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1. Introduction

Methods of fixed point theory play a key role in the investigation of a wide range of
problems in Nonlinear Analysis. This article provides a powerful showcase of the use
of methods of Fixed Point Theory to show how iterative schemes solve the optimal
control synthesis by approximating the solution to the Hamilton-Jacobi equation via
Dynamic Programming (DP) schemes under the weakest assumptions considered so
far in the literature.

Dynamic programming became known in the 50’s with the works of Richard Bell-
man, [6], being the key idea centered in solving a large decision problem by organizing
it into simpler nested sub-problems which are solved recursively over time. Thus, if
the sub-problems can be nested recursively within larger problems, so that dynamic
programming method is applicable, then a relation - the so-called Bellman equation
- between the value of the larger problem and the values of the sub-problems can be
established. The impact of dynamic programming techniques in optimization based
feedback control has been extremely significant, and, ever since, being expanded to
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a wide variety of control problems, notably, impulsive control (see [18], [4], and ref-
erences therein) which can be regarded as an extension of the conventional optimal
control of problems with absolutely continuous trajectories, [20].

These results are essential in many branches of science, economics, computer sci-
ence, engineering, and, thus, its increasing use in control and optimization is not
surprising, [7, 29, 22]. However, the huge computational complexity associated with
solving the Bellman equation - the so called “curse of dimensionality” - is well known
and, to circumvent it, iterative control policy or value function schemes approximating
the optimal value function have been developed in recent years. An important class
of these iterative schemes are designated by Reinforcement Learning (RL) algorithms.
Bertsekas and Tsitsikilis in [12] present a broad class of RL algorithms in the context
of Value Iteration (VI) and Policy Iteration (PI) methods. In [11], Bertsekas and Ioffe
provided the analysis of Temporal Differences policy iteration (TD(λ)) scheme in the
context of Neuro-Dynamic Programming framework in which they show that TD(λ)
scheme can be embedded into a PI scheme, designated by λ-PIR discussed in detail
in [8]. In [10], Bertsekas investigates the connection between TD(λ) and proximal
algorithms which are more amenable for solving convex and optimization problems.

In [23], Yachao and Johanson and Jonas Martensson use abstract DP models, and
extend the λ-PIR scheme for finite policy problems to contractive models with infinite
policies. Moreover, they establish the well-posedness of the compact operator that
plays a central in the algorithm, and determine the conditions for convergence with
probability one of the λ-PIR scheme for problems with infinite dimensional policy
spaces. The convergence results for the λ-PIR scheme are very important to provide
guarantees for the convergence and other properties of deep learning techniques.

Fixed point theory is a powerful tool in topology, nonlinear analysis, optimal con-
trol, and machine learning. The well-known Banach contraction principle, commonly
designated by strong contraction, states that if (X, d) is a complete metric space,
and T : X → X is a mapping satisfying

d(T (x), T (y)) ≤ Kd(x, y), (1.1)

for some K ∈ (0, 1) and for all x, y ∈ X, then T has a unique fixed point x∗, and
the sequence {xn} generated by the iterative process xn+1 = Txn converges to x∗

for some x ∈ X. The generalization of the Banach contraction has been a heavily
studied in several settings. In [13], Boyd and Wong replaced the constant K in
(1.1) by an upper semicontinous function. In [3], Guerre-Delabriere introduced the
notion of weakly contractive maps. In [5], a generalized Banach contraction conjecture
was established. In [30], Suzuki has proved a generalization of the same nature to
metric spaces. Many researchers have also obtained fixed point results for set-valued
mappings satisfying generalized Banach contractions, notably, Nadler, [26], Durmaz,
[15], Kikkawa and Suzuki, [21], M. Abbas, H. Iqbal, and Adrian Petruşel, [1].

By using methods of fixed point theory, in this article, we improve the results in
[23] by showing that the properties of the proposed iterative procedure still hold for
weakly contractive maps, a class of systems fundamentally much wider than the one
in [23], as well as, the ones considered in previous works.



λ-PIR FOR WEAKLY CONTRACTIVE OPERATORS 513

A mapping f : X → Y is said to be a weakly contractive or ψ-weak contraction,
if there exists a continous function ψ : [0,∞)→ [0,∞), with ψ(0) = 0, such that, for
all x, y ∈ X, ‖f(x)− f(y)‖ ≤ ‖x− y‖ − ψ(‖x− y‖).

To see the relevance of this extension, just consider the following very simple ex-
ample of weak contractive mapping that it is not a contraction. Let f : [0, 1]→ [0, 1],
defined by f(x) = sin(x).

First, let us show with a simple contradiction argument that f is not a contraction.
Assume that sin is contraction. Then, for all x, y ∈ R, there exists K ∈ (0, 1), such
that | sin(x) − sin(y)| ≤ K|x − y|. Now, let x → y, and we conclude that, for any
y ∈ [0, 1],

lim
x→y

| sin(x)− sin(y)|
|x− y|

= | cos(y)| ≤ K < 1.

The contradiction is obvious from the fact that cos(y) takes on the value 1 for y = 0.
Now, let us find a function ψ with the properties required to ensure that f is a

ψ-weak contraction. Without any loss of generality, take 0 < y < x < 1. First, notice
the following inequality:

5(x3 − y3) = 5(x− y)

2∑
k=0

xky2−k ≥ 5(x− y)x2

≥ 5(x− y)x4 ≥ (x− y)

4∑
k=0

xky4−k = x5 − y5
(1.2)

From the Taylor’s series expansion of f ,

sin(z) =

∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
,

and, by considering Leibnitz’s inequality

x2n+1 − y2n+1

(2n+ 1)!
≥ x2n+3 − y2n+3

(2n+ 3)!
,

we have that

sin(x)− sin(y) ≤ x− y −
(
x3 − y3

3!
− x5 − y5

5!

)
≤ x− y −

(
x3 − y3

3!
− x5 − y5

5!

)
+

(
x3 − y3

4!
− x5 − y5

5!

)
= (x− y)− 1

8
(x3 − y3)

≤ (x− y)− 1

8
(x− y)3,
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where the second inequality follows from (1.2). By reversing the roles of x and y, and

by taking ψ(t) =
1

8
t3 we may write

| sin(x)− sin(y)| ≤ |x− y| − ψ(|x− y|).

We adopt the notion of weak contractivity defined by Guerre-Delabrier in [3] but
in complete metric space as Rhoades showed in [28]. This is needed in order to
guarantee the existence and uniqueness asserted by a fixed point theorem, as well as
the convergence of the used operators. This challenge required the investigation of
the convergence in norm, and of the existence and uniqueness of fixed point to the
iterative process, the determination of error estimates, and the iteration of a Massa
process, [24].

This article is organized as follows. In the next section, we formulate the iterative
feedback control problem that we are going to investigate. Here, we provide the basic
definitions, as well as the assumptions to be satisfied by its data. In the ensuing sec-
tion, section 3, we present a number of fixed point results that are fundamental for the
development of our contributions, notably, existence, monotonicity, and attainability.
Also pertinent to our results is the Massa operator, [24], which will be also introduced
in this section. The λ-policy iteration with randomization scheme is formulated in 4
in the context of the weakly contractive operators, where it is shown to inherit the
properties already proved for the Massa operator. In section 5, we show that the
convergence in norm with probability one of the iterative procedure defined for our
problem under the stated assumptions, as well as its stability by proving appropriate
error estimates. Finally, some conclusions, and prospective future work are briefly
addressed in 6.

2. Problem formulation

We consider a set X of states, a set U of controls, and, for each x ∈ X, a nonempty
control constraint U(x) ⊂ U . We denote by M the set of all functions µ : X → U
with µ(x) ∈ U(x) for all x ∈ X which will be referred to as policies.
We denote by J (X) the set of functions J : X → R and by J̄ (X) the set of functions
J : X → R where R = R ∪ {−∞,∞}. We study the operator of the form

H : X × U × J (X)→ R,

and, for each policy µ ∈M, we consider the mapping Tµ : J (X)→ J (X) defined by

TµJ(x) := H(x, µ(x), J), ∀x ∈ X,

and the mapping T : J (X)→ J̄ (X) defined by

TJ(x) := inf
µ∈J (X)

{TµJ(x)}, ∀x ∈ X.

Example 2.1. Discounted semi Markov problem.
Let x, y ∈ X, u ∈ U(x), and a mapping of the form

H(x, u, J) = G(x, u) +
∑
y∈X

mxy(u)J(y),



λ-PIR FOR WEAKLY CONTRACTIVE OPERATORS 515

where G is some function representing the expected cost per stage, and, ∀x ∈ X, and
u ∈ U(x), mxy(u) are nonegative scalars satisfying∑

y∈X
mxy(u) < 1.

In view of the definition of M, T , and Tµ, we have the following relations:

TJ(x) = inf
µ∈M
{H(x, µ(x), J)} = inf

u∈U
{H(x, u, J)}.

Given some positive function ν : X → R, we denote by B(X) the set of functions
J such that ‖J‖ <∞, where the norm ‖ · ‖ on B(X) is defined by

‖J‖ = sup
x∈X

{
|J(x)|
ν(x)

}
.

Lemma 2.1. B(X) is complete with respect to the topology induced by ‖ · ‖.

It is not difficult to observe that B(X) is closed, and convex.
Thus, given {Jk}∞k=1 ⊂ B(X) and J ∈ B(X), if Jk → J in the sense that

lim
k→∞

‖Jk − J‖ = 0,

then lim
k→∞

Jk(x) = J(x) for all x ∈ X.

Now, we introduce the following standard assumptions:

Assumption 2.1. (Well posedness) For all J ∈ B(X), and ∀µ ∈ M, we have that
TµJ ∈ B(X) and TJ ∈ B(X).

Definition 2.1. (ψ-weak contraction) A self map T of B(X) is called a ψ-weak
contraction if

‖TJ − TJ ′‖ ≤ ‖J − J ′‖ − ψ(‖J − J ′‖), ∀ J, J ′ ∈ B(X)

where ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function satisfying
ψ(t) > 0 if t ∈ (0,∞), and ψ(0) = 0.

Assumption 2.2. The self map Tµ is a ψ-weak contraction.

From definition 2, we conclude that every strong contraction T is also a ψ-weak
contraction.

Every strong contraction map on B(X) with contraction constant k < 1 is also a
weak contraction with the map ψ given by ψ(t) = (1− k)t for all t > 0.

Obviously, Tµ is a continuous operator since, from the definition of the uniform
continuity, it follows that

∀ ε > 0,∃ σ > 0 : ‖J − J ′‖ < σ =⇒ ‖TµJ − TµJ ′‖ < ε

On other hand for all, for all J, J ′ ∈ B(X) with ‖J − J ′‖ < ε we have:

‖TµJ − TµJ ′‖ ≤ ‖J − J ′‖ − ψ(‖J − J ′‖) ≤ ‖J − J ′‖ < ε

Hence, Tµ is uniformly continous, and, thus, it is continous.
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Example 2.2. Let X = [0,∞)1 be endowed with d(x, y) = |x−y| and let Tx =
x

x+ 1

for each x ∈ X. Define ψ : [0,∞)→ [0,∞) by ψ(t) =
t2

1 + t
, then

d(Tx, Ty) =

∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣
=

|x− y|
(1 + x)(1 + y)

≤ |x− y|
1 + |x− y|

= |x− y| − |x− y|2

1 + |x− y|
.

Thus,

d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y))

for all x, y ∈ X, and so T is a ψ-weak contraction. However, it is easily seen that it
fails to be a contraction.

Example 2.3. Let G = {J ∈ B(X) : J(x) ≥ 0} be endowed by

‖J‖ = sup
x∈X

{
|J(x)|
ν(x)

}
,

for a given nonnegative function ν defined on X, and let

TJ(x) :=
J(x)

J(x) + 1

for each J ∈ B(X), and x ∈ X.

Define ψ : [0,∞)→ [0,∞) by ψ(t) =
t2

1 + t
. Let ν(x) = 1. Then,

‖TJ − TJ ′‖ =

∥∥∥∥ J

1 + J
− J ′

1 + J ′

∥∥∥∥
=

‖J − J ′‖
‖(1 + J)(1 + J ′)‖

≤ ‖J − J ′‖
1 + ‖J − J ′‖

= ‖J − J ′‖ − ‖J − J ′‖2

1 + ‖J − J ′‖
.

Thus,

‖TJ − TJ ′‖ ≤ ‖J − J ′‖ − ψ(‖J − J ′‖)
holds for all J , J ′ ∈ G, and so T is ψ-weak contraction. However, it is easily seen
that it fails to be a contraction.

1We consider [0,+∞), and not B(X) just to distinguish between contraction and weakly contrac-
tive map.
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3. Auxiliary results

In this section, a number of results that will be instrumental in the proof of the
main result of this article are presented.

Theorem 3.1. (Existence) Let the operators T, Tµ : B(X) → B(X) be ψ-weak
contractions, then T and Tµ have, respectively, J∗ and Jµ as fixed points.

Note that Theorem 3.1 is special case of Theorem 1 in [13]. Remark that, although
these results have been proved in the context of Hilbert spaces, they also hold for
uniformly convex Banach spaces. From Theorem 3.1, it follows:

Lemma 3.1. The following holds:

i) For an arbitrary J0 ∈ B(X), the sequence {Jk} defined by Jk+1 = TµJk
converges in norm to Jµ.

ii) For an arbitrary J0 ∈ B(X), the sequence {Jk} defined by Jk+1 = TJk con-
verges in norm to J∗.

In fact, since B(X) is convex and closed, we have the following theorem.

Theorem 3.2. (Theorem 2 of [28]) Let T , and Tµ be ψ-weak contractions self-maps
in the closed convex B(X), then the iterative process Jk+1 = TJk, and Jk+1 = TµJk
converge in norm, respectively, to the fixed points J∗, and Jµ, with the following error
estimates

‖Jk − J∗‖ ≤ Φ−1(Φ(‖J1 − J∗‖)− (k − 1)),

and

‖Jk − Jµ‖ ≤ Φ−1(Φ(‖J1 − Jµ‖)− (k − 1)).

Here, Φ is the antiderivative defined by

Φ(t) =

∫
dt

ψ(t)

and Φ−1 denotes its inverse.

We will require the following properties to hold.

Assumption 3.1. (Monotonicity) ∀ J, J ′ ∈ B(X), we have that J ≤ J ′ implies

H(x, u, J) ≤ H(x, u, J ′), ∀x ∈ X, u ∈ U(x)

where ≤ is defined in a pointwise sense in X.

Assumption 3.2. (Attainability) For all J ∈ B(X), there exists µ ∈ M, such that
TµJ = TJ .

Now, we consider the convergence of the iteration process of Massa, see [28], in the
context of weak contractions. The Massa operator is defined as follows.

S =

∞∑
l=0

αlT
l
µ, (3.1)
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where

∞∑
l=0

αl = 1, and αkαk+1 6= 0 for at least one integer k. Note that this condition

does not entail any loss of generality.
In the above article, the following result was proved.

Theorem 3.3. (Theorem 5 of [28]) Let T be a weakly contractive self map in B(X).
Then, for any J0 ∈ B(X), the iteration scheme SkJ0 converges to the unique fixed
point of Tµ.

This theorem plays a major role in supporting the development of our main con-
tributions presented and discussed in the next two sections.

4. λ-policy iteration with randomization

The λ-PIR algorithm is a policy iteration iterative procedure with randomization
that has been investigated by several authors [8, 9, 23], being infinite policies consid-
ered in the later.

However, all these results require the strong contractiveness of the operators being
iterated. As mentioned in the introduction, this is where the added value to state-of-
the-art of this article resides. We prove the most significant properties of the most
recent publications under assumptions weaker than those considered so far. More
precisely, we just require the weak contractiveness of the iterative operator.

Our developments rely on the following result showing that the function

Θ(t) :=

∞∑
l=1

αlψ(t),

where ψ(·) is the function appearing in the weak contractiveness property, inherits
the properties established in Theorem 5 of [28].

Theorem 4.1. Let T be a ψ-weakly contractive self map in B(X). Then, the Massa
operator S defined by (3.1) is a well defined and a well posed Θ-weak contraction with

the function Θ(t) :=

∞∑
l=1

αlψ(t).

Proof. Let us consider the mapping S on the domain B(X) defined pointwisely by

SJ(x) =
∞∑
l=0

αlT
l
µJ(x),

for all x ∈ X, and J ∈ B(X). Now, we show that
1. S is well defined. The proof of this fact is analogous to the one of Lemma 3.1

in [23]. However, we include it here for the sake of completeness, and also because it
is useful to follow the developments presented later.

Let us consider the sequence {=l}∞k=0 defined by =l =

k∑
l=0

αl(T
l
µJ)(x).

From the above lemma, we have that (T lµJ)(x)→ Jµ(x) ∈ R, and, thus, {(T lµJ)(x)}∞l=0

is bounded.
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Denote this bound by Kµ(x) ∈ R. Then, ∀ k, we have∥∥∥∥∥
k∑
l=0

αl(T
l
µJ(x)

∥∥∥∥∥ ≤
n∑
l=0

αl‖(T lµJ)(x)‖

≤
k∑
l=0

αlKµ(x) ≤ Kµ(x).

This entails the boundedness of the sequence {=l}∞k=0.
If Jµ(x) > 0, then ∃ N such that (T lµJ)(x) > 0, ∀l > N .

Therefore,

{
k∑
l=0

αl(T
l
µJ)(x)

}∞
k=N

is monotonically nondecreasing and bounded above

by Kµ(x). Thus, the sequence {=l} converges to the limit

∞∑
l=0

αl(T
l
µJ)(x) ∈ R.

A similar argument applies for the case Jµ(x) < 0.
If Jµ(x) = 0, then ∀ ε, ∃ N such that, ∀l > N , ‖T lµJ(x)‖ < ε. Therefore, ∀ k, we
have that ∥∥∥∥∥

N∑
l=0

αl(T
l
µJ)(x)−

N+k∑
l=0

αl(T
l
µJ)(x)

∥∥∥∥∥ =

∥∥∥∥∥
N+k∑
l=N

αl(T
l
µJ)(x)

∥∥∥∥∥
≤

N+k∑
l=N

αl‖(T lµJ)(x)‖

≤
N+k∑
l=N

αl ≤ ε.

This implies that the sequence {=l} is Cauchy, and, thus, it converges in R.
Therefore, ∀ J ∈ B(X), and x ∈ X, the sequence {=l} converges in R.

2. S is well posed. Remark that we have SJµ = Jµ, otherwise, if J 6= Jµ, we would
have

|SJ(x)− Jµ(x)| =

∣∣∣∣∣
∞∑
l=0

αlT
l
µJ(x)− Jµ(x)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
l=0

αlT
l
µJ(x))−

∞∑
l=0

αlT
l
µJµ(x)

∣∣∣∣∣
≤
∞∑
l=0

αl|T lµJ(x)− T lµJµ(x)|.

Due to the fact that, ∀ l, Tµ is weak contraction map, we have that

‖T l+1
µ J − T l+1

µ Jµ‖ ≤ ‖T lµJ − T lµJµ‖ − ψ(‖T lµJ − T lµJµ‖)
≤ ‖T lµJ − T lµJµ‖
≤ ‖J − Jµ‖ − ψ(‖J − Jµ‖),
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and, thus,

|T lµJ(x)− T lµJµ(x)| ≤ (‖J − Jµ‖ − ψ(‖J − Jµ‖))ν(x).

Therefore, we have

|SJ(x)− Jµ(x)| ≤
∞∑
l=0

αl(‖J − Jµ‖ − ψ(‖J − Jµ‖))ν(x),

and this entails that

sup
x∈X

{
|SJ(x)− Jµ(x)|

ν(x)

}
≤ ‖J − Jµ‖ − ψ(‖J − Jµ‖).

Thus,

‖SJ‖ ≤ (‖J − Jµ‖ − ψ(‖J − Jµ‖)) + ‖Jµ‖.
The boundedness of B(X) implies that ψ(‖J − Jµ‖) is finite, and, this together with
Jµ ∈ B(X), leads to SJ ∈ B(X).

3. S is a Θ-weak contraction with the function Θ(·) =

∞∑
l=1

αlψ(·).

‖SJ − SJ ′‖ ≤

∥∥∥∥∥
∞∑
l=0

αl(T
lJ − T lJ ′)

∥∥∥∥∥
≤
∞∑
l=0

αl‖(T lJ − T lJ ′)‖

= α0‖TµJ − TµJ ′‖+

∞∑
l=1

αl‖(T lJ − T lJ ′)‖

≤ α0‖J − J ′‖+

∞∑
l=1

αl[‖J − J ′‖ − ψ(‖J − J ′‖)]

≤ ‖J − J ′‖ −
∞∑
l=1

αlψ(‖J − J ′‖)

Corollary 4.1. The Massa iteration process defined by Jk+1 := SJk converges in
norm to the fixed point Jµ with the error estimate

‖Jk − Jµ‖ ≤ Φ−1(Φ(‖J1 − Jµ
‖)− (k − 1)).

Proof. The convergence in norm to the fixed point Jµ is guarenteed by Theorem 3.6.
Now, we just proof the second part. For all k ∈ N, we may write

‖Jk+1 − Jµ‖ = ‖SJk − SJµ‖ ≤ ‖Jk − Jµ‖ − ψ(‖Jk − Jµ‖).

The sequence of positive numbers {λk} defined by λk = ‖Jk − Jµ‖ satisfies the fol-
lowing inequality

λk+1 ≤ λk − ψ(λk).
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This implies that the sequence {λk} is nonincreasing. Thus, it converges to some λ
such that ψ(λ) ≤ 0. By the definition of ψ, this implies that λ = 0 .
Let us show that, ∀ k ≥ 1, we have

λk ≤ Φ−1(Φ(λ1)− (k − 1)).

Indeed, by definition of Φ, ∀ k ≥ 1 there exist ck ∈ [λk+1, λk] such that:

Φ(λk)− Φ(λk+1) = Φ′(ck)(λk − λk+1)

=
λk − λk+1

ψ(ck)

≥ λk − λk+1

ψ(λk)
≥ 1.

This implies that, for all k ≥ 1,

Φ(λk+1) ≤ Φ(λk)− 1 ≤ · · · ≤ Φ(λ1)− k

and, thus,

Φ(λk) ≤ Φ(λ1)− (k − 1),

i.e.,

‖Jk − Jµ‖ ≤ Φ−1(Φ(‖J1 − Jµ‖)− (k − 1)).

Now, we are ready to put these general results at work in order to solve the problem
stated in section 2.

Let us adopt the notation of [23]. Given some λ ∈ [0, 1), consider the mappings
Tλµ ∈ B(X) defined pointwisely by

Tλµ J(x) = (1− λ)

∞∑
l=0

λlT l+1
µ J(x).

In what follows, we refer to this operator by “λ-operator”. For given Jk ∈ B(X), and
pk ∈ (0, 1), the current policy µ, and the next cost approximation Jk+1 are computed
as follows:

TµJk = TJk (4.1)

Jk+1 =

{
TµJk w.p. pk

Tλµ Jk w.p. 1− pk
(4.2)

Here, “w.p.” stands for “with probability”. By putting S = Tλµ , and replacing αl

by (1 − λ)λl, and by noting that

∞∑
l=0

(1 − λ)λl = 1, we, immediately conclude, from

Theorem 4.1, that:

• Tλµ is well defined.

• Tλµ is well posed.

• Tλµ is a weak contraction mapping with Θ(·) =

∞∑
l=1

(1− λ)λlψ(t).
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From these considerations, the next Lemma follows immediately.

Lemma 4.1. Let Tµ : B(X) → B(X) satisfy assumptions 2.2 and 2.3, then the
mappings Tλµ are monotonic in the sense that

J ≤ J ′ → Tλµ J ≤ Tλµ J ′ ∀ x ∈ X, µ ∈M.

5. Convergence of the λ-PIR algorithm

In this section, we establish the convergence of the λ-PIR algorithm, and provide
error estimates.

Now, we state the main result of this section.
Theorem 5.1. Let assumptions 2.2, 3.1, and 3.2 hold. For a given J0 ∈ B(X)
satisfying TJ0 < J0, the sequence {Jk}∞k=0 generated by the algorithm represented by
(4.1) and (4.2) converges in norm with probability one.
Proof. Since TJ0 < J0, we have Tµ0J0 = TJ0 < J0.

By monotonicity of Tµ0 , we have

T lµ0J0 ≤ T l−1µ0 J0, T lµ0J0 ≤ TJ0, ∀l
which implies that

Tλµ0J0 ≤ Tµ0J0 ≤ J0.
This means that J1 bounded from above with probability one by TJ0. In addition,
we also have Jµ0 ≥ J∗ where Jµ0 is the fixed point of both Tλµ0 , and Tµ0 , and, thus,
we have that

J∗ ≤ Jµ0 ≤ Tλµ0J0 ≤ Tµ0J0.

This implies that J1 is bounded from below by J∗ with probability one.
Now, due to the ψ-weak contraction assumption we have that

T 2J0 = T (Tµ0J0) ≤ Tµ0J0,

and, due to the monotonicity of Tλµ0 , and since Tλµ0 and Tµ can commute, we have
that

T (Tλµ0J0) ≤ Tµ0(Tλµ0J0) ≤ Tλµ0J0.

By proceeding with the iterations, we get that

J∗ ≤ Jk ≤ T kJ0
which means that {Jk} converges in norm to J∗ with probability one.

The following result provides an estimate of the approximation error.

Theorem 5.2. Let the assumptions and conditions of theorem 5.1 hold, then the
randomized iterative mix between VI and TD defined by the algorithm represented by
the algorithm (4.1), and (4.2) generates values satisfying the following error estimate

‖Jk − J∗‖ ≤ Φ−1(Φ(‖J1 − J∗‖ − (k − 1)).
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Proof. Since we have

‖Jk − J∗‖ ≤ ‖T kJ0 − J∗‖,
and from corollary 4.1,

‖T kJ0 − J∗‖ ≤ Φ−1(Φ(‖J1 − J∗‖)− (k − 1))

Thus, we get that

‖Jk − J∗‖ ≤ Φ−1(Φ(‖J1 − J∗‖)− (k − 1)).

Now we present an example illustrating our results. Let

H(x, u, J) =

∫
X

(
g(x, u, y) +

J

J + 1
(y)

)
dP(y | x, u)

where g : X × U ×X → R, and P (· | x, u) is the probability measure conditioned on
(x, u) for a certain MDP.

Let ν(x) = 1 for all x ∈ X, and let assumptions of theorem 5.1 hold. Given an
arbitrary J0 ∈ B(X), and since H(·, ·, ·) is a weakly contractive map, the sequence
{Jk}∞k=0 generated by the algorithm represented by (4.1) and (4.2) converges in norm
with probability one.

6. Conclusions

In this article, we extended the reinforcement learning procedure designated by
Lambda policy iteration with randomization previously developed strongly contrac-
tive operators to the much wider class of weakly contractive operators by applying
methods of fixed point theory. By resorting to the Massa operator, we prove the well
definition, well-posedeness, and the weakly contractiveness of Lambda policy iteration
scheme in Banach spaces. In future, we will seek to develop similar results to gener-
alized metric spaces being the motivation fuelled by the investigation of convergence
properties of general domain computational algorithms.
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