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Abstract. The aim of this paper is to introduce Mann iterative algorithm by using the convex

structure in the metric space endowed with a directed graph. First of all, the concept of the convex
metric space endowed with a directed graph is given. Moreover, Mann iteration scheme and the cor-

responding convergence theorems for the G−monotone contractive mappings and the G−monotone

nonexpansive mappings in convex metric spaces endowed with a directed graph are established re-
spectively. In addition, an example is shown to illustrate that the Mann iterative sequence does not

necessarily converge to the fixed point of the G−monotone nonexpansive mapping.
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1. Introduction

In the early 20th century, the Polish mathematician Banach [2] gave the famous
Banach contraction principle and proved the theorem by Picard iteration. Due to its
importance, numerous kinds of extensions and generalizations of this theorem have
appeared over the years. In 2004, Ran and Reurings [7] extended the Banach contrac-
tion principle in the context of partially ordered set and gave a meaningful application
to linear and nonlinear matrix equations. Moreover, Nieto and Rodŕıguez-López [6]
extended the main fixed point theorem in [7] and used it to solve some problems
of differential equations. In [4], Jachymski introduced the graphs into the general
metric spaces and used them to replace the previous partially ordered structures.
Furthermore, Jachymski extended the Banach contraction principle to the metric
space endowed with a directed graph. Since then, many of new fixed point theo-
rems are presented in the metric space endowed with a directed graph. For example,
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Alfuraidan and Khamsi [1] discussed the existence of fixed points for set-valued G-
monotone quasi-contractive mappings and Reich contractive mappings in the metric
space endowed with a directed graph.

In 1970, Takahashi [9] introduced the concepts of the convex structure and the
convex metric space, he also obtained some fixed point theorems for nonexpansive
mappings in the convex metric space. Moreover, Goebel and Kirk [3] studied some
iterative processes for nonexpansive mappings in the hyperbolic metric space. In
this work, we introduce Mann iterative algorithm by using the convex structure in
the metric space endowed with a directed graph. First of all, the concept of the
convex metric space endowed with a directed graph is given. Furthermore, Mann
iteration and the convergence theorems for the G−monotone contractive mappings
and the G−monotone nonexpansive mappings in convex metric spaces endowed with a
directed graph are presented respectively. An example is shown to state that the Mann
iterative sequence does not necessarily converge to the fixed point of the G−monotone
nonexpansive mapping.

2. Basic concept and notations

As usual, in this paper the symbols R and N will denote the sets of all real numbers
and all positive integers, respectively.

Definition 2.1. (Takahashi [9]) Let (X, d) be a metric space. If a mapping W from
X ×X × [0, 1] to X satisfies

d(u,W (x, y;λ)) ≤ λd(u, x) + (1− λ)d(u, y)

for all x, y, u ∈ X and λ ∈ [0, 1], then the space (X, d,W ) is said to be a convex metric
space.

Obviously, a Banach space is a convex metric space. However, a Fréchet space is
not necessary a convex metric space.

In 1983, Goebel and Kirk [3] obtained the following important inequality:

Theorem 2.2. (Goebel and Kirk [3]) Suppose (X, d) is a metric space of hyperbolic
type, let {αn} ⊂ [0, 1), and suppose {xn} and {yn} are sequences in X, which satisfy
for all n ∈ N,

(1) xn+1 ∈ seg[xn, yn] with d(xn, xn+1) = αnd(xn, yn),
(2) d(yn+1, yn) ≤ kd(xn+1, xn) among 0 < k < 1.

Then for all i, n ∈ N,

k

[
1 +

i+n−1∑
s=i

αs

]
d(xi, yi) ≤ d(xi, yi+n) +

i+n−1∏
s=i

(1−αs)
−1 [kd(xi, yi)− d(xi+n, yi+n)] .

Next, we show some basic definitions and notations of graphs.
The graph G is an ordered pair (V (G), E(G)), where V (G) is the set of vertices

and E(G) is the binary relation on V (G). Elements of E(G) are called edges. If each
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edge of a graph is given a direction, then the graph G is called a directed graph;
otherwise, it is called an undirected graph.

By G−1 we denote the conversion of a directed graph G, i.e., the graph obtained
from G by reversing the direction of edges. Thus we have

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

Given a directed graph G, one may generate a graph G̃ where we ignore the direc-
tions and replace the resulting multiple edges by single edges. We define

E(G̃) = E(G) ∪ E(G−1),

then G̃ is a symmetric directed graph. The directed graph G is called reflexive, if the
set E(G) contains all loops, i.e., (x, x) ∈ G for each x ∈ V (G). Moreover, a directed
graph G is called transitive whenever

(x, y) ∈ E(G) and (y, z) ∈ E(G) imply that (x, z) ∈ E(G)

for all x, y, z ∈ V (G).
Throughout this paper, we always assume that the directed graph G with edge

weights by assigning the distance between two vertices to each edge is symmetric,
reflexive and transitive.

Definition 2.3. (Monther, Mostafa and Khamsi [5]) Let (G, d) be a weighted directed
graph. A sequence {xn} ∈ V (G) is said to be

(i) G−increasing if (xn, xn+1) ∈ E(G) for all n ∈ N,
(ii) G−decreasing if (xn+1, xn) ∈ E(G) for all n ∈ N,
(iii) G−monotone if {xn} is either G−increasing or G−decreasing.

Definition 2.4. (Monther, Mostafa and Khamsi [5]) Let (G, d) be a weighted directed
graph. G is said to be G−complete if any Cauchy G−monotone sequence {xn} is
convergent to a point in V (G).

Definition 2.5. (Alfuraidan and Khamsi [1]) Let (G, d) be a weighted directed graph.
T : V (G)→ V (G) is said to be a G−monotone nonexpansive mapping if

(i) T is G−monotone, i.e., (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G),
(ii) T is nonexpansive, i.e., d(Tx, Ty) ≤ d(x, y) for any x, y ∈ V (G) with (x, y) ∈

E(G).

Definition 2.6. (Jachymski [4]) Let (G, d) be a weighted directed graph. T : V (G)→
V (G) is said to be a G−monotone contraction mapping if

(i) T is G−monotone, i.e., (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G),
(ii) T is contractive, i.e., d(Tx, Ty) ≤ kd(x, y), 0 < k < 1, for any x, y ∈ V (G)

with (x, y) ∈ E(G).

The point x ∈ V (G) is called a fixed point of T if Tx = x.
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3. Main results

In the general linear space X, Mann iterative process is usually written as

xn+1 = αnxn + (1− αn)Txn, αn ∈ (0, 1), n ∈ N.
However, there is no addition operation in the above sense for a graph. Next, we will
extend Mann iterative algorithm to the metric space endowed with a directed graph
by using the convex structure.

Definition 3.1. Let (G, d) be a metric space endowed with a directed graph. Assume
that a mapping W from V (G)× V (G)× [0, 1] to V (G) satisfies

d(u,W (x, y;α)) ≤ αd(u, x) + (1− α)d(u, y)

for all x, y, u ∈ V (G) and α ∈ [0, 1]. Then the space (G, d,W ) is said to be a convex
metric space endowed with a directed graph.

Proposition 3.2. For any x, y ∈ V (G) and α ∈ [0, 1], we have

d(x, y) = d(x,W (x, y;α)) + d(W (x, y;α), y).

Proof. Since (G, d,W ) is a convex metric space endowed with a directed graph, we
obtain

d(x, y) ≤ d(x,W (x, y;α)) + d(W (x, y;α), y)

≤ αd(x, x) + (1− α)d(x, y) + αd(x, y) + (1− α)d(y, y)

≤ d(x, y).

From the above inequalities, we can get the following equalities

d(x, y) = d(x,W (x, y;α)) + d(W (x, y;α), y),

d(x,W (x, y;α)) = (1− α)d(x, y),

d(W (x, y;α), y) = αd(x, y)

for any x, y ∈ V (G) and α ∈ [0, 1]. �

Remark 3.3. Let (x, y) ∈ E(G). If there exist u ∈ V (G) and α ∈ [0, 1] such that

d(x, u) = (1− α)d(x, y) and d(u, y) = αd(x, y),

then we denote u ∈ [x, y]. Obviously, W (x, y;α) ∈ [x, y].

Definition 3.4. A convex metric space endowed with a directed graph (G, d,W )
is said to satisfy property (C) if for any (x, y) ∈ E(G) and u ∈ [x, y], we have
(x, u) ∈ E(G) and (u, y) ∈ E(G).

Example 3.5. Let

E(G) = {(x, y) : x ≤ y, x, y ∈ R}, V (G) = R,
and d(x, y) = |x− y|. We choose u ∈ [x, y], it is not difficult to see that

[x, y] = {z : z = αx+ (1− α)y, α ∈ [0, 1]}.
Obviously, (x, u) ∈ E(G) and (u, y) ∈ E(G).



MANN ITERATIVE ALGORITHM IN CONVEX METRIC SPACES 563

Now we construct the Mann iterative sequence in a convex metric space endowed
with a directed graph.

Lemma 3.6. Let (G, d,W ) be a convex metric space endowed with a directed graph
satisfying Property (C). Let a mapping T : V (G)→ V (G) be G−monotone. Choose
x1 ∈ V (G) such that (x1, Tx1) ∈ E(G). Then the Mann iterative sequence {xn} is
defined by

xn+1 = W (xn, Txn;αn), n ∈ N, αn ∈ (0, 1). (3.1)

Then (xi, xj) ∈ E(G), (xl, Txk) ∈ E(G) for any i, j, l, k ∈ N.

Proof. From Proposition 3.2, it follows that

d(x1, x2) = d(x1,W (x1, Tx1;α1)) = (1− α1)d(x1, Tx1),

d(x2, Tx1) = d(W (x1, Tx1;α1), Tx1) = α1d(x1, Tx1)

which imply x2 ∈ [x1, Tx1]. By property (C), we obtain

(x1, x2) ∈ E(G) and (x2, Tx1) ∈ E(G).

We can conclude that (Tx1, Tx2) ∈ E(G) since T is G−monotone. Noticing that G
is transitive, we also get (x2, Tx2) ∈ E(G). By induction, for any p ∈ N, we deduce
that xp+1 ∈ [xp, Txp], and

(xp, xp+1) ∈ E(G), (xp+1, Txp) ∈ E(G),

(Txp, Txp+1) ∈ E(G), (xp+1, Txp+1) ∈ E(G).

Therefore, we complete the proof by the transitivity of G. �

Theorem 3.7. Let (G, d,W ) be a G-complete convex metric space endowed with a
directed graph satisfying Property (C). Suppose T : V (G)→ V (G) is a G−monotone
nonexpansive mapping. We choose x1 ∈ V (G) such that (x1, Tx1) ∈ E(G). If the

sequence {xn} is defined by (3.1) for αn ∈ (0, 1) such that

∞∑
n=1

(1 − αn) < +∞, then

{xn} converges to some point x ∈ V (G).

Proof. By Lemma 3.6, we deduce that (xn, xn+1) ∈ E(G) which implies the sequence
{xn} is G−monotone. From Proposition 3.2, it follows that

d(xn, xn+1) = d(xn,W (xn, Txn;αn)) = (1− αn)d(xn, Txn).

For any n ∈ N, we have

d(xn, Txn) ≤ d(xn, Txn−1) + d(Txn−1, Txn)

≤ d(W (xn−1, Txn−1;αn−1), Txn−1) + d(xn−1, xn)

= αn−1d(xn−1, Txn−1) + (1− αn−1)d(xn−1, Txn−1)

= d(xn−1, Txn−1) ≤ ... ≤ d(x1, Tx1),

which shows that the sequence {d(xn, Txn)} is nonincreasing.
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For all n, p ∈ N, we obtain

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xn+p−1, xn+p)

≤ [(1− αn) + (1− αn+1) + ...+ (1− αn+p−1)] d(x1, Tx1)

=

∞∑
s=n

(1− αs)d(x1, Tx1).

Since

∞∑
1

(1 − αn) < +∞, we have

∞∑
s=n

(1 − αs) → 0 as n → ∞. Hence, we conclude

that {d(xn, xn+p)} converges uniformly to 0 with respect to p when n → ∞, which
implies that {xn} is a Cauchy G−monotone sequence. Since (G, d,W ) is G−complete,
then {xn} is convergent to some point x ∈ V (G). �

Remark 3.8. Theorem 3.7 claims that the Mann iteration {xn} is convergent. Unfor-
tunately, we have not verified that {xn} converges to a fixed point of the G−monotone
nonexpansive mapping T . Actually, we can see from the following example that {xn}
does not necessarily converge to the fixed point of T under the conditions of Theorem
3.7.

Before giving an example, we recall a useful lemma.

Lemma 3.9. (Stein and Shakarchi [8]) For a sequence {an} ⊆ R, if there exists n0 ∈ N

such that an > 0 or an ∈ [−1, 0] for all n ≥ n0, then

∞∏
n=1

(1 + an) and

∞∑
n=1

an are

simultaneously convergent or divergent.

Example 3.10. Let V (G) = [0, 1]. For any x ∈ V (G), set Tx = x
2 . Define

E(G) = {(x, y) : x, y ∈ V (G)}.
We pick the initial value x1 = 1, then Tx1 = 1

2 . Obviously, (x1, Tx1) ∈ E(G).

Assume that the sequence {xn} is defined by (1) and αn = 1 − 1
2n . We also define

d(x, z) = |x − z| which is the Euclidean metric. Then {xn} converges to some point
x ∈ V (G) which is not a fixed point of T .

Proof. First of all, we will show that the sequence {xn} converges to some point

x ∈ V (G) which coincides with the conclusion of Theorem 3.7. Since d(x1, Tx1) =
1

2
,

we obtain

d(x1, x2) = d(x1,W (x1, Tx1;α1))

= (1− α1)d(x1, Tx1) =
1

2
× 1

2
=

1

4
,

d(Tx1, x2) = d(Tx1,W (x1, Tx1;α1))

= α1d(x1, Tx1) =

(
1− 1

2

)
× 1

2
=

1

4
.
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Therefore,

x2 = x1 − d(x1, x2) = 1− 1

22
=

3

4
,

Tx2 =
x2
2

=
1

2

(
1− 1

22

)
=

3

8
,

d(x2, Tx2) =
1

2

(
1− 1

22

)
=

3

8
.

By calculating, we get

d(x2, x3) = (1− α2)d(x2, Tx2) =
1

22
· 1

2

(
1− 1

22

)
=

1

23

(
1− 1

22

)
,

d(Tx2, x3) = α2d(x2, Tx2) =

(
1− 1

22

)
1

2

(
1− 1

22

)
.

Hence,

x3 = x2 − d(x2, x3) =

(
1− 1

22

)
− 1

23

(
1− 1

22

)
=

(
1− 1

23

)(
1− 1

22

)
,

Tx3 =
1

2

(
1− 1

22

)(
1− 1

23

)
,

d(x3, Tx3) =
1

2

(
1− 1

22

)(
1− 1

23

)
.

By induction, we conclude that

d(xn−1, xn) = (1− αn−1)d(xn−1, Txn−1)

= (1− αn−1)
xn−1

2
=

1

2n

n−2∏
i=1

(
1− 1

2i+1

)
,

d(Txn−1, xn) = αn−1
xn−1

2
=

1

2

(
1− 1

2n

) n−2∏
i=1

(
1− 1

2i+1

)
.

Thus,

xn = xn−1 − d(xn−1, xn) =

n−1∏
i=1

(
1− 1

2i+1

)
=

n∏
i=2

(
1− 1

2i

)
, (3.2)

Txn =
xn
2

=
1

2

n∏
i=2

(
1− 1

2i

)
. (3.3)

For large enough n, we have

n∏
i=2

(
1− 1

i2

)
<

n∏
i=2

(
1− 1

2i

)
< 1.
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Noticing that

∞∑
i=1

1

2i
= 1, it follows from Lemma 3.9 that lim

n→∞

n∏
i=2

(
1− 1

2i

)
exists.

Assume that

lim
n→∞

n∏
i=2

(
1− 1

2i

)
= x.

Combining with (2) and (3), we get xn → x and Txn → x
2 when n→∞. Since

lim
n→∞

n∏
i=2

(
1− 1

i2

)
=

1

2

which implies that x 6= 0, then x is not a fixed point of T . �

Now, we will consider the convergence of Mann iteration for G−monotone contraction
mappings.

Theorem 3.11. Let (G, d,W ) be a convex metric space endowed with a directed
graph satisfying Property (C). Suppose T : V (G)→ V (G) is a G−monotone contrac-
tion mapping. Choose x1 ∈ V (G) such that (x1, Tx1) ∈ E(G). If the sequence {xn}
is defined by (1) for αn ∈ (0, 1), then for all i, n ∈ N,

k

[
1 +

i+n−1∑
s=i

(1− αs)

]
d(xi, Txi) ≤ d(xi, Txi+n)+

i+n−1∏
s=i

α−1s [kd(xi, Txi)− d(xi+n, Txi+n)] .

Proof. By Proposition 3.2, Definition 2.6 and Definition 3.1, it is not difficult to see
that the sequences {xn} and {Txn} satisfy

(1) xn+1 = W (xn, Txn;αn) with d(xn, xn+1) = (1− αn)d(xn, Txn) and
d(Txn+1, xn+1) ≤ αnd(Txn+1, xn) + (1− αn)d(Txn+1, Txn),

(2) d(Txn+1, Txn) ≤ kd(xn+1, xn) among 0 < k < 1,

for all n ∈ N.
The remaining proof is similar to Theorem 2.2 (see [3]), so we omit it here. �

Theorem 3.12. Let (G, d,W ) be a G-complete convex metric space endowed with a
directed graph satisfying Property (C). Suppose T : V (G)→ V (G) is a G−monotone
contraction mapping. Choose x1 ∈ V (G) such that (x1, Tx1) ∈ E(G). If the sequence
{xn} is defined by (1) for αn ∈ [a, b](0 < a < b < 1), then {xn} converges to some
point x ∈ V (G) which is a fixed point of T .

Proof. Similar to the procedure of Theorem 3.7, we conclude that the sequence
{d(xn, Txn)} is nonincreasing. Then the limit limn→∞ d(xn, Txn) exists. For any
n,m ∈ N, we have

d(xn, xm) ≤ d(xn, Txn) + d(Txn, Txm) + d(Txm, xm)

≤ d(xn, Txn) + kd(xn, xm) + d(Txm, xm),

which implies

(1− k)d(xn, xm) ≤ d(xn, Txn) + d(Txm, xm). (3.4)
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From Theorem 3.11, it follows that

k

[
1 +

i+p−1∑
s=i

(1− αs)

]
d(xi, Txi) ≤ d(xi, Txi+p) +

i+p−1∏
s=i

α−1s [kd(xi, Txi)−d(xi+p, Txi+p)] ,

(3.5)

for all i, p ∈ N. Noticing that

lim
i→∞

[kd(xi, Txi)− d(xi+p, Txi+p)] ≤ 0,

we will consider the following two cases.
(i) If lim

i→∞
[kd(xi, Txi)− d(xi+p, Txi+p)] = 0, it follows from k < 1 that

lim
i→∞

d(xi, Txi) = 0.

(ii) If lim
i→∞

[kd(xi, Txi)− d(xi+p, Txi+p)] < 0, noting that

d(xi, Txi+p) ≤ d(xi, Txi) + d(Txi, Txi+p)

≤ d(xi, Txi) + kd(xi, xi+p),

b−p ≤
i+p−1∏
s=i

α−1s ≤ a−p

and combining with (3.5), for large enough i, we get{
k

[
1 +

i+p−1∑
s=i

(1− αs)

]
−1

}
d(xi, Txi) ≤ kd(xi, xi+p), p ∈ N. (3.6)

Since
∞∑

n=1

(1− αn) = +∞,

we have

k

[
1 +

i+p−1∑
s=i

(1− αs)

]
− 1 > 0

for large enough p. From (3.4) and (3.6), it follows that

d(xi, Txi) ≤
k

k

[
1 +

i+p−1∑
s=i

(1− αs)

]
− 1

d(xi, xi+p)

≤ k

k

[
1 +

i+p−1∑
s=i

(1− αs)

]
− 1

1

(1− k)
[d(xi, Txi) + d(Txi+p, xi+p)] .

By letting i, p→∞, we infer that

lim
i→∞

d(xi, Txi) = 0.
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Combining with (3.4), we obtain d(xn, xm) → 0 as n,m → ∞. Hence, {xn} is a
Cauchy G−monotone sequence. Since (G, d,W ) is G−complete, then {xn} converges
to some point x ∈ V (G). Since

limn→∞d(xn, Tx) ≤ limn→∞d(xn, Txn) + limn→∞d(Txn, Tx)

≤ limn→∞d(xn, Txn) + klimn→∞d(xn, x) = 0,

we deduce that

lim
n→∞

d(xn, Tx) = 0.

By the uniqueness of the limit, we obtain x = Tx which shows that x is a fixed point
of T . �

Example 3.13. Let V (G) = [0, 1] and define

E(G) = {(x, y) : x, y ∈ V (G)}.

We also define d(x, z) = |x − z| for all x, z ∈ V (G). For any x ∈ V (G), set Tx = x
2 .

We pick the initial value x1 = 1, then (x1, Tx1) ∈ E(G). Assume that the sequence
{xn} is defined by (3.1) and αn = ε for each n ∈ N, where ε ∈ (0, 1). Then {xn} is
convergent to 0 which is a fixed point of T .

Proof. Similar to the procedure of Example 3.10, we get

d(xn−1, xn) = (1− αn−1)d(xn−1, Txn−1) = (1− αn−1)
xn−1

2

and

xn = xn−1 − d(xn−1, xn) = xn−1 − (1− αn−1)
xn−1

2
=
xn−1

2
(1 + αn−1)

= x1
1

2n−1

n−1∏
i=1

(1 + αi) = (
1 + ε

2
)n−1.

Then

Txn =
xn
2

=
1

2
(
1 + ε

2
)n−1. (3.7)

Therefore, letting n→∞ in (3.7), we obtain

xn → 0 and Txn → 0.

Hence, 0 is a fixed point of T . �
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