 and β(y2) ≥ 1.

Proceeding in this manner, we obtain two sequences {xn} and {yn} in X such that
for all n ≥ 0,

xn+1 ∈ T (xn, yn) and yn+1 ∈ T (yn, xn), (2.1)

α(x2n) ≥ 1, β(x2n+1) ≥ 1, β(y2n) ≥ 1 and α(y2n+1) ≥ 1, (2.2)

d(xn, xn+1) = D(xn, T (xn, yn)) and d(yn, yn+1) = D(yn, T (yn, xn)). (2.3)

Let rn = max {d(xn, xn+1), d(yn, yn+1)}, for all n ≥ 0. (2.4)

As ∆(x2n, y2n, x2n+1, y2n+1) = α(x2n)β(y2n)β(x2n+1)α(y2n+1) ≥ 1, using the as-
sumption of the theorem, (2.1), (2.2), (2.3) and property (P2) of G, we have

G
(
H(T (x2n, y2n), T (x2n+1, y2n+1)), d(x2n, x2n+1), d(y2n, y2n+1), D(x2n, T (x2n, y2n)),

D(y2n, T (y2n, x2n)), D(x2n+1, T (x2n, y2n)), D(y2n+1, T (y2n, x2n))
)
≤ 0.

G
(
D(x2n+1, T (x2n+1, y2n+1)), d(x2n, x2n+1), d(y2n, y2n+1), d(x2n, x2n+1),

d(y2n, y2n+1), d(x2n+1, x2n+1), d(y2n+1, y2n+1)
)
≤ 0.

Thus,

G
(
d(x2n+1, x2n+2), d(x2n, x2n+1), d(y2n, y2n+1),

d(x2n, x2n+1), d(y2n, y2n+1), 0, 0
)
≤ 0. (2.5)

Now, taking u = d(x2n+1, x2n+2), v = d(x2n, x2n+1) and w = d(y2n, y2n+1) and using
property (P3) of G, we have

d(x2n+1, x2n+2) ≤ φ(max {d(x2n, x2n+1), d(y2n, y2n+1)}) = φ(r2n). (2.6)
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Again, ∆(x2n+1, y2n+1, x2n+2, y2n+2) = β(x2n+1)α(y2n+1)α(x2n+2)β(y2n+2) ≥ 1.
And, arguing as above, we have

G
(
H(T (x2n+1, y2n+1), T (x2n+2, y2n+2)), d(x2n+1, x2n+2), d(y2n+1, y2n+2),

D(x2n+1, T (x2n+1, y2n+1)), D(y2n+1, T (y2n+1, x2n+1)),

D(x2n+2, T (x2n+1, y2n+1)), D(y2n+2, T (y2n+1, x2n+1))
)
≤ 0

⇒ G
(
D(x2n+2, T (x2n+2, y2n+2)), d(x2n+1, x2n+2), d(y2n+1, y2n+2),

d(x2n+1, x2n+2), d(y2n+1, y2n+2), d(x2n+2, x2n+2), d(y2n+2, y2n+2)
)
≤ 0

⇒ G
(
d(x2n+2, x2n+3), d(x2n+1, x2n+2), d(y2n+1, y2n+2), d(x2n+1, x2n+2),

d(y2n+1, y2n+2), 0, 0
)
≤ 0. (2.7)

Taking u = d(x2n+2, x2n+3), v = d(x2n+1, x2n+2) and w = d(y2n+1, y2n+2) and using
the property (P3) of G, we have

d(x2n+2, x2n+3) ≤ φ(max {d(x2n+1, x2n+2), d(y2n+1, y2n+2)}) = φ(r2n+1). (2.8)

Combining (2.6), (2.8), we have

d(xn+1, xn+2) ≤ φ(max {d(xn, xn+1), d(yn, yn+1)}) = φ(rn). (2.9)

Now, ∆(y2n, x2n, y2n+1, x2n+1) = β(y2n)α(x2n)α(y2n+1)β(x2n+1) ≥ 1. As before, we
have

G
(
H(T (y2n, x2n), T (y2n+1, x2n+1)), d(y2n, y2n+1), d(x2n, x2n+1),

D(y2n, T (y2n, x2n)), D(x2n, T (x2n, y2n)),

D(y2n+1, T (y2n, x2n)), D(x2n+1, T (x2n, y2n))
)
≤ 0

⇒ G
(
D(y2n+1, T (y2n+1, x2n+1)), d(y2n, y2n+1), d(x2n, x2n+1), d(y2n, y2n+1),

d(x2n, x2n+1), d(y2n+1, y2n+1), d(x2n+1, x2n+1)
)
≤ 0.

⇒ G
(
d(y2n+1, y2n+2), d(y2n, y2n+1),

d(x2n, x2n+1), d(y2n, y2n+1), d(x2n, x2n+1), 0, 0,
)
≤ 0. (2.10)

Taking u = d(y2n+1, y2n+2), v = d(y2n, y2n+1) and w = d(x2n, x2n+1) and using
property (P3) of G, we have

d(y2n+1, y2n+2) ≤ φ(max {d(y2n, y2n+1), d(x2n, x2n+1)}) = φ(r2n). (2.11)

Again,

∆(y2n+1, x2n+1, y2n+2, x2n+2) = α(y2n+1)β(x2n+1)β(y2n+2)α(x2n+2) ≥ 1.
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Also, we have

G
(
H(T (y2n+1, x2n+1), T (y2n+2, x2n+2)), d(y2n+1, y2n+2), d(x2n+1, x2n+2),

D(y2n+1, T (y2n+1, x2n+1)), D(x2n+1, T (x2n+1, y2n+1))

D(y2n+2, T (y2n+1, x2n+1)), D(x2n+2, T (x2n+1, y2n+1))
)
≤ 0.

⇒ G
(
D(y2n+2, T (y2n+2, x2n+2)), d(y2n+1, y2n+2), d(x2n+1, x2n+2),

d(y2n+1, y2n+2), d(x2n+1, x2n+2), d(y2n+2, y2n+2), d(x2n+2, x2n+2)
)
≤ 0.

⇒ G
(
d(y2n+2, y2n+3), d(y2n+1, y2n+2), d(x2n+1, x2n+2), d(y2n+1, y2n+2),

d(x2n+1, x2n+2), 0, 0
)
≤ 0. (2.12)

Taking u = d(y2n+2, y2n+3), v = d(y2n+1, y2n+2) and w = d(x2n+1, x2n+2) and using
the property (P3) of G, we have

d(y2n+2, y2n+3) ≤ φ(max {d(y2n+1, y2n+2), d(x2n+1, x2n+2)}) = φ(r2n+1). (2.13)

Combining (2.11) and (2.13), we have

d(yn+1, yn+2) ≤ φ(max {d(yn, yn+1), d(xn, xn+1)}) = φ(rn). (2.14)

Combining (2.9) and (2.14), we obtain

rn+1 = max {d(xn+1, xn+2), d(yn+1, yn+2)} ≤ φ(rn). (2.15)

By repeated application of (2.15) and using a property of φ, we have

rn+1 ≤ φ(rn) ≤ φ2(rn−1) ≤ φ3(rn−2) ≤ ... ≤ φn+1(r0). (2.16)

Now we prove that {xn} and {yn} are Cauchy sequences in X. With the help of
(2.15) and the property (P2) of φ, we have

∞∑
n=1

d(xn, xn+1) ≤
∞∑
n=1

rn ≤
∞∑
n=1

φn(r0) <∞

and
∞∑
n=1

d(yn, yn+1) ≤
∞∑
n=1

rn ≤
∞∑
n=1

φn(r0) <∞,

which imply that both {xn} and {yn} are Cauchy sequences in X. Since (X, d) is
complete, there exist x, y ∈ X such that

lim
n→∞

xn = x and lim
n→∞

yn = y. (2.17)

Using (2.2) and the assumption (A1), we have

α(x) ≥ 1, β(x) ≥ 1, α(y) ≥ 1 and β(y) ≥ 1. (2.18)
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By (2.2), (2.18), we have ∆(x2n, y2n, x, y) = α(x2n)β(y2n)β(x)α(y) ≥ 1. Using the
assumption of the theorem, (2.1), (2.2), (2.3) and the property (P2) of G, we have

G
(
H(T (x2n, y2n), T (x, y)), d(x2n, x), d(y2n, y), D(x2n, T (x2n, y2n)),

D(y2n, T (y2n, x2n)), D(x, T (x2n, y2n)), D(y, T (y2n, x2n))
)
≤ 0

⇒ G
(
D(x2n+1, T (x, y)), d(x2n, x), d(y2n, y), d(x2n, x2n+1),

d(y2n, y2n+1), d(x, x2n+1), d(y, y2n+1)
)
≤ 0. (2.19)

Taking limit as n→∞ in (2.19), using (2.17) and the continuity of G, we have

G
(
D(x, T (x, y)), 0, 0, 0, 0, 0, 0

)
≤ 0. (2.20)

Taking u = D(x, T (x, y)), v = 0 and w = 0 and using the property (P3) of G, we
have

D(x, T (x, y)) ≤ φ(max {0, 0}) = 0. (2.21)

Again from (2.2) and (2.18), we have

∆(y2n, x2n, y, x) = β(y2n)α(x2n)α(y)β(x) ≥ 1.

Using the assumption of the theorem, (2.1), (2.2), (2.3) and the property (P2) of G,
we have

G
(
H(T (y2n, x2n), T (y, x)), d(y2n, y), d(x2n, x), D(y2n, T (y2n, x2n)),

D(x2n, T (x2n, y2n)), D(y, T (y2n, x2n)), D(x, T (x2n, y2n))
)
≤ 0

⇒ G
(
D(y2n+1, T (y, x)), d(y2n, y), d(x2n, x), d(y2n, y2n+1),

d(x2n, x2n+1), d(y, y2n+1), d(x, x2n+1)
)
≤ 0. (2.22)

Taking limit as n→∞ in (2.22), using (2.17) and the continuity of G, we have

G
(
D(y, T (y, x)), 0, 0, 0, 0, 0, 0

)
≤ 0. (2.23)

Taking u = D(y, T (y, x)), v = 0 and w = 0 and using the property (P3) of G, we
have

D(y, T (y, x)) ≤ φ(max {0, 0}) = 0. (2.24)

We have from (2.21) and (2.24) that D(x, T (x, y)) = 0 and D(y, T (y, x)) = 0,

which imply that x ∈ T (x, y) = T (x, y) and y ∈ T (y, x) = T (y, x), where T (x, y)

and T (y, x) denote the closures of T (x, y) and T (y, x) respectively. Therefore,
(x, y) is a coupled fixed point of T .

The following theorem is a special case of Theorem 2.1, obtained by treating T :
X ×X → X as a multivalued mapping. That is, T (x, y) is treated as a singleton set
for every (x, y) ∈ X ×X.
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Theorem 2.2. Let T : X×X → X be a cyclic (α, β)- admissible mapping. Suppose
that there exist φ ∈ Φ and G ∈ Γ corresponding to the function φ such that for
(x, y), (u, v) ∈ X ×X with ∆(x, y, u, v) ≥ 1,

G
(
d(T (x, y), T (u, v)), d(x, u), d(y, v), d(x, T (x, y)), d(y, T (y, x)),

d(u, T (x, y)), d(v, T (y, x))
)
≤ 0.

Then T has a coupled fixed point.

Proof. Since a singleton set in X is compact, we define a multivalued mapping S :
X ×X → C(X) as S(x, y) = {T (x, y)} for (x, y) ∈ X ×X.

Let (x, y) ∈ X × X such that α(x) ≥ 1 and β(y) ≥ 1. Then by cyclic
(α, β) - admissibility of T , we have β(T (x, y)) ≥ 1, that is, β(u) ≥
1, where u ∈ S(x, y) = {T (x, y)}. Similarly, if (x, y) ∈ X × X such that
β(x) ≥ 1 and α(y) ≥ 1, then by cyclic (α, β) - admissibility of T , we have
α(T (x, y)) ≥ 1, that is, α(v) ≥ 1, where v ∈ S(x, y) = {T (x, y)}. Therefore, S is
a cyclic (α, β)- admissible mapping.

Let (x, y), (u, v) ∈ X ×X with ∆(x, y, u, v) ≥ 1. Then

G
(
d(T (x, y), T (u, v)), d(x, u), d(y, v), d(x, T (x, y)), d(y, T (y, x)),

d(u, T (x, y)), d(v, T (y, x))
)
≤ 0.

=⇒ G
(
H(S(x, y), S(u, v)), d(x, u), d(y, v), D(x, S(x, y)), D(y, S(y, x)),

D(u, S(x, y)), D(v, S(y, x))
)
≤ 0.

That is, S satisfies the assumptions of Theorem 2.1. So, all the conditions of Theorem
2.1 are satisfied and then there exists (x, y) ∈ X×X such that x ∈ S(x, y) = {T (x, y)}
and y ∈ S(y, x) = {T (y, x)}, that is, x = T (x, y) and y = T (y, x). Hence (x, y) is a
coupled fixed point of T .

3. Stability of coupled fixed point sets

In this section, we investigate the stability of coupled fixed point sets of the set-
valued contractions. We begin with the following Lemma.

Lemma 3.1. Let (X, d) be a metric space and α, β : X → [0, ∞). Suppose that
X is regular with respect to α, β. Let {Tn : X ×X → C(X) : n ∈ N} be a sequence
of multivalued, cyclic (α, β)− admissible mappings that are uniformly convergent to
a multivalued mapping T : X × X → C(X). Further, let each Tn (n ∈ N), satisfy
the hypothesis of Theorem 2.1. Then T is cyclic (α, β)− admissible and satisfies the
hypothesis of Theorem 2.1.

Proof. First we prove that T is cyclic (α, β)- admissible. Let α(x) ≥ 1 and β(y) ≥ 1
for some (x, y) ∈ X × X and u ∈ T (x, y). Since Tn → T uniformly, there exist a
sequence {xn} in {Tn(x, y)} such that xn → u as n → ∞. As each Tn (n ∈ N)
is cyclic (α, β) - admissible, we have β(xn) ≥ 1 for every n ∈ N. Then by regular
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property of the space with respect to β, it follows that β(u) ≥ 1. Again, let β(x) ≥ 1
and α(y) ≥ 1 for some (x, y) ∈ X ×X and v ∈ T (x, y). Since Tn → T uniformly,
there exist a sequence {yn} in {Tn(x, y)} such that yn → v as n → ∞. As each
Tn (n ∈ N) is cyclic (α, β)- admissible, we have α(yn) ≥ 1 for every n ∈ N. Then by
regular property of the space with respect to α, it follows that α(v) ≥ 1. Hence T is
cyclic (α, β)-admissible.

Let (x, y), (u, v) ∈ X ×X with ∆(x, y, u, v) ≥ 1. Now,

G
(
H(Tn(x, y), Tn(u, v)), d(x, u), d(y, v), D(x, Tn(x, y)), D(y, Tn(y, x)),

D(u, Tn(x, y)), D(v, Tn(y, x))
)
≤ 0.

Since G is continuous and Tn converges to T uniformly, taking limit as n→∞ in the
above inequality, we have

G
(
H(T (x, y), T (u, v)), d(x, u), d(y, v), D(x, T (x, y)), D(y, T (y, x)),

D(u, T (x, y)), D(v, T (y, x))
)
≤ 0.

So T satisfies the hypothesis of Theorem 2.1.

Theorem 3.1. Let (X, d) be a complete metric space, Tl : X × X → C(X), (l ∈
{1, 2}) be two multivalued mappings and α, β : X → [0, ∞). Suppose that the
assumptions of Theorem 2.1 are satisfied by each Tl, (l ∈ {1, 2}). Then F (Tl) 6= ∅
for every l ∈ {1, 2}. Also suppose there exist (x0, y0) ∈ F (T1) and (s0, t0) ∈ F (T2)
such that α(x0) ≥ 1, β(y0) ≥ 1 and α(s0) ≥ 1, β(t0) ≥ 1. Then

Hρ(F (T1), F (T2)) ≤ Θ(M),

where Θ(t) =
∑∞
n=1 φ

n(t) and M = sup(x,y)∈X×X{H(T1(x, y), T2(x, y))}.

Proof. By Theorem 2.1, the set of coupled fixed points of Tl, (l = 1, 2) are
nonempty, that is, F (Tl) 6= ∅, for l = 1, 2. By the condition of the theorem, sup-
pose (x0, y0) ∈ F (T1) with α(x0) ≥ 1 and β(y0) ≥ 1. So x0 ∈ T1(x0, y0) and y0 ∈
T1(y0, x0). By Lemma 1.1, there exist x1 ∈ T2(x0, y0) and y1 ∈ T2(y0, x0) such
that d(x0, x1) = D(x0, T2(x0, y0)) and d(y0, y1) = D(y0, T2(y0, x0)). Since T2 is
a cyclic (α, β)- admissible mapping, we have β(x1) ≥ 1 and α(y1) ≥ 1. By
Lemma 1.1, there exists x2 ∈ T2(x1, y1) and y2 ∈ T2(y1, x1) such that d(x1, x2) =
D(x1, T2(x1, y1)) and d(y1, y2) = D(y1, T2(y1, x1)). Inductively, arguing as in the
proof of Theorem 2.1, we construct two sequences {xn} and {yn} in X such that for
all n ≥ 0,

xn+1 ∈ T2(xn, yn) and yn+1 ∈ T2(yn, xn),

α(x2n) ≥ 1, β(x2n+1) ≥ 1, β(y2n) ≥ 1 and α(y2n+1) ≥ 1,

d(xn, xn+1) = D(xn, T2(xn, yn)) and d(yn, yn+1) = D(yn, T2(yn, xn)).

Also,
d(xn+1, xn+2) ≤ φ(max {d(xn, xn+1), d(yn, yn+1)}) = φ(rn)

and
d(yn+1, yn+2) ≤ φ(max {d(xn, xn+1), d(yn, yn+1)}) = φ(rn),
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where rn = max {d(xn, xn+1), d(yn, yn+1)}.
Arguing as in the proof of Theorem 2.1, we can prove that:

(i) (2.16) is satisfied;
(ii) {xn} and {yn} are Cauchy sequences in X and so there exist u, v ∈ X such

that limn→∞ xn = u and limn→∞ yn = v;
(iii) (u, v) is a coupled fixed point of T2, that is, u ∈ T2(u, v) and v ∈ T2(v, u).
From the definition of M and the construction of the sequences {xn} and {yn}, we

have

d(x0, x1) = D(x0, T2(x0, y0)) ≤ H(T1(x0, y0), T2(x0, y0)) ≤M (3.1)

and

d(y0, y1) = D(y0, T2(y0, x0)) ≤ H(T1(y0, x0), T2(y0, x0)) ≤M. (3.2)

Using (2.16), (3.1), (3.2) and the properties of φ, we have

d(x0, u) ≤
n∑
i=0

d(xi, xi+1) + d(xn+1, u) ≤
n∑
i=0

φi(r0) + d(xn+1, u)

=

n∑
i=0

φi(max {d(x0, x1), d(y0, y1)}) + d(xn+1, u)

≤
n∑
i=0

φi(max {M, M}) + d(xn+1, u) ≤
n∑
i=0

φi(M) + d(xn+1, u).

Taking limit as n→∞ in the above inequality, we have

d(x0, u) ≤
∞∑
i=0

φi(M) = Θ(M). (3.3)

Again, using (2.16), (3.1), (3.2) and the properties of φ, we have

d(y0, v) ≤
n∑
i=0

d(yi, yi+1) + d(yn+1, v) ≤
n∑
i=0

φi(r0) + d(yn+1, v)

=

n∑
i=0

φi(max {d(y0, y1), d(x0, x1)}) + d(yn+1, v)

≤
n∑
i=0

φi(max {M, M}) + d(yn+1, v) ≤
n∑
i=0

φi(M) + d(yn+1, v).

Taking limit as n→∞ in the above inequality, we have

d(y0, v) ≤
∞∑
i=0

φi(M) = Θ(M). (3.4)

Combining (3.3) and (3.4), we have

max {d(x0, u), d(y0, v)} ≤ Θ(M), that is, ρ((x0, y0), (u, v)) ≤ Θ(M).

We have that for (x0, y0) ∈ F (T1) there exists (u, v) ∈ F (T2) such that
ρ((x0, y0), (u, v)) ≤ Θ(M). Similarly, we can show that for (s0, t0) ∈ F (T2)



COUPLED FIXED POINT SETS FOR MULTI-VALUED MAPPINGS 583

there exists (p, q) ∈ F (T1) such that ρ((s0, t0), (p, q)) ≤ Θ(M). Then it follows that
Hρ(F (T1), F (T2))) ≤ Θ(M).

Theorem 3.2. Let (X, d) be a complete metric space and α, β : X → [0, ∞). Let
{Tn : X×X → C(X) : n ∈ N} be a sequence of multivalued mappings uniformly con-
vergent to a multivalued mapping T : X ×X → C(X). Suppose that the assumptions
of Theorem 2.1 are satisfied by each Tn (n ∈ N). Then, F (Tn) 6= ∅ for every n ∈ N
and F (T ) 6= ∅. Also suppose there exist (xn, yn) ∈ F (Tn) (n ∈ N) and (u, v) ∈ F (T )
such that α(xn) ≥ 1, β(yn) ≥ 1 for all n ∈ N and α(u) ≥ 1, β(v) ≥ 1, and Θ(t)→ 0
as t → 0, where Θ(t) =

∑∞
n=1 φ

n(t). Then the sets of coupled fixed points of Tn are
stable.

Proof. By Lemma 3.1 and Theorem 2.1, F (Tn) 6= ∅, for all n ∈ N and F (T ) 6= ∅. Let

Mn = sup
(x,y)∈X×X

H(Tn(x, y), T (x, y)).

By Theorem 3.1, we have

Hρ(F (Tn), F (T )) ≤ Θ(Mn). (3.5)

Since Tn converges to T uniformly, we have
Mn = sup(x,y)∈X×X H(Tn(x, y), T (x, y)) → 0 as n → ∞. Taking limit as n → ∞ in

(3.5) and using the assumption on Θ, we have

lim
n→∞

Hρ(F (Tn), F (T )) ≤ 0,

which implies that limn→∞Hρ(F (Tn), F (T )) = 0, that is, coupled fixed point sets of
the sequence {Tn} are stable.

Example 3.1. Take the metric space (X, d) and the mappings α, β, G and φ as
considered in Example 2.1. Let Tn, T : X ×X → C(X) be defined as

Tn(x, y) =

[
1 + x+ y

64n
,

1

2

]
and T (x, y) = [0, 1

2 ] for (x, y) ∈ X ×X. Now

H(Tn(x, y), Tn(u, v)) =
| x+ y − u− v |

64n

for (x, y), (u, v) ∈ X ×X. Then as explained in Example 2.1, we can show that the
assumptions of Theorem 2.1 are satisfied by each Tn (n ∈ N). Here

F (T ) =

{
(x, y) : 0 ≤ x ≤ 1

2
; 0 ≤ y ≤ 1

2

}
and

F (Tn) =

{
(x, y) :

64n

(64n− 1)(64n− 1)− 1
≤ x, y ≤ 1

2

}
,
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where n ∈ N. Also α(x) ≥ 1 and β(y) ≥ 1 for any (x, y) belonging to F (Tn) (n ∈ N)
and F (T ). Here Θ(t)→ 0 as t→ 0, where

Θ(t) =

∞∑
n=1

φn(t) =

∞∑
n=1

(
t

2

)n
.

We see all the conditions of Theorem 3.2 are satisfied. Here

lim
n→∞

Hρ(F (Tn), F (T )) = 0,

that is, coupled fixed point sets of the sequence {Tn} are stable.

Remark 3.1. There is a similarity in the ideas regarding the concepts of data de-
pendence of the fixed point sets of multi-valued weakly Picard operators discussed in
[35] and the stability of multivalued coupled mappings and associated fixed point sets
discussed in our work. In fact, the difference is in the construction of the sequences
{xn} and {yn} in the proof of Theorem 3.1 which applies to coupled mappings, while
in the case of the function considered in [35], a single sequence is constructed in a
different manner.

Acknowledgment. The authors gratefully acknowledge the suggestions made by the
learned referee.
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[15] L.B. Ćirić, V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions

in partially ordered metric spaces, Stoch. Anal. Appl., 27(2009), no. 6, 1246-1259.

[16] A. Felhi, H. Aydi, D. Zhang, Fixed points for α-admissible contractive mappings via simulation
functions, J. Nonlinear Sci. Appl., 9(2016), 5544-5560.

[17] G. Galanis, T. Gnana Bhaskar, V. Lakshmikantham, Set Differential Equations in Frechet

Spaces, J. Applied Anal., 14(2008), no. 1, 103-113.
[18] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces

and applications, Nonlinear Anal., 65(2006), 1379-1393.
[19] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications,

Nonlinear Anal., 11(1987), 623-632.

[20] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially
ordered sets, Nonlinear Anal., 71(2009), 3403-3410.

[21] N. Hussain, E. Karapinar, P. Salimi, F. Akbar, α-admissible mappings and related fixed point

theorems, J. Inequal. Appl., 2013(2013), 114.
[22] E. Karapinar, B. Samet, Generalized α − ψ contractive type mappings and related fixed point

theorems with applications, Abstr. Appl. Anal., 2012(2012), Article ID 793486.

[23] C. Klanarong, S. Suantai, Coupled coincidence point theorems for new types of mixed monotone
multivalued mappings in partially ordered metric spaces, Abstr. Appl. Anal., 2013(2013), Article

ID 604578, 7 pages.

[24] T.C. Lim, Fixed point stability for set valued contractive mappings with applications to gener-
alized differential equations, J. Math. Anal. Appl., 110(1985), 436-441.

[25] J.T. Markin, A fixed point stability theorem for nonexpansive set valued mappings, J. Math.

Anal. Appl., 54(1976), 441-443.
[26] S.B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math., 30(1969), 475-488.

[27] H.K. Nashine, B. Samet, C. Vetro, Monotone generalized nonlinear contractions and fixed point
theorems in ordered metric spaces, Math. Comput. Modelling, 54(2011), 712-720.
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