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1. Introduction

Let T and S be two maps acting from a Banach space X into a Banach space Y and
λ 6= 0. Surjectivity results for nonlinear operator equations of the form λT − S = f
play an important role in proving existence theorems for nonlinear differential and
integral equations (see [10, 14, 15, 17, 18, 19]).

In 1973, S. Fučik, J. Nečas, J. Souček and V. Souček [11] presented various sur-
jectivity results for nonlinear operator equations λT (x)− S(x) = f with T invertible
and a (K,L, a)-homeomorphism (i.e. the operator T : X → Y (not necessarily linear)
is said to be a (K,L, a)-homeomorphism if

(1) T is a homeomorphism of X onto Y ,
(2) there exist real numbers K > 0, a > 0, L > 0 such that

L‖x‖a ≤ ‖T (x)‖ ≤ K‖x‖a for each x ∈ X).
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Also in [11] the authors assumed that T and S are two odd maps, S is completely
continuous and different types of homogeneity conditions were considered. Some
of their results have been extended by F. Pacella [20] to bounded weakly closed
operators using topological degree when X and Y are two reflexive Banach spaces
and Y is separable with strictly convex dual Y ′. In 1999, W. Feng and J.R.L. Webb
[10] established some surjectivity results for λT −S under weaker conditions (without
oddness conditions) using the notion of the measure of noncompactness.

In this paper we discuss surjectivity results of the maps λT −S when T and S are
two weakly sequentially continuous maps. We remove the oddness assumption on T
and S (required in [11]). The proofs of surjectivity theorems in [11] are based on the
Leray-Schauder degree (for completely continuous operators); as a result we cannot
proceed as in [11]. We define new quantities [f ]wa and [f ]wA (f : X 7→ Y ) and obtain
some surjectivity results of Fučik, Nečas, Souček and Souček type.

This paper is organized as follows. In the first section we introduce new operator
quantities [f ]wa and [f ]wA, where f is a map acting between X and Y and we present
properties that will be needed later. In Section 3, motivated partly by [10], we pro-
vide a surjectivity theorem for λT − S in Banach spaces (see Theorem 3.1) where we
assume hypothesis on T and S, formulated in the weak topology setting, Theorem 3.1
generalizes Theorem 1.2 and Corollary 1.1 in Chapter II of [11]. Moreover, Theorem
3.1 is the analogue of Theorem 3.1 of [10] in the weak topology setting. As a conse-
quence of our theorem (Theorem 3.1) we obtain surjectivity results similar to those
in [11] in the weak topology setting (see Theorems 3.2 and 3.4). Also, using Theorem
3.1, we establish surjectivity theorems for weakly sequentially continuous maps, and
these results are similar to those obtained in [20] for bounded weakly closed maps
where the assumption that Y is a separable reflexive space with strictly convex dual
Y ′ is removed. Note that in our results we do not assume that T is a (K,L, a)-
homeomorphism. Finally using Theorem 3.1 we establish an existence principle for
generalized Hammerstein type integral equations.

2. Preliminaries

Throughout this paper, X and Y are two Banach spaces (over a scalar field K).
As usual ⇀ will denote weak convergence while → will denote norm convergence. In
[2] the authors used the upper and lower measure of noncompactness defined for a
continuous map G between X and Y ; recall these are

[G]A = sup

{
α(G(Ω))

α(Ω)
: Ω ⊆ X bounded, α(Ω) > 0

}
,

[G]a = inf

{
α(G(Ω))

α(Ω)
: Ω ⊆ X bounded, α(Ω) > 0

}
,

where α(Ω) denotes the Kuratowski measure of noncompactness of a subset Ω of X
(defined as the infimum of real numbers ε > 0 such that Ω admits a finite covering by
sets of diameter less than ε (see [8])). The quasi-norm (see [13], page 53) is defined
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by,

[G]Q = lim sup
‖x‖→∞

‖G(x)‖
‖x‖

= inf
ρ>0

sup
‖x‖≥ρ

‖G(x)‖
‖x‖

.

For a comprehensive list of properties of [G]A, [G]a and [G]Q we refer the reader to
[2].

In order to define the new quantities [f ]wA and [f ]wa , we need a measure of weak
noncompactness on X. Let B the collection of all bounded sets of X. In addition,
let Bε(X) denote the closed ball in X centered at 0X with radius ε. The De Blasi
measure of weak noncompactness (see [7]) is the map β : B→ R+ defined by

β(Ω) = inf{ε > 0 : there exists a weakly compact set D such that Ω ⊆ D +Bε(X)}.

Proposition 2.1. [7] The De Blasi measure β : B → R+ satisfies the following
properties:

(1) β(Ω) = 0 if and only if Ωw is weakly compact (regularity),
(2) β(µΩ) = |µ|β(Ω) for all µ ∈ R and β(Ω1 + Ω2) ≤ β(Ω1) +β(Ω2) (seminorm),
(3) If Ω1 ⊆ Ω2, then β(Ω1) ≤ β(Ω1) (monotonicity),
(4) β(Ω1 ∪ Ω2) = max{β(Ω1), β(Ω2)}(semi-additivity),
(5) β(Ω) = β(Ωw).

Note that the De Blasi measure is the first important example for the measure of
weak noncompactness. For more properties on measures of weak noncompactness, we
refer the reader to [1, 5, 4].

We are now ready to define [f ]wa and [f ]wA. Let f : X → Y be a map (not necessary
continuous). We define [f ]wA and [f ]wa as:

[f ]wA = sup

{
β(f(Ω))

β(Ω)
: Ω ⊆ X bounded, β(Ω) > 0

}
,

and

[f ]wa = inf

{
β(f(Ω))

β(Ω)
: Ω ⊆ X bounded, β(Ω) > 0

}
.

The quasi-norm of f is

[f ]Q = lim sup
‖x‖→∞

‖f(x)‖
‖x‖

.

Definition 2.1. Let f : X → Y be a mapping. Then:

(a) f is called weakly sequentially continuous if (xn) ⊂ X with xn ⇀ x implies
f(xn) ⇀ f(x).

(b) f is called weakly compact if for any nonempty and bounded subset Ω of X,
the set f(Ω) is relatively weakly compact.

Definition 2.2. Let β be the De Blasi measure of weak noncompactness. An operator
f : X → Y is said to be β-condensing if β(f(Ω)) < β(Ω) for all bounded sets Ω ⊆ X
with β(Ω) 6= 0.
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Remark 2.1. (See the proof of Theorem 1 in [3]) Consider a Banach space X and a
weakly compact D ⊂ X. Then every sequentially weakly continuous map f : D → X
is weakly continuous. This is an immediately consequence of the Eberlein-Šmulian’s
theorem.

We give some properties of [f ]wA that will be used later.

Proposition 2.2. Let f : X → Y and g : Y → X be two maps. Then:

(a) [f ]wa ≤ [f ]wA.
(b) [λf ]wA = |λ|[f ]wA, ∀λ ∈ K.
(c) If for every Ω ⊆ X bounded, β(f(Ω)) = 0⇒ β(Ω) = 0, then

[g ◦ f ]wA ≤ [g]wA[f ]wA.

(d) [f ]wA = 0 if and only if f is weakly compact.
(e) If f is weakly sequentially continuous, f is bijective and f−1 is weakly sequen-

tially continuous, then

[f−1]wA = ([f ]wa )−1.

Proof. (a) Is immediate.
(b) This follows from property (2) of Proposition 2.1.
(c)

[g ◦ f ]wA = sup
∞>β(Ω)>0

β(g ◦ f)(Ω)

β(Ω)
= sup

∞>β(Ω)>0
∞>β(f(Ω))>0

β(g ◦ f)(Ω)

β(f(Ω))

β(f(Ω))

β(Ω)

≤ sup
∞>β(N)>0

β(g(N))

β(N)
sup

∞>β(Ω)>0

β(f(Ω))

β(Ω)
= [g]wA[f ]wA.

(d) If [f ]wA = 0 then β(f(Ω)) = 0 for any Ω ⊆ X bounded, and by (1) in Proposition
2.1 f(Ω) is weakly relatively compact and f is weakly compact.

If f is weakly compact then for every Ω ⊆ X bounded, f(Ω) is relatively weakly
compact so β(f(Ω)) = 0 and [f ]wA = 0.
(e) Let Ω ⊆ X be bounded, f be bijective, f be weakly sequentially continuous and
f−1 be weakly sequentially continuous. Then we claim β(f(Ω)) = 0 if and only if
β(Ω) = 0.

In fact, if β(f(Ω)) = 0 then f(Ω) is weakly relatively compact, and since f−1 is
weakly sequentially continuous, then f−1(f(Ω)) is weakly relatively compact. Since
f is bijective, f−1(f(Ω)) = Ω is weakly relatively compact and so β(Ω) = 0. Now,
if β(Ω) = 0 then Ω is weakly relatively compact. Since f is weakly sequentially
continuous from Remark 2.1 we have f : Ω → Y is weakly continuous, so we have
that f(Ω) is weakly relatively compact, that is, β(f(Ω)) = 0. Thus our claim is true.

Also note

[f−1]wA = sup
0<β(Ω)<∞

β(f−1(Ω))

β(Ω)
.
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Let M = f−1(Ω) and then,

[f−1]wA = sup
0<β(M)<∞

β(M)

β(f(M))
=

(
inf

0<β(M)<∞

β(f(M))

β(M))

)−1

= ([f ]wa )
−1
.

�

Remark 2.2. If f : X → Y is weakly sequentially continuous, f is bijective and
f−1 is weakly sequentially continuous, then f has the property : for every Ω ⊆ X
bounded, β(f(Ω)) = 0⇔ β(Ω) = 0, (see the proof of statement (e)). In particular f
satisfies the condition of statement (c) of Proposition 2.2.

Remark 2.3. If [f ]wA < 1 then f is β-condensing.

Theorem 2.1. (See [6] Theorem 3.2.) Let Ω be a non-empty, convex closed set of a
Banach space X. Assume that f : Ω → Ω is a weakly sequentially continuous map
and condensing with respect to β. In addition, suppose that f(Ω) is bounded. Then,
f has a fixed point.

Lemma 2.1. Let T : X → Y bijective, S : Y 7→ X and z0 ∈ Y . Define the map:

Fz0,λ : Y → Y, y 7→ ST−1
( y
λ

)
+ z0.

Fix λ 6= 0. If Fz0,λ has a fixed point for all z0 ∈ Y , then λT − S is onto

Proof. Let z0 ∈ Y . If Fz0(y) = y then ST−1( yλ ) + z0 = y. We write x = T−1( yλ ) and
since T is bijective, we have λT (x) = y, and then

λT (x)− S(x) = z0,

so λT − S is onto. �

Definition 2.3. Let F : X 7→ Y , F0 : X 7→ Y and a > 0 a real number.

(a) F0 is said to be a-homogeneous if F0(tx) = taF0(x) for every t ≥ 0 and x ∈ X.
(b) F is said to be a-quasihomogeneous relative to F0 if F0 is a-homogeneous and

if

tn ↘ 0, xn ⇀ x0, t
a
nF

(
xn
tn

)
→ φ ∈ Y ⇒ φ = F0(x0).

(c) F is said to be a-strongly quasihomogeneous relative to F0 if

tn ↘ 0, un ⇀ u0 ⇒ tanF

(
un
tn

)
→ F0(u0) ∈ Y.

(d) F is said to be a-weakly quasihomogeneous relative to F0 if

tn ↘ 0, un ⇀ u0 ⇒ tanF

(
un
tn

)
⇀ F0(u0) ∈ Y.

Example 2.1. Let X = Y , e ∈ X with ‖e‖ = 1 and 0 < α < 1. Let Tα : X → X be
defined by

Tα(x) = ‖x‖αe.
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Then, Tα is compact and [Tα]Q = lim sup
‖x‖→∞

‖Tα(x)‖
‖x‖ = lim sup

‖x‖→∞

‖x‖αe
‖x‖ = 0 since 0 < α < 1.

Assume that there exist (un)n∈N ⊆ X with un ⇀ u0, tn ↘ 0 such that

tnTα(
un
tn

) > ε > 0.

Then
(∥∥∥untn ∥∥∥)n∈N is unbounded. If

∥∥∥unktnk

∥∥∥→∞, (nk →∞), then we have

∥∥∥∥tnkTα(unktnk

)∥∥∥∥ =

∥∥∥Tα (unktnk

)∥∥∥∥∥∥unktnk

∥∥∥ ‖unk‖ → 0,

a contradiction.
Thus Tα is a 1-strongly quasihomogeneous operator relative to Tα0

= 0.

Example 2.2. The identity I in any Banach space X is 1-weakly quasihomogeneous
relative to I. In fact if tn ↘ 0, un ⇀ u0 then tnI(untn ) = un ⇀ u0 = I(u0).

Definition 2.4. Let Ω be a domain in Rn and X, Y be separable Banach spaces. A
function f : Ω ×X → Y is said to be a Carathéodory function if (i). for each fixed
x ∈ X the map t 7→ f(t, x) is Lebesgue measurable in Ω, and (ii). for a.e. t ∈ Ω the
map f(t, . ) : X → Y is continuous.

Theorem 2.2. (See [16] Theorem 4.) Let Ω be a bounded domain in Rn and X, Y be
separable Banach spaces. Let f : Ω×X → Y be a Carathéodory function and consider
the Nemytskii operator Nf , generated by f , and defined by

Nf (y)(t) := f(t, y(t)) for y ∈ L1(Ω, X)

and suppose there exist a ∈ L1(Ω) and b ≥ 0 with ‖f(t, x)‖ ≤ a(t) + b‖x‖ for t ∈ Ω
and x ∈ X. If Y is reflexive then

Nf : L1(Ω, X)→ L1(Ω, Y )

is weakly sequentially continuous.

3. Surjectivity

Theorem 3.1. Let λ ∈ K and T : X → Y be a weakly sequentially continuous map
satisfying the following conditions:

(1) T is bijective and T−1 is weakly sequentially continuous.
(2) There exist real numbers L > 0, a > 0 and b > 0 such that

‖T (x)‖ ≥ L‖x‖a − b for every x ∈ X.
(3) T is bounded (i.e. maps bounded sets into bounded sets).

Let S : X → Y be a bounded and weakly sequentially continuous map satisfying the
following condition :

α := lim sup
x∈X,‖x‖→∞

‖S(x)‖
‖x‖a

<∞.

Then, for |λ| > max
{
α
L ,

[S]wA
[T ]wa

}
, λT − S : X → Y is surjective.



NONLINEAR WEAKLY SEQUENTIALLY CONTINUOUS OPERATORS 487

Proof. To prove that λT −S is onto, it suffices to prove that Fz0,λ defined in Lemma
2.1 has a fixed point for all z0 ∈ Y . Let z0 ∈ Y and M ⊆ Y be a bounded set with
β(M) 6= 0. Using Proposition 2.2(c) and Remark 2.2, one obtains

β(Fz0,λ(M)) = β

(
ST−1(

M

λ
) + {z0}

)
≤ [ST−1]wAβ

(
M

λ

)
≤ 1

|λ|
[S]wA[T−1]wAβ(M) =

1

|λ|
[S]wA
[T ]wa

β(M) < β(M).

Therefore, Fz0 is β-condensing.
Since T and S are weakly sequentially continous then Fz0,λ is weakly sequentially
continuous. Now hypothesis (2) on T implies that there exist a > 0, L > 0 and b > 0
such that

‖T−1(y)‖ ≤
(
‖y‖+ b

L

) 1
a

∀ y ∈ Y.

Then T−1(BR(Y )) is bounded. Also since S is bounded, then ST−1(BR(Y )
λ ) is

bounded and there exists a c > 0 such that

‖Fz0,λ(y)‖ ≤ c ∀y ∈ BR(Y ). (3.1)

Also, we have, [Fz0,λ]Q < 1. To see this first note

‖Fz0,λ(y)‖
‖y‖

=
‖ST−1( yλ ) + z0‖

‖y‖

≤
‖ST−1( yλ )‖
‖y‖

+
‖z0‖
‖y‖

.

If we write x = T−1( yλ ), then T (x) = y
λ , and we have,

[Fz0,λ]Q = lim sup
‖T (x)‖→∞

‖S(x)‖
|λ|‖T (x)‖

= lim sup
x∈X,‖x‖→∞

‖S(x)‖
|λ|‖T (x)‖

≤ lim sup
x∈X,‖x‖→∞

‖S(x)‖
|λ|(L‖x‖a − b)

=
α

|λ|L
< 1.

Now since [Fz0,λ]Q < 1, there exist q ∈][Fz0,λ]Q, 1[ and R > 0 such that

‖x‖ ≥ R⇒ ‖[Fz0,λ(x)‖ ≤ q‖x‖. (3.2)

From (3.1) and (3.2), we have

‖Fz0,λ(y)‖ ≤ q‖y‖+ c ∀ y ∈ Y. (3.3)
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Let R′ > 0 and y ∈ BR′(Y ). From (3.3), we have ‖Fz0,λ(y)‖ ≤ qR′ + c. Choosing

R′ >
c

1− q
then Fz0,λ : BR′(Y )→ BR′(Y ) (note qR′ + c < R′) is weakly sequentially continuous
and β- condensing. Now Theorem 2.1 guarantees that Fz0,λ has a fixed point y ∈ Y
and from Lemma 2.1, λT − S is a mapping from X onto Y . �

Remark 3.1. Note our theorem is the analogue of Theorem 3.1 of [10] in the weak
topology setting.

Definition 3.1. A mapping f : X → Y is said to be regularly surjective from X
onto Y if f(X) = Y and for any R > 0, there exists a r > 0 such that ‖x‖X ≤ r for
all x ∈ X with ‖f(x)‖Y ≤ R.

Example 3.1. Let T : X → X be defined by

T (x) = ‖x‖x.

Then, T is regularly surjective. Note immediately that T is surjective. If we suppose
that there exist a M > 0 and a sequence (xn)n∈N with

‖xn‖ → ∞ and ‖T (xn)‖ ≤M for all n ∈ N,

then this implies that ‖xn‖ → ∞ and ‖xn‖2 ≤ M for all n ∈ N. This is a contradic-
tion. Thus T is regularly surjective.

Lemma 3.1. Let X and Y be two Banach spaces and let T satisfy condition (2) of
Theorem 3.1. Suppose S : X → Y is a mapping such that

α := lim sup
x∈X,‖x‖→∞

‖S(x)‖
‖x‖a

<∞.

Then for |λ| > α
L we have

lim sup
x∈X,‖x‖→∞

‖λT (x)− S(x)‖ =∞. (3.4)

Proof. If (3.4) is false, then there exist a constant M > 0 and a sequence (xn) ⊆ X,
‖xn‖ → ∞ such that

‖λT (xn)− S(xn)‖ ≤M,

for any positive integer n. Then

λT (xn)

‖xn‖a
− S(xn)

‖xn‖a
→ 0,

and we have

lim sup
n→∞

|λ|‖T (x)‖
‖xn‖a

= α.

Now since

‖T (xn)‖ ≥ L‖xn‖a − b,
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we have

|λ|L ≤ lim sup
n→∞

(
|λ|‖T (xn)‖
‖xn‖a

+
|λ|b
‖xn‖a

)
= α.

This is a contradiction since |λ| > α
L . �

Theorem 3.2. Suppose that X is a reflexive Banach space, Y is a Banach space and
T , S satisfy the conditions in Theorem3.1. Then for |λ| > α

L , λT − S is regularly
surjective.

Proof. We have T−1 is bounded. In fact, hypothesis (2) on T in Theorem 3.1 implies
that there exist a > 0, L > 0 and b > 0 such that

‖T−1(y)‖ ≤
(
‖y‖+ b

L

) 1
a

∀ y ∈ Y.

Since X is a reflexive Banach space then T−1 is weakly compact. To see this note
for any bounded set M ⊆ Y , we have T−1(M) is bounded and T−1(M) ⊆ X, so
T−1(M) is relatively weakly compact and we have [T−1]wA = 0. Now the argument
in Theorem 3.1 guarantees that λT − S is surjective for all |λ| > α/L. In addition,
this surjectivity is regular. If not there exists a M > 0 and a sequence (xn)n∈N ⊆ X,
‖xn‖ → ∞ such that

‖λT (xn)− S(xn)‖ ≤M.

However from Lemma 3.1, we have lim sup
x∈X,‖x‖→∞

‖λT (x) − S(x)‖ = ∞. This is a con-

tradiction. �

Theorem 3.3. Let X be reflexive and let T satisfy the conditions of Theorem 3.1. If S
is a weakly sequentially continuous, bounded and a-weakly quasihomogeneous mapping
relative to S0 then

α := lim sup
x∈X,‖x‖→∞

‖S(x)‖
‖x‖a

<∞,

and for |λ| > α
L , λT − S is regularly surjective.

Proof. The second part of the assertion follows from the previous theorem (if we prove
the first part). It just remains for us to prove

lim sup
x∈X,‖x‖→∞

‖S(x)‖
‖x‖a

<∞.

Suppose the contrary. Then there is a sequence (xn)n∈N ⊆ X such that ‖xn‖ → ∞
and ‖S(xn)‖

‖xn‖a > n for all n ∈ N. For each n ∈ N, let wn = xn
‖xn‖ . Then (wn)n∈N is

bounded and since X is reflexive, it follows that (wn)n∈N admits a subsequence weakly
convergent to a w0 ∈ X. Without loss of generality, we suppose that wn ⇀ w0. Let
tn = 1

‖xn‖ , n ∈ N. Since S is a-weakly quasihomogeneous relative to S0, it follows

that

S(xn)

‖xn‖a
=
S(‖xn‖ xn

‖xn‖ )

‖xn‖a
= tanS

(
wn
tn

)
⇀ S0(w0)
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so, the sequence
(
S(xn)
‖xn‖a

)
n∈N

is bounded, which is a contradiction. �

Theorem 3.4. Let X be a reflexive Banach space and let T , a, b and L be as in
Theorem 3.1. Let S : X → Y be a weakly sequentially continuous, bounded and b-
strongly quasihomogeneous map relative to S0. Suppose that a > b. Then for λ 6= 0,
λT − S is regularly surjective.

Proof. Since S is weakly sequentially continuous and λ 6= 0, then from Theorem 3.3,
it suffices to prove that

lim
x∈X,‖x‖→∞

‖S(x)‖
‖x‖a

= 0.

If not, there is a sequence (xn)n∈N ⊆ X with ‖xn‖ → ∞ and a ε > 0 such that
‖S(xn)‖
‖xn‖a > ε, for all sufficiently large n. For each n ∈ N, let wn = xn

‖xn‖ and tn = 1
‖xn‖ .

Suppose as in the previous theorem that wn ⇀ w0 ∈ X. Since S is b-strongly
quasihomogeneous relative to S0 then

S(xn)

‖xn‖b
=
S(‖xn‖wn)

‖xn‖b
→ S0(w0).

Now since a > b, we have ‖xn‖
b

‖xn‖a → 0 and we obtain,

‖S(xn)‖
‖xn‖a

=
‖xn‖b

‖xn‖a
‖S(xn)‖
‖xn‖b

→ 0,

a contradiction. �

Remark 3.2. Theorem 4.1, page 63 in [11] guarantees that λT − S is surjective
under the assumptions that T is an odd (K,L, a)-homeomorphism and S is an odd
completely continuous b-strongly quasihomogeneous operator with respect to S0 and
a > b. In the previous theorem, we impose other conditions (in the weak topology) on
T and S and we prove not only that λT −S is surjective but also λT −S is regularly
surjective.

Next we recall Theorem 1.1, page 56 in [11].

Theorem 3.5. Let X,Y be Banach spaces and let T : X → Y be an odd (K,L, a)-
homeomorphism and S : X → Y be an odd completely continuous map. Then for
each λ 6= 0 if

lim
‖x‖→∞

‖λT (x)− S(x)‖ =∞, (3.5)

then λT − S maps X onto Y .

If we replace the conditions on T by the conditions in Theorem 3.1, and S is
a bounded weakly sequentially continuous map such that the map λT − S satisfies
condition (3.5), then the map λT − S might not be onto.

Example 3.2. Let X be a separable Hilbert space. Denote by {en}n∈N an orthonor-
mal basis in X, and define L : X → X by

L(x) =
∑
i

αiei+1 for all x ∈ X where x =
∑
i

αiei and αi = (x, ei).
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It is easy to see that L is a linear bounded weakly continuous map such that

‖x‖ = ‖L(x)‖ for all x ∈ X,
but L is not surjective. In fact, for y ∈ X with (y, e1) 6= 0 we have y /∈ L(X) because
L(X) = {z ∈ X such that (z, e1) = 0}. Take T = IX the identity map. Then
T satisfies the conditions in Theorem 3.1. In fact, IX is a bijective bounded weakly
sequentially continuous and we can choose a = 1. Let S = IX −L and λ = 1. Now S
is a linear bounded weakly continuous (so weakly sequentially continuous) operator
and

lim
‖x‖→∞

‖λIX(x)− S(x)‖ = lim
‖x‖→∞

‖x− (x− L(x))‖

= lim
‖x‖→∞

‖L(x)‖

= lim
‖x‖→∞

‖x‖ =∞.

Thus T = IX satisfies the conditions in Theorem 3.1 and S is bounded weakly se-
quentially continuous map but λIX − S is not surjective.

In [20] the author showed if λ 6= 0 and λT − S is regularly surjective then λ is not
eigenvalue for the couple (T, S) when T , S are a-homogeneous weakly closed mapping
and X,Y are two reflexive Banach spaces with Y separable and Y ′ is strictly convex.
In our next theorem we obtain a similar result to Theorem 2.4 in [20] when T and S
are weakly sequentially continuous and the condition that Y is a separable reflexive
space with Y ′ strictly convex is removed.

Theorem 3.6. Let X be a reflexive Banach space and Y a Banach space. Suppose
T : X → Y satisfies the conditions in Theorem 3.1 and T is a-homogeneous. Assume
S : X → Y is a a-homogeneous bounded weakly sequentially continuous map. Then
we have

(1) α := lim sup
‖x‖→∞

‖S(x)‖
‖x‖a <∞ and λT − S is regularly surjective if λ > α

L .

(2) If λ 6= 0 and λT −S is regularly surjective then λ is not an eigenvalue for the
couple (T, S).

Recall that λ is said to be an eigenvalue of the couple T , S if there is a x0 6= 0
such that λT (x0)− S(x0) = 0.

Proof. Suppose the lim sup in (1) is not finite. Then there exists a sequence (xn)n∈N ⊆
X such that ‖xn‖ → ∞ and ‖S(xn)‖

‖xn‖a > n for all n ∈ N. For each n ∈ N, let

wn = xn
‖xn‖ . Then (wn)n∈N is bounded and since X is reflexive then (wn)n∈N admits

a subsequence weakly convergent to w0. Without loss of generality, we suppose that
wn ⇀ w0 ∈ X. Since S is weakly sequentially continuous, we have S(wn) ⇀ S(w0)
and then (S(wn))n∈N is bounded. On the other hand, since S is a-homogeneous, then

‖S(wn)‖ =

∥∥∥∥S ( xn
‖xn‖

)∥∥∥∥ =
‖S(xn)‖
‖xn‖a

> n,

a contradiction since (S(wn))n∈N is bounded. Now Theorem 3.2 guarantees that
λT − S is regularly surjective if λ > α

L .
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To prove (2), we suppose that λ is an eigenvalue for (T, S). Then there exists
x0 ∈ X, x0 6= 0 with λT (x0) − S(x0) = 0. For each n ∈ N, let yn = 1

n and
wn = x0

yn
= nx0. Then lim

n→∞
‖wn‖ = ∞ and since T and S are both a-homogeneous

then

λT (wn)− S(wn) =
λT (x0)− S(x0)

yan
= 0 for all n ∈ N,

so ‖λT (wn) − S(wn)‖ < R for each R > 0 and all n ∈ N, and this contradicts the
assumption that λT − S is regularly surjective. �

4. Application

In this section we study a generalized Hammerstein type integral equation. Let X
be a separable Banach space and Y be a separable reflexive Banach space, D be a
bounded subset of Rn, η ∈ R, λ ∈ R and E = L1(D,X).
Let G : E → E and H : E → E be defined by H(y) =

∫
D
k(t, s)f(s, y(s))ds.

Consider the nonlinear operator F : E → E given by

F (y) ≡ G(y) +H(y) ≡ G(y) + η

∫
D

k(t, s)f(s, y(s))ds.

We are concerned with the solvability of the following generalized Hammerstein type
integral equation:

λy = F (y) ≡ G(y) +H(y) ≡ G(y) + η

∫
D

k(t, s)f(s, y(s))ds, (|λ| ≥ 1) (4.1)

in E = L1(D,X). Suppose that G, f , and k satisfy the following conditions:

(1) G : E → E is a weakly sequentially continuous, weakly compact map,
(2) f : D ×X → Y is a Carathéodory’s function,
(3) There are a ∈ L1(D) and b ≥ 0 such that

‖f(t, x)‖ ≤ a(t) + b‖x‖, t ∈ D,x ∈ X,

(4) k : D×D → L(Y,X) (the space of bounded linear operators from Y into X)
is strongly measurable and the linear operator K, defined by

K(z)(t) =

∫
D

k(t, s)z(s)ds,

maps L1(D,Y ) into L1(D,X) continuously,
(5) The function s→ k(t, s) is in L∞(D,L(Y,X)) for almost all t ∈ D;

(6) Set γ = lim sup
‖x‖→∞

‖G(x)‖
‖x‖ and suppose |η|b‖K‖ < 1 (here ‖K‖ denotes the

operator norm of K) and γ < 1 .

Theorem 4.1. Assume that conditions (1) − (6) are satisfied. Then (4.1) has a
solution in E = L1(D,X).

Proof. First, we prove that H is a weakly sequentially continuous, β-condensing op-
erator. From assumptions (2) and (3) and Theorem 2.2 we see that the Nemytskii op-
erator, generated by f and defined by Nf (y)(t) := f(t, y(t)), y ∈ L1(D,X) is weakly
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sequentially continuous from L1(D,X) into L1(D,Y ) and takes bounded sets into
bounded sets. From assumption (4), K is a linear operator and it is weakly contin-
uous so weakly sequentially continuous. Thus the operator H = ηKNf is weakly
sequentially continuous. Using assumptions (2), (3), and (6) and arguing as in [9], we
have immediately that the operator H is β-condensing since |η|b‖K‖ < 1. Let y ∈ E.
Then we have,

‖H(y)‖ = ‖η
∫
D

k(t, s)f(s, y(s))ds‖

≤ |η|
∫
D

‖
∫
D

k(t, s)f(s, y(s))ds‖dt

≤ |η|
∫
D

∫
D

‖k(t, s)f(s, y(s))‖dsdt

≤ |η|‖K‖
∫
D

‖f(s, y(s))‖dsdt

≤ |η|‖K‖
∫
D

‖a(s)‖+ b‖y(s)‖ds

≤ |η|‖K‖(‖a‖+ b),

so

lim sup
‖y‖→∞

‖F (y)‖
‖y‖

≤ lim sup
‖y‖→∞

‖G(y)‖
‖y‖

+ lim sup
‖y‖→∞

‖L(y)‖
‖y‖

≤ γ + lim sup
‖y‖→∞

‖|η|‖K‖(‖a‖+ b)‖
‖y‖

= γ < 1.

Take T = I, S = F , L = 1, a = 1 and α = γ in Theorem 3.1. Note G is a
weakly compact, weakly sequentially continuous operator and hence F is a weakly
sequentially continuous and β-condensing operator, that is, [F ]wA < 1, and therefore

max{α, [F ]wA} < 1.

Now Theorem 3.1 guarantees that λI−F is surjective for |λ| > max{α, [F ]wA}, so (4.1)
has at least a solution in E (note above we choose |λ| ≥ 1 so |λ| > max{α, [F ]wA}). �
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