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1. Introduction

The study of measures of noncompactness is one of the main tools of research
in nonlinear functional analysis, in particular when we deal with existence of fixed
points. In the previous decade, several papers gave some fixed point theorems in
view of the measure of noncompactness. In [9], Darbo developed a fixed point the-
orem using the concept of k-set contraction, combining the Kuratowskii measures of
noncompactness with the Schauder fixed point theorem. In [18], Sadovskii gave a
generalization of Darbo theorem introducing the notion of condensing operators. In
some early related works, the authors established several various forms of Schauder
and Krasnoselskii fixed point result with respect to the De Blasi measure of weak
noncompactness [4, 12, 14]. Recently, Banaś and Ben Amar [5], proved a new gen-
eralized fixed point theorem for the sum of two operators under some conditions for
the operators as (τ -compactness, τ -sequential continuity, demi-τ -compactness ), on
convex subsets of Hausdorff topological vector spaces using τ -measures of noncom-
pactenss. In a more recent paper [19], Wang and Zhou established an extension of
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Krasnoselskii fixed point result in locally convex spaces with Krein-Šmulian property
via the family of weak noncompactness introducing the concepts of ws-compactness
and ww-compactness. Their results were applied to study the existence of nonlinear
Volterra integral equation.

Following the ideas of the last mentioned paper, the object of this work is to provide
some new variants of fixed point theorems in a Hausdorff locally convex topological
vector space endowed with a family of seminorms {| · |p}p∈Λ and having the τ -Krein-

Šmulian property (see Definition 2.6). Our results are formulated in terms of a family
of axiomatic ΦτΛ-measures of noncompactness (see Definition 2.1). As an application,
we will study the solvability for the following nonlinear integral equation

x(t) = a(t) +

∫ 1

0

h(t, s)f(s, x(ϕ(s)))ds+

∫ 1

0

u(t, s, x(s))ds, t ∈ [0, 1], (1.1)

in the Lebesgue space L1, where a, h, f , u and ϕ are given functions satisfying certain
conditions.

The outline of this paper is as follows. In section 2, we give some preliminaries,
which are useful in the sequel. Section 3 is devoted to establish new results in fixed
point theory for τ -sequentially continuous operators defined on a convex subset of
a Hausdorff locally convex topological vector space. On basis of Theorem 3.2, we
discuss several theorems for the sum A+B, where A is τ -sequentially continuous and
B is a {| · |p}p∈Λ-contraction. In section 4, we discuss the applicability of theorems,
proved in section 3, to study the existence of solutions of Eq. (1.1).

2. Preliminaries

At first, let us recall some notations and basic concepts. Let (X, {| · |p}p∈Λ) be a
Hausdorff locally convex vector space endowed with a family of seminorms {| · |p}p∈Λ

generating its topology and let τ be a weaker Hausdorff locally convex topology on X.

We denote by
τ−→ the convergence in (X, τ) and by→ the convergence in (X, {|·|p}p∈Λ).

We mean by τ -compact set, compact, set with respect to the topology τ . We also
denote by B(X) the family of all nonempty bounded subsets of X (with respect to
the topology generated by {| · |p}p∈Λ).

Now, let us consider the following axiomatic definition of a family of measures of
noncompactenss in a Hausdorff locally convex vector space.

Definition 2.1. A family of functions φpτ : B(X)→ R+, (p ∈ Λ) is said to be a ΦτΛ-
measures of noncompactenss in X (ΦτΛ-MNC, in short ) if for each p ∈ Λ, it satisfies
the following conditions:

(i) φpτ (conv(M)) ≤ φpτ (M) for each M ∈ B(X), where conv(M) is the closure of the
convex hull of M in (X, τ),

(ii) M1 ⊆M2 ⇒ φpτ (M1) ≤ φpτ (M2), where M1,M2 ∈ B(X),

(iii) φpτ ({x} ∪M) = φpτ (M) for any x ∈ X and M ∈ B(X),

(iv) φpτ (M) = 0 implies M is relatively τ -compact in X, and
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(v) if (Mn)n is a sequence of closed sets of B(X) such that Mn+1 ⊂ Mn, n = 1, 2, ...
and lim

n→∞
φpτ (Mn) = 0 for each p ∈ Λ, then M∞ =

⋂∞
n=1Mn is nonempty relatively

τ -compact subset of X.

The family ΦτΛ-MNC is called:

(vi) Positively homogeneous, if for each p ∈ Λ, φpτ (λM) = λφpτ (M), λ > 0, where
M ∈ B(X).

(vii) Subadditive, if for each p ∈ Λ, φpτ (M1 + M2) ≤ φpτ (M1) + φpτ (M2), where
M1,M2 ∈ B(X).

Example 2.1. [19] The family of measures of weak noncompactenss in a locally
convex space X, which is defined by:

ωp(M) = inf{r > 0 : ∃W ∈ W(X) such thatM ⊆W +Bp(0, r)}, p ∈ Λ

is positively homogeneous and subadditive Φ
σ(X,X∗)
Λ -MNC. Here, Bp(0, r) is the closed

ball centered at 0 with radius r, σ(X,X∗) is the weak topology of X andW(X) is the
set of all nonempty relatively weakly compact subsets of X. This formula is based on
the notion of single measure of weak noncompactenss introduced by De Blasi [10].

Definition 2.2. Let M be a nonempty subset of X and let ΦτΛ := {φpτ , p ∈ Λ} be a
family of ΦτΛ-MNC in X. An operator A : M → X is said ΦτΛ-contraction if for any
bounded subset S of M , A(S) ∈ B(X), and for each p ∈ Λ, there exists a constant
βp ∈ [0, 1) such that φpτ (A(S)) ≤ βpφpτ (S). The operator A is called ΦτΛ-condensing
if for any bounded subset S of M , A(S) ∈ B(X), and for each p ∈ Λ such that
φpτ (S) > 0, φpτ (A(S)) < φpτ (S) .

Definition 2.3. [11] A topological (Hausdorff) space X is called angelic (or has
countably determined compactness) if for every relatively countably compact subset
M of X, the following holds:

(i) M is relatively compact.

(ii) For each x ∈M , there is a sequence in M which converges to x.

Note that all metrizable locally convex spaces endowed with their weak topology are
angelic. (See Eberlein-Šmulian theorem [16].)

Remark 2.1. In angelic spaces the classes of compact, countably compact, and
sequentially compact sets coincide (see [11, p. 31] ).

Now, we define a class of operators needed in our considerations.

Definition 2.4. Let M be a nonempty subset of X. An operator A : M → X is said

to be sequentially τ -closed on M if for each sequence (xn)n ∈ M such that xn
τ−→ x

and Axn
τ−→ y, then x ∈M and y = Ax.

Definition 2.5. [5] Let M be a nonempty subset of X, A : M → X be an operator.
We say that A is τ -sequentially continuous on M if for each sequence (xn)n ⊂ M

with xn
τ−→ x and x ∈M , we have that Axn

τ−→ Ax.
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Remark 2.2. (i) Clearly, every τ -sequentially continuous operator is sequentially
τ -closed, but the converse is not true.

(ii) If X is angelic, then any τ -sequentially continuous map on a τ -compact set is
τ -continuous.

Definition 2.6. We say that X has the τ -Krein-Šmulian property (τ -KS, in short)
if the closed convex hull of a τ -compact set is τ -compact.

As an example, if X is a Banach space, then X has σ(X,X∗)-Krein-Šmulian property.

Definition 2.7. [8] Let X be a Hausdorff locally convex topological vector space. A
mapping A : X → X is said to be a {| · |p}p∈Λ-contraction if for each p ∈ Λ, there
exists αp ∈ [0, 1) such that for all x1, x2 ∈ X

|Ax1 −Ax2|p ≤ αp|x1 − x2|p.
Now, we provide an important result proved by Cain and Nashed in Hausdorff locally
convex topological vector spaces [8].

Theorem 2.1. Let X be a Hausdorff locally convex topological vector space. M is
a sequentially complete subset of X and the mapping A : M → M is a {| · |p}p∈Λ-
contraction. Then, A has a unique fixed point x ∈M .

3. Main results

Let (X, {| · |p}p∈Λ) be a Hausdorff locally convex topological vector space, and τ
is weaker Hausdorff locally convex vector topology of X.

Theorem 3.1. Let (X, τ) be an angelic space. Let M be a nonempty, convex, and
τ -compact subset of X. If A : M →M is a τ -sequentially continuous operator, then,
A has a fixed point in M .

Proof. The proof follows from Remark 2.2 and Schauder-Tychonoff fixed point theo-
rem. �

Remark 3.1. Notice that Theorem 3.1 generalizes the Arino, Gautier and Penot
fixed point theorem [3, Theorem 1].

Now, we state a generalization of Theorem 2.5 in [6].

Theorem 3.2. Assume that (X, τ) is angelic and has the τ -KS property. Let M be a
nonempty, closed convex subset of X and A : M →M be a τ -sequentially continuous
operator. If A(M) is relatively τ -compact, then A has a fixed point in M .

Proof. Let C = conv(A(M)). Clearly, A(C) ⊂ C. Since A(M) is relatively τ -compact
and X satisfy the τ -KS property, then C is relatively τ -compact. By Theorem 3.1,
there exists x ∈ C such that Ax = x. Which achieves the proof. �

As a consequence of the above Theorem we can formulate the following results.

Corollary 3.1. Suppose that (X, τ) is an angelic space and has the τ -KS property.
Let M be a nonempty, closed convex subset of X. Let A : M → M be a sequentially
τ -closed operator such that A(M) is relatively τ -compact. Then, A has a fixed point
in M .
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Proof. Let C = conv(A(M)). By the same arguments used in the proof of Theorem
3.2, C is relatively τ -compact and A(C) ⊂ C. Now, we prove that A is τ -sequentially

continuous. For this purpose, let (xn)n be a sequence in C, such that xn
τ−→ x. Since

A(xn) ⊂ A(C) ⊂ C, there exists a subsequence (xnk) of (xn)n such that Axnk
τ−→ y.

Taking into account that A is sequentially τ -closed, and xnk
τ−→ x, we get y = Ax.

Next, we will show that

Axn
τ−→ Ax.

Suppose the contrary, then there exists a τ -neighborhood V τ of Ax and a subsequence

(xni)i of (xn)n such that Axni /∈ V τ for all i. Moreover, xni
τ−→ x, then arguing as

before, there exists a subsequence (xnik )k of (xni)i such that

Axnik
τ−→ Ax,

which is absurd, since Axnik /∈ V τ for all k. This prove that A is τ -sequentially
continuous. Then, by Theorem 3.2, we deduce that A has a fixed point in M . �

Now, we present a new variant of Darbo’s fixed-point theorem [9] for τ -sequentially
continuous maps involving a family of ΦτΛ-MNC .

Corollary 3.2. Assume that (X, τ) is angelic and has the τ -KS property. Let M be
a nonempty, bounded, closed, and convex subset of X and ΦτΛ = {φpτ , p ∈ Λ} be a
family of ΦτΛ-MNC in X. Let A : M → M be a τ -sequentially continuous operator.
If A is ΦτΛ-contractive, then A has a fixed point in M .

Proof. Let us define the sequence (Mn)n such that

M1 = M and Mn+1 = conv(A(M)).

Clearly, the sequence (Mn)n consists of nonempty closed, bounded, convex, and de-
creasing subsets of M . Let p ∈ Λ, using the property (i) of Definition 2.1 we obtain

φpτ (M2) = φpτ (conv(A(M1))
≤ φpτ (A(M1)).

Further, since A is ΦτΛ-contractive, there exists βp ∈ [0, 1) such that

φpτ (M2) ≤ βpφpτ (M1).

Proceeding by induction we get

φpτ (Mn) ≤ βn−1
p φpτ (M),

and therefore lim
n→∞

φpτ (Mn) = 0. By using the property (v) of ΦτΛ-MNC, we infer

that M∞ = ∩∞n=1Mn is nonempty, closed, convex, and relatively τ -compact subset of
M . Moreover,

A(M∞) = A(∩∞n=1Mn) ⊂ ∩∞n=1A(Mn) ⊂M∞.
Accordingly, A(M∞) is relatively τ -compact. Now, the use of Theorem 3.2 concludes
the proof. �

Note that Corollary generalizes Theorem 3.1 in [4] , and Theorem 2.2 in [17].

The next result is a generalization of Sadovskii’s fixed point theorem for strong
condensing map [18].
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Corollary 3.3. Assume that (X, τ) is angelic and has the τ -KS property. Let M be
a nonempty, bounded,closed and convex subset of X and let ΦτΛ = {φpτ , p ∈ Λ} be
a ΦτΛ-MNC in X. Let A : M → M be a τ -sequentially continuous operator. If A is
ΦτΛ-condensing, then A has a fixed point in M .

Proof. Let x0 ∈M , we define the set

S = {D ⊂ X; x0 ∈ D ⊂M, D is bounded, convex, and A(D) ⊂ D}.

Clearly, M ∈ S, then S is nonempty. Denote by C =
⋂
D∈S

D. Obviously x0 ∈ C and

C is a bounded convex subset of X, and A(C) ⊂ C. It follows that

conv{A(C) ∪ {x0}} ⊂ C. (3.1)

Therefore,

A(conv{A(C) ∪ {x0}}) ⊂ A(C) ⊂ conv{A(C) ∪ {x0}}.
Hence,

conv{A(C) ∪ {x0}} ∈ S.
Consequently,

C ⊂ conv{A(C) ∪ {x0}}. (3.2)

When combining Eqs. (3.1) and (3.2), we get conv{A(C) ∪ {x0}} = C. Using the
properties of ΦτΛ-MNC, we have

φpτ (C) = φpτ (conv{A(C) ∪ {x0}}) ≤ φpτ (A(C) ∪ {x0}) = φpτ (A(C)).

By the ΦτΛ-condensibility of A, we obtain φpτ (C) = 0, then C is relatively τ -compact
and consequently A(C) is relatively τ -compact. So by Theorem 3.2, we deduce that
there exists x ∈ C such that Ax = x. �

Remark 3.2. As an easy consequence of Corollary 3.3, we may recapture Theorem
3.2 in [7], and Theorem 12 of [12].

Basing on Theorem 3.2, we prove the following fixed point theorem for the sum of a
τ -sequentially continuous and a {| · |p}p∈Λ-contraction mapping.

Theorem 3.3. Let X be a sequentially complete Hausdorff locally convex topological
vector space. Assume that (X, τ) is angelic and has the τ -KS property. Suppose that
M is a nonempty, bounded, closed, and convex subset of X. Let {φpτ , p ∈ Λ} be a
ΦτΛ-MNC in X. Consider A : M → X and B : X → X two operators such that for
all p ∈ Λ:

(i) A is τ -sequentially continuous,

(ii) B is a {| · |p}p∈Λ-contraction and is sequentially τ -closed,

(iii) there exists λp ∈ [0, 1) such that φpτ (A(S) + B(S)) ≤ λpφpτ (S) for all S ⊂ M ,
and

(iv) (x = Bx+Ay, y ∈M) =⇒ x ∈M .

Then, there exists x ∈M such that x = Ax+Bx.
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Proof. Let y be a fixed in M , the map which assigns to each x ∈ X the value Bx+Ay
defines a {| · |p}p∈Λ-contraction from X into X for all p ∈ Λ. So, by Theorem 2.1, the
equation x = Bx + Ay has a unique solution x ∈ X. By assumption (iv), it follows
that x ∈M . Hence, x = (I −B)−1Ay ∈M which, accordingly implies the inclusion

(I −B)−1A(M) ⊂M. (3.3)

Now, define the sequence (Mn)n of subsets of M by:

M1 = M andMn+1 = conv((I −B)−1A(Mn)). (3.4)

We claim that the sequence (Mn)n satisfies the conditions of property (v) of ΦτΛ-MNC.
Indeed, it is clear that the sequence (Mn)n consists of nonempty closed, convex and
bounded subsets of M . By Eq. (3.3) one sees that it is also decreasing. Now, using
Eq. (3.4) and the following equality

(I −B)−1A = A+B(I −B)−1A, (3.5)

we obtain

(I −B)−1A(Mn) ⊆ A(Mn) +B conv((I −B)−1A(Mn)) ⊆ A(Mn) +B(Mn). (3.6)

Kipping in mind Eq. (3.6), and the properties (i) and (ii) of Definition 2.1, we obtain

φpτ (Mn+1) = φpτ (conv(I −B)−1A(Mn))
≤ φpτ ((I −B)−1A(Mn))
≤ φpτ (AMn +B(Mn)).

Further, by assumption (iii), we deduce that

φpτ (Mn+1) ≤ λpφpτ (Mn).

Proceeding by induction we get

φpτ (Mn) ≤ λn−1
p φpτ (M),

and therefore lim
n→∞

φpτ (Mn) = 0. Now, applying the property (v) of ΦτΛ-MNC we

infer that M∞ = ∩∞n=1Mn is nonempty, closed, convex , and relatively τ -compact
subset of M . On the other hand one can easily verify that (I − B)−1A(Mn) ⊂ Mn

for all n, thus we obtain (I − B)−1A(M∞) ⊂ M∞. Consequently, (I − B)−1A(M∞)
is relatively τ -compact. Next, let us show that (I − B)−1A : M∞ → M∞ is τ -
sequentially continuous . To this purpose, let (xn)n be a sequence in M∞ such that

xn
τ−→ x in M∞. Since

((I −B)−1Axn)n ⊂ (I −B)−1AM∞,

there exists a subsequence (xnk)k of (xn)n such that

(I −B)−1Axnk
τ−→ y (3.7)

Going back to Eq. (3.5), using the τ -sequential continuity of the operator A and Eq.
(3.7), it follows that

B(I −B)−1Axnk
τ−→ y −Ax. (3.8)

Together with Eqs. (3.7), (3.8), and assumption (ii), we infer that By = y − Ax,
hence y = (I −B)−1Ax.
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Now, we claim that

(I −B)−1Axn
τ−→ (I −B)−1Ax.

Suppose the contrary, then there exists a τ -neighborhood V τ of (I − B)−1Ax and
a subsequence (xnj )j of (xn)n such that (I − B)−1Axnj /∈ V τ for all j. Moreover,

xnj
τ−→ x, then arguing as before, we can extract a subsequence (xnjk )k of (xnj )j such

that
(I −B)−1Axnjk

τ−→ (I −B)−1Ax,

which is absurd, since (I −B)−1Axnjk /∈ V
τ for all k.

Finally, (I −B)−1A is τ -sequentially continuous. Now, the use of Theorem 3.2 yields
a point x ∈M such that x = Ax+Bx. �

Note that condition (iii) of Theorem 3.3, can be weakened. For this purpose let
us recall the following definition.

Definition 3.1. [13] Let Q be the class of functions γ : R+ → [0, 1) which satisfies
the following condition: γ(tn)→ 1 implies tn → 0.

Theorem 3.4. Let X be a sequentially complete Hausdorff locally convex topological
vector space. Assume that (X, τ) is angelic and has the τ -KS property. Suppose that
M is a nonempty, bounded, closed, and convex subset of X. Consider A : M → X
and B : X → X be two operators such that for all p ∈ Λ:

(i) A is τ -sequentially continuous,

(ii) B is {| · |p}p∈Λ-contraction and is sequentially τ -closed,

(iii) φpτ (A(S) +B(S)) ≤ γ(φpτ (S))φpτ (S), for all S ⊂M , γ ∈ Q, p ∈ Λ, and

(iv) (x = Bx+Ay, y ∈M) =⇒ x ∈M .

Then, there exists x ∈M such that x = Ax+Bx.

Proof. In view of the proof of Theorem 3.3, it is sufficient to establish that the se-
quence (Mn)n defined in (3.4), satisfies the conditions of property (v) of Definition
2.1. Using properties of ΦτΛ-MNC and Eq. (3.6) we have

φpτ (Mn+1) = φpτ (conv((I −B)−1A(Mn)))

≤ φpτ ((I −B)−1A(Mn))

≤ φpτ (A(Mn) +B(Mn)). (3.9)

By assumptions (iii) and Eq. (3.9), we get

φpτ (Mn+1) ≤ γ(φpτ (Mn))φpτ (Mn) (3.10)

≤ φpτ (Mn),

this implies that (φpτ (Mn))n is a positive decreasing sequence of real numbers. Thus,
there is an r ≥ 0 such that lim

n→∞
φpτ (Mn) = r. Now, we prove that r = 0. To this

end, suppose that r 6= 0 and φpτ (Mn) 6= 0 for n ≥ 1. By Eq. (3.10), we obtain

φpτ (Mn+1)

φpτ (Mn)
≤ γ(φpτ (Mn)) < 1,
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therefore, lim
n→∞

γ(φpτ (Mn)) = 1. Since γ ∈ Q, we get lim
n→∞

φpτ (Mn) = 0. Using

property (v) of ΦτΛ-MNC, we deduce that M∞ = ∩∞n=1Mn is nonempty, closed, convex,
and relatively τ -compact subset of M .
If there exists k ≥ 0 such that φpτ (Mk) = 0, this implies that Mk is relatively
τ -compact. Arguing as in the proof of Theorem 3.3, we deduce that the operator
(I−B)−1A : Mk →Mk is τ -sequentially continuous, and (I−B)−1A(Mk) is relatively
τ -compact. Then, Theorem 3.2 can be applied and this completes the proof. �

4. Application to nonlinear functional integral equation

In this section we are going to use our findings proved in the last section to present
some existence results for a nonlinear integral equation in the Lebesgue space . At
the beginning we provide some auxiliary notations and results which will be useful
in our investigations. For more details the readers can refer to [1, 2, 4, 5, 15]. Let
I = [0, 1] be a compact interval in R and denote by L1 = L1(I) the space of Lebesgue
integrable real functions on the interval I with the norm

‖x‖ =

∫ 1

0

|x(t)|dt.

Let ξ = ξ(I) be the set of all real functions, Lebesgue measurable on I and denote
by m(M) the Lebesgue measure of a measurable subset M of R. We define in ξ the
metric ρ by the formula

ρ(x, y) = inf{a+m({s ∈ I : |x(s)− y(s)|) ≥ a}) : a > 0},
so, ξ becomes a complete metric space. It is known that the convergence in measure
coincides with the convergence generated by the metric ρ, but the convergence in
measure of a sequence (xn)n in L1 does not imply the weak convergence of (xn)n and
conversely. While, we have the following results [4].

Lemma 4.1. A sequence (xn)n in L1 converges strongly to x ∈ L1 (i.e., converges
in norm ) if, and only if, (xn)n converges in measure to x and is weakly compact.

Lemma 4.2. Let M be a bounded subset of the space L1 consisting of all functions
being a.e. nondecreasing (nonincreasing) on I. Then, M is compact in measure.

The following Lemma states the case when a class of weakly sequentially continuous
operators coincides with the class of continuous ones in L1.

Lemma 4.3. Let M be a bounded subset of the Lebesgue space L1 which is compact in
measure. If A : M → L1 is continuous, then it is also weakly sequentially continuous.

Now, we give some basic results concerning the superposition operator [2].

Definition 4.1. Assume that the function f : I × R → R satisfies the Carathédory
conditions i.e., it is measurable in t for any x ∈ R and continuous in x for almost
all t ∈ I. Then, to every function x(t) being measurable on I, we may assign the
function

F (x(t)) = f(t, x(t)), t ∈ I.
The operator F is such a way is called the superposition (Nemytskii) operator gener-
ated by the function f .
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Theorem 4.1. Assume that f : I × R → R satisfies Carathédory conditions. Then,
the superposition operator F generated by f transforms the space L1 into itself if, and
only if,

|f(t, x)| ≤ a(t) + b|x|,
for t ∈ I and x ∈ R, where a(·) is a function from the space L1 and b > 0. Moreover,
the operator F is continuous on the space L1.

An important nonlinear integral equation is the Urysohn equation defined in
Eq.(4.1) by

U(x(t)) =

∫
I

u(t, s, x(s))ds, (4.1)

where u : I × I × R → R satisfies Carathédory conditions. A particular case of the
Urysohn equation is the Hammerstein integral equation Eq.(4.2)

H(x(t)) =

∫
I

h(t, s)x(s)ds, (4.2)

with h : I × I → R. Now, we provide some conditions for continuity of integral
operators U and H in the following results [15].

Theorem 4.2. Let the functions u(t, s, x) and k(t, s, x) satisfy the Carathédory con-
ditions. Let

|u(t, s, x)| ≤ k(t, s, x), t, s ∈ I, x ∈ R
and suppose that the integral operator

K(x(t)) =

∫
I

k(t, s, x(s))ds

act from Lp to Lq, q > 0, and is continuous. Then, the integral operator U also acts
from the space Lp to the space Lq and is continuous.

Theorem 4.3. Let h : I × I → R be measurable with respect to both variables. Let
the linear integral operator H with kernel h(·, ·) map Lp into Lq. Then, the integral
operator H is continuous.

Due to the works of Appell and De Pascale [1], we can express the De Blasi measure
of weak noncompactness ω(.) in L1 by the formula:

ω(X) = lim
ε→0

sup
x∈X

sup

∫
D

|x(t)| dt : D ⊂ I,m(D) ≤ ε


 .

Now, we will discuss the solvability of Eq. (1.1) under the following assumptions :

(H1) a is continuous and is decreasing on I.

(H2) f : I × R→ R satisfies Carathédory conditions. There exists l > 0 such that

|f(t, x)− f(t, y)| ≤ l |x− y|, for each t ∈ I , x, y ∈ R,
and f(t, 0) ∈ L1.
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(H3)

(i) h : I × I → R+ be measurable with respect to both variables and such that
the integral operator H with the kernel h(t, s) defined on L1 by the formula

H(x(t)) =

∫ 1

0

h(t, s)x(s)ds. (4.3)

(ii) The function t 7−→ h(t, s) is a.e. nondecreasing on I for almost all t ∈ I,
(iii) There exists a function p ∈ L1 such that

h(t, s) ≤ p(t),

(H4)

(i) u : I × I × R → R satisfies Carathédory conditions, i.e., u is measurable
with respect to (t, s) for any x ∈ R and is continuous in x for almost all
(t, s) ∈ I × I.

(ii) The function t 7−→ u(t, s, x) is a.e. nondecreasing on I for almost all s ∈ I
and for each x ∈ R.

(iii) |u(t, s, x)| ≤ k(t, s)(q(t) + b1 |x|) for (t, s) ∈ I × I and for x ∈ R, where q ∈ L1

and b1 ≥ 0.
(iv) k : I × I → R+ is measurable and such that the linear operator K generated

by k maps L1 into itself.

(H5) ϕ : [0, 1]→ [0, 1] is increasing, absolutely continuous such that there is a constant
b2 > 0 such that ϕ′(t) ≥ b2 for almost all t ∈ I.

(H6)

(
l

b2
‖p‖+ b1 ‖K‖

)
< 1, where ‖K‖ and ‖p‖ denote the norm of the operator

K and the function p respectively.

Theorem 4.4. Assume that (H1)− (H6) hold true. Then, Eq. (1.1) has at least one
solution in L1.

Proof. We can rewrite Eq. (1.1) in the form x(t) = Bx(t) +Ax(t), where

Bx(t) = a(t) +

∫ 1

0

h(t, s)f(t, x(ϕ(s)))ds, and

Ax(t) =

∫ 1

0

u(t, s, x(s))ds.

We will prove that the operators A and B satisfy conditions of Theorem 3.3.
Firstly, observe that the operator B can be written as

Bx(t) = a(t) +H(F (x(ϕ(t)))),

where F is the superposition operator generated by f , and H is the integral operator
defined in Eq. (4.3). In view of assumption (H2), we have

|f(t, x)| ≤ |f(t, x)− f(t, 0)|+ |f(t, 0)|
≤ |f(t, 0)|+ l|x|. (4.4)
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From Eq. (4.4) and Theorem 4.1, it follows that F transforms L1 into itself and is
continuous. Moreover, by (H3)(i) and Theorem 4.3, H is continuous on L1. This fact
together with assumption (H1), yield that the operator B acts from L1 to L1 and is
continuous.

Now to see that B is a contraction, let x, y ∈ L1, then

‖Bx−By‖ =

∫ 1

0

∣∣∣∣∫ 1

0

h(t, s)(f(t, x(ϕ(s)))− f(t, y(ϕ(s))))ds

∣∣∣∣ dt
≤
∫ 1

0

∫ 1

0

h(t, s) |f(t, x(ϕ(s)))− f(t, y(ϕ(s)))| dsdt

≤ l
∫ 1

0

∫ 1

0

p(t) |x(ϕ(s))− y(ϕ(s))| dsdt

≤ l
∫ 1

0

∫ 1

0

p(t) |x(ϕ(s))− y(ϕ(s))| ϕ
′(t)

b2
dsdt

≤ l

b2

∫ 1

0

p(t)

∫ 1

0

|x(v)− y(v)| dvdt.

Thus,

‖Bx−By‖ ≤ l

b2
‖p‖ ‖x− y‖ . (4.5)

Using Eq. (4.5) and assumption (H6) we deduce that B is a contraction. Further, by
assumption (H4) and Theorem 4.2 we infer that the operator A transforms L1 into
itself and is continuous.

Now, let Nr denotes the subset of L1 consisting of all functions x = x(t) being a.e.
nondecreasing on I such that ‖x‖ ≤ r, where r is a nonnegative constant that will
be defined later. Firstly, we prove that the operator A + B maps Nr into itself. By
assumptions (H1), (H3)(ii), (H4)(ii), and (H5) we obtain that the operator A+B is
a.e. nondecreasing.
Let x ∈ Nr, then

‖Ax+Bx‖ =

1∫
0

|Ax(t) +Bx(t)|dt

=

1∫
0

∣∣∣∣∣∣a(t) +

1∫
0

h(t, s)f(t, x(ϕ(s)))ds+

1∫
0

u(t, s, x(s))ds

∣∣∣∣∣∣dt
≤

1∫
0

|a(t)|+
1∫

0

h(t, s) |f(t, x(ϕ(s)))| ds+

1∫
0

|u(t, s, x(s))| ds

dt
≤ ‖a‖+

1∫
0

 1∫
0

p(t) (|f(t, 0)|+ l |x (ϕ(s))|) ds+

1∫
0

k(t, s) (q(t) + b1 |x(s)|) ds

dt



FIXED POINT RESULTS IN LOCALLY CONVEX SPACES 507

≤ ‖a‖+

1∫
0

1∫
0

p(t) |f(t, 0)| dsdt+ l

1∫
0

1∫
0

p(t) |x (ϕ(s))|ϕ
′(t)

b2
dsdt

+

1∫
0

1∫
0

k(t, s)q(t)dsdt+ b1

1∫
0

1∫
0

k(t, s) |x(s)| dsdt

≤ ‖a‖+ ‖p‖ ‖f(t, 0)‖+
l

b2
‖p‖ ‖x‖+ ‖K‖ ‖q‖+ b1 ‖K‖ ‖x‖

= α+ β ‖x‖ ,

where

α = ‖a‖+ ‖p‖ ‖f(t, 0)‖+ ‖K‖ ‖q‖

and

β =

(
l

b2
‖p‖+ b1 ‖K‖

)
.

Let r =
α

1− β
> 0, so for x ∈ Nr we have

‖ Ax+Bx ‖≤ α+ β ‖x‖ = r. (4.6)

Thus, the operator A+B maps Nr into itself. Obviously, Nr is nonempty, bounded,
and convex subset of L1, and by Lemma 4.2 it is compact in measure. Next, we show
that Nr is closed. For this purpose, let (xn)n be a sequence in Nr converging to x, so

‖xn − x‖ → 0

then Lemma 4.1 implies that the sequence (xn)n converges in measure to x and there
exists a subsequence (xnj )j which converges a.e. to x on I. Let us prove that the
function x is nondecreasing. To see that let t1, t2 ∈ I such that t1 ≤ t2 we have
xnj (t1) ≤ xnj (t2) for every j,

x(t1)− x(t2) = x(t1)− xnj (t1) + xnj (t1)− xnj (t2) + xnj (t2)− x(t2)

≤
∥∥x(t1)− xnj (t1)

∥∥+
∥∥xnj (t2)− x(t2)

∥∥ . (4.7)

Since (xnj )j is convergent, then by Eq. (4.7), and for each ε > 0 we get

x(t1)− x(t2) ≤ ε,

which proves that x(t1) ≤ x(t2), hence Nr is closed. By Eq. (4.6), and assumption
(H1), we can see that the operators A and B converts Nr into itself continuously.
Keeping in mind Lemma 4.3, we conclude that the operators A and B are sequentially
weakly continuous. Now, We will verify assumption (iii) of Theorem 3.3. For this
purpose let S ⊂ Nr and x ∈ S. Further, let ε > 0 and take a measurable subset
D ⊂ [0, 1] such that m(D) ≤ ε and ϕ(D) ⊂ D.
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We obtain that∫
D

|Ax(t) +Bx(t)|dt ≤
∫
D

∣∣∣∣∣∣a(t) +

1∫
0

h(t, s)f(t, x(ϕ(s)))ds+

1∫
0

u(t, s, x(s))ds

∣∣∣∣∣∣dt
≤ ‖a‖L1(D) +

∫
D

 1∫
0

h(t, s) |f(t, x(ϕ(s)))| ds+

1∫
0

|u(t, s, x(s))| ds

dt
≤ ‖a‖L1(D) +

∫
D

1∫
0

p(t) (|f(t, 0)|+ l |x(ϕ(s))|)dsdt

+

∫
D

1∫
0

k(t, s) (q(t) + b1 |x(s)|) dsdt

≤ ‖a‖L1(D) + ‖p‖L1(D)‖f(t, 0)‖L1(D) + l‖p‖L1(D)

∫
D

1∫
0

|x(ϕ(s))| ϕ
′(t)

b2
dsdt

+

∫
D

1∫
0

k(t, s)q(t)dsdt+ b1

∫
D

1∫
0

k(t, s) |x(s)| dsdt

≤ ‖a‖L1(D) + ‖p‖L1(D)‖f(t, 0)‖L1(D) +
l

b2
‖p‖L1(D)

∫
ϕ(D)

|x(v)|dv

+ ‖K‖L1(D)‖q‖L1(D) + b1‖K‖L1(D)

∫
D

|x(t)|dt.

This implies that,

ω(A(S) +B(S)) ≤
(
l

b2
‖p‖L1(D) + b1‖K‖L1(D)

)
ω(S),

where ω(.) is the De Blasi measure of weak noncompactenss. Hence, all the hypotheses
of Theorem 3.3 are satisfied. Then, there exists x ∈ Nr such that Ax+Bx = x which
is a solution for Eq. (1.1). �
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