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Abstract. We enrich the known results about coupled fixed points and coupled best proximity
points. We generalize the notion of ordered pairs of cyclic contraction maps and we obtain sufficient

conditions for the existence and uniqueness of best proximity points. We get a priori and a posteriori

error estimates for the coupled fixed points and for the coupled best proximity points, provided that
the underlying Banach space has modulus of convexity of power type in the case of best proximity

points, obtained by sequences of successive iterations. We illustrate the main result with an example.
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1. Introduction

The Banach contraction principle states that in a complete metric space (X, ρ) any
contraction map T : X → X has a fixed point, i.e. min{ρ(x, Tx) : x ∈ X} = 0. A
lot of results in modelling real world processes in applied mathematics lead to the
problem of finding min{ρ(x, Tx) : x ∈ X}. It may happen that the above minimum is
greater than zero. One approach for solving the above mentioned problems uses the
notion of a best proximity point is introduced in [14], where a sufficient condition for
the existence and the uniqueness of best proximity points in uniformly convex Banach
spaces is obtained.

A constructed model may depends on two parameters, i.e. F : X × X → X.
The notion of coupled fixed points [17] and of a coupled best proximity points for an
ordered pair (F,G), F : A × A → B, G : B × B → A, where A,B ⊂ X [18, 25], is
relevant in this context. Deep results in the theory of coupled fixed points can be
found for example in [3, 4, 6].

There are many problems about fixed points and best proximity points that are
not easy to be solved or can not be solved exactly. One of the advantages of the
Banach fixed point theorem is the error estimates of the successive iterations and the
rate of convergence. That is why an estimation of the error when an iterative process
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is used is of interest, when fixed points or best proximity points are investigated. An
extensive study about approximations of fixed points can be found in [2].

A first result in the approximation of the sequence of successive iterations, which
converges to the best proximity point for cyclic contractions, is obtained in [27]. This
result was expanded for a coupled best proximity point in [21].

We have tried to enrich the known results about coupled best proximity points
for order pairs of cyclic contraction maps (F,G), by proving that the coupled best
proximity points (x, y) ∈ A×A reduce to the point (x, x) ∈ A×A.

In order to get a general result for the existence of coupled best proximity points
(x, y) ∈ A × A with x 6= y, we needed to consider an ordered pair of an order
pair of maps ((F, f), (G, g)), such that F : A1 × A2 → B1, f : A1 × A2 → B2,
G : B1 ×B2 → A1, g : B1 ×B2 → A2, where A1, A2, B1, B2 ⊂ X.

2. Preliminaries

In this section we give some basic definitions and concepts which are useful and
related to the best proximity points. Let (X, ρ) be a metric space. We define a
distance between two subsets A,B ⊂ X by dist(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B}.

The concept of a coupled best proximity point theorem is introduced in [25].

Definition 2.1. ([25]) Let A and B be nonempty subsets of a metric space (X, ρ),
F : A × A → B. An ordered pair (x, y) ∈ A × A is called a coupled best proximity
point of F if

ρ(x, F (x, y)) = ρ(y, F (y, x)) = dist(A,B).

Definition 2.2. ([17]) Let A and B be nonempty subsets of a metric space (X, ρ),
F : A×A→ A. An ordered pair (x, y) ∈ A×A is said to be a coupled fixed point of
F in A if x = F (x, y) and y = F (y, x).

It is easy to see that if A = B in Definition 2.1, then a coupled best proximity
point reduces to a coupled fixed point.

The notion of an order pair (F,G) of cyclic contraction maps, which generalizes
the notion of a cyclic contraction map [14], is introduced in [25].

Definition 2.3. ([18, 25]) Let A and B be nonempty subsets of a metric space (X, ρ),
F : A × A → B and G : B × B → A. The ordered pair (F,G) is said to be a cyclic
contraction if there exist non-negative numbers α, β, such that α + β < 1 and there
holds the inequality

ρ(F (x, y), G(u, v)) ≤ αρ(x, u) + βρ(y, v) + (1− (α+ β))d(A,B)

for all (x, y) ∈ A×A and (u, v) ∈ B ×B.

If α = β in the above definition we get the definition from [25].
Just to fit some of the formulas in the text field let us denote dx = d(Ax, Bx) and

dy = d(Ay, By).

Definition 2.4. Let Ax, Ay, Bx and By be nonempty subsets of a metric space (X, ρ),
F : Ax×Ay → Bx, f : Ax×Ay → By, G : Bx×By → Ax and g : Bx×By → Ay. The
ordered pair of orderer pairs ((F, f), (G, g)) is said to be a cyclic contraction ordered
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pair if there exist non-negative numbers α, β, γ, δ, such that max{α + γ, β + δ} < 1
and there holds the inequality

S1 = ρ(F (x, y), G(u, v)) + ρ(f(z, w), g(t, s))
≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s)

+(1− (α+ γ))dx + (1− (β + δ))dy

(2.1)

for all (x, y), (z, w) ∈ Ax ×Ay and (u, v), (t, s) ∈ Bx ×By.

Definition 2.5. Let Ax, Ay, Bx and By be nonempty subsets of a metric space
(X, ρ), F : Ax × Ay → Bx, f : Ax × Ay → By. An ordered pair (ξ, η) ∈ Ax × Ay is
called a coupled best proximity point of (F, f) if

ρ(ξ, F (ξ, η)) = dist(Ax, Bx) and ρ(η, f(ξ, η)) = dist(Ay, By).

Definition 2.6. Let Ax, Ay, Bx and By be nonempty subsets of X. Let F : Ax ×
Ay → Bx, f : Ax×Ay → By, G : Bx×By → Ax and g : Bx×By → Ay. For any pair
(x, y) ∈ Ax × Ay we define the sequences {xn}∞n=0 and {yn}∞n=0 by x0 = x, y0 = y
and

x2n+1 = F (x2n, y2n), y2n+1 = f(x2n, y2n)
x2n+2 = G(x2n+1, y2n+1), y2n+2 = g(x2n+1, y2n+1)

for all n ≥ 0.

Everywhere, when considering the sequences {xn}∞n=0 and {yn}∞n=0 we will assume
that they are the sequences defined in Definition 2.6.

Let us put Ax = Ay = A, Bx = By = B, D = d(A,B), f(x, y) = F (y, x),
g(x, y) = G(y, x), z = y, w = x, t = v, s = u, γ = β and δ = α in Definition 2.4.
Then

S2 = 2ρ(F (x, y), G(u, v))
= ρ(F (x, y), G(u, v)) + ρ(f(y, x), g(v, u))
= ρ(F (x, y), G(u, v)) + ρ(f(z, w), g(t, s))
≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s) + (2− (α+ β + γ + δ))D
= αρ(x, u) + βρ(y, v) + βρ(y, v) + αρ(x, u) + (2− 2(α+ β))D
= 2(αρ(x, u) + βρ(y, v) + (1− (α+ β))D,

(2.2)

which is the condition from Definition 2.3, because α + β = max{α + γ, β + δ} < 1.
Thus the ordered pairs (F,G) of cyclic contractions is a particular case of the orderer
pairs ((F, f), (G, g)) cyclic contractions.

The best proximity results need norm-structure of the space X.
When we investigate a Banach space (X, ‖ ·‖), we will always consider the distance

between the elements to be generated by the norm ‖ · ‖ i.e. ρ(x, y) = ‖x − y‖. We
will denote the unit sphere and the unit ball of a Banach space (X, ‖ · ‖) by SX and
BX respectively.

The assumption that the Banach space (X, ‖·‖) is uniformly convex plays a crucial
role in the investigation of best proximity points.

Definition 2.7. Let (X, ‖ · ‖) be a Banach space. For every ε ∈ (0, 2] we define the
modulus of convexity of ‖ · ‖ by

δ‖·‖(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ BX , ‖x− y‖ ≥ ε
}
.
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The norm is called uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. The space (X, ‖ ·‖)
is then called a uniformly convex space.

The next two lemmas a crucial in the investigations of best proximity points in
uniformly convex Banach spaces.

Lemma 2.8. ([14]) Let A be a nonempty closed, convex subset, and B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn}∞n=1 and {zn}∞n=1 be se-
quences in A and {yn}∞n=1 be a sequence in B satisfying:
1) limn→∞ ‖xn − yn‖ = dist(A,B);
2) limn→∞ ‖zn − yn‖ = dist(A,B);
then limn→∞ ‖xn − zn‖ = 0.

Lemma 2.9. ([14]) Let A be a nonempty closed, convex subset, and B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn}∞n=1 and {zn}∞n=1 be se-
quences in A and {yn}∞n=1 be a sequence in B satisfying:
1) limn→∞ ‖zn − yn‖ = dist(A,B);
2) for every ε > 0 there exists N0 ∈ N, such that for all m > n ≥ N0,

‖xn − yn‖ ≤ dist(A,B) + ε,

then for every ε > 0, there exists N1 ∈ N, such that for all m > n > N1, holds

‖xm − zn‖ ≤ ε.

For obtaining error estimates for the sequence of successive iterations that ap-
proximates the best proximity point, which is generated by a cyclic contraction, the
modulus of convexity δ(X,‖·‖) is used [27].

For any uniformly convex Banach space X there holds the inequality∥∥∥∥x+ y

2
− z
∥∥∥∥ ≤ (1− δX

( r
R

))
R (2.3)

for any x, y, z ∈ X, R > 0, r ∈ [0, 2R], ‖x − z‖ ≤ R, ‖y − z‖ ≤ R and ‖x − y‖ ≥ r
[14].

If (X, ‖ · ‖) is a uniformly convex Banach space, then δX(ε) is a strictly increasing
function. Therefore if (X, ‖ · ‖) is a uniformly convex Banach space, then there exists
the inverse function δ−1 of the modulus of convexity. If there exist constants C > 0
and q > 0, such that the inequality δ‖·‖(ε) ≥ Cεq holds for every ε ∈ (0, 2], we
say that the modulus of convexity is of power type q. It is well known that for any
Banach space and for any norm there holds the inequality δ(ε) ≤ Kε2. The modulus
of convexity with respect to the canonical norm ‖ · ‖p in `p or Lp is

δ‖·‖p(ε) = 1− p

√
1−

(ε
2

)p
for p ≥ 2 and for 1 < p < 2 the modulus of convexity δ‖·‖p(ε) is the solution of the
equation (

1− δ +
ε

2

)p
+
∣∣∣1− δ − ε

2

∣∣∣p = 2.
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It is well known that the modulus of convexity with respect to the canonical norm in
`p or Lp is of power type and there hold the inequalities δ‖·‖p(ε) ≥ εp

p2p for p ≥ 2 and

δ‖·‖p(ε) ≥ (p−1)ε2
8 for p ∈ (1, 2) [24].

An extensive study of the Geometry of Banach spaces can be found in [1, 13, 16].

3. Comments on the known results about coupled best proximity points

We would like to pay attention to the known examples for using the technique of
best proximity points in solving of systems of linear equations.

Theorem 3.1. [18, 22, 25] Let A and B be nonempty closed and convex subsets of a
uniformly convex Banach space (X, ‖·‖). Let F : A×A→ B, G : B×B → A and the
ordered pair (F,G) be a cyclic contraction. Then F has a unique coupled best proximity
point (ξ, η) ∈ A×A and G has a unique coupled best proximity point (ζ, ς) ∈ B ×B,
(i.e. ‖ξ − F (ξ, η)‖ = ‖η − F (η, ξ)‖ = d and ‖ζ − G(ζ, ς)‖ = ‖ς − G(ς, ζ)‖ = d).
Moreover there hold

G(F (ξ, η), F (η, ξ)) = ξ, G(F (η, ξ), F (ξ, η)) = η,
F (G(ζ, ς), G(ς, ζ)) = ζ, F (G(ς, ζ), F (ζ, ς)) = ς

(3.1)

and

ζ = F (ξ, η), ς = F (η, ξ), ξ = G(ζ, ς), η = G(ς, ζ). (3.2)

For any arbitrary point (x, y) there hold

lim
n→∞

x2n = ξ, lim
n→∞

y2n = η, lim
n→∞

x2n+1 = ζ, lim
n→∞

y2n+1 = ς

and

‖ξ − ζ‖+ ‖η − ς‖ = 2dist(A,B).

As it is pointed out in [21] the space (R, |·|) is a uniformly convex Banach space. The
next two examples are solved with the help of ordered pairs of cyclic contractions and
coupled best proximity points [22, 25]. Error estimates of the sequences of successive
iterations are obtained in [21].

Example 3.2. [20, 22, 25] Let us consider the space R, endowed with the canonical
norm | · | and A = [1, 2]. We search for the solutions of the system{

5x+ y = 6
5y + x = 6,

(3.3)

which belong to the set A.

Solution. Let us denote B = [−2,−1]. Let F : A × A → B and G : B × B → A be
defined by

F (x, y) =
−x− y − 2

4
and G(x, y) =

−x− y + 2

4
.

It is easy to observe that the pair (ξ, η) ∈ A × A is a solution of (3.3) if and only
if |ξ − F (ξ, η)| = |η − F (η, ξ)| = dist(A,B). Thus the solution (2, 2) of (3.3) can be
obtained if we can solve the problem for the coupled best proximity points (ξ, η) of
F in A×A. �
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Example 3.3. [18, 20, 22] Let us consider the space R endowed with the canonical
norm | · |, A = [1, 2]. We search for the solutions of the system{

8x+ 3y = 11
8y + 3x = 11,

(3.4)

which belong to the set A.

Solution. Let us denote B = [−2,−1]. Let F : A × A → B and G : B × B → A be
defined by

F (x, y) =
−2x− 3y − 1

6
and G(x, y) =

−2x− 3y + 1

6
.

It is easy to observe that the pair (ξ, η) ∈ A × A is a solution of (3.4) if and only
if |ξ − F (ξ, η)| = |η − F (η, ξ)| = dist(A,B). Thus the solution (2, 2) of (3.4) can be
obtained if we can solve the problem for the coupled best proximity points (ξ, η) of
F in A×A. �

It is interesting to see that in both examples ξ = η. It turns out that this is not
just a coincidence.

The next theorem enriches Theorem 3.1 by showing that ξ = η and ζ = ς.

Theorem 3.4. Let A and B be nonempty closed and convex subsets of a uniformly
convex Banach space. Let F : A × A → B, G : B × B → A and the ordered
pair (F,G) be a cyclic contraction. Then F has a unique coupled best proximity
point (ξ, η) ∈ A × A and ξ = η and G has a unique coupled best proximity point
(ζ, ς) ∈ B ×B.

Proof. By Theorem 3.1 it follows that there exists a unique coupled best proximity
point (ξ, η) of F . From Theorem 3.1 it follows that ξ = G(F (ξ, η), F (η, ξ)) and
η = G(F (η, ξ), F (ξ, η)). Therefore we get

‖η − F (ξ, η)‖ = ‖G(F (η, ξ), F (ξ, η))− F (ξ, η)‖
≤ α‖(ξ, F (η, ξ)‖+ β‖(η − F (ξ, η)‖+ (1− (α+ β))dist(A,B)

and

‖ξ − F (η, ξ)‖ = ‖G(F (ξ, η), F (η, ξ))− F (η, ξ)‖
≤ α‖η − F (ξ, η)‖+ β‖ξ − F (η, ξ)‖+ (1− (α+ β))dist(A,B).

Summing the last two inequalities we get

‖η − F (ξ, η)‖+ ‖ξ − F (η, ξ‖ ≤ 2dist(A,B).

Consequently ‖η−F (ξ, η)‖ = ‖ξ−F (η, ξ)‖ = dist(A,B). Using the uniform convexity
of (X, ‖ · ‖), the equalities ‖ξ−F (ξ, η)‖ = ‖η−F (η, ξ)‖ = dist(A,B) and Lemma 2.8
we get that ξ = η.

It can be proven in a similar fashion that ζ = ς. �
The same observation is made in [3, 8] for coupled fixed points in partially ordered

metric spaces.

Theorem 3.5. (Theorem 2.4 [8]) Let (X, ρ) be a partially ordered set and ρ be a
metric such that (X, ρ) be a complete metric space. Let F : X × X → X be a
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continuous mapping having the mixed monotone property on X. Assume that there
exists k ∈ [0, 1) with

ρ(F (x, y), F (u, v)) ≤ k

2
(ρ(x, u) + ρ(y, v)) (3.5)

all x ≥ u and all y ≤ v. If there are x0, y0 ∈ X such that x0 ≤ F (x0, y0) and
y0 ≥ F (y0, x0), then there exists a coupled fixed point (x, y) ∈ X ×X. If in addition
every pair of elements of X has an upper bound or a lower bound in X, then x = y.

Let us point out that condition (3.5) does not hold for all x, y ∈ X. That is
why the additional condition is needed to assure that x = y. If (3.5) holds for all
x, y ∈ X, then we get right away that x = y. Indeed there holds the inequality
ρ(x, y) = ρ(F (x, y), F (y, x) ≤ k

2 (ρ(x, y) + ρ(y, x)) = kρ(x, y). Because of k ∈ [0, 1) it
follows that x = y.

The next result enriches the results from [21] by proving that the coupled fixed
point (ξ, η) in A ∩B satisfies ξ = η.

Theorem 3.6. Let A and B be nonempty closed subsets of a complete metric space
(X, ρ) and F : A× A→ B and G : B ×B → A. Let there exist α, β > 0, α+ β < 1,
such that

ρ(F (x, y), G(u, v)) ≤ αρ(x, u) + βρ(y, v) (3.6)

for all x, y ∈ A and u, v ∈ B. Then there exists a unique pair (ξ, η) in A ∩ B,
which is a common coupled fixed point for the maps F and G. Moreover the iteration
sequences {xn}∞n=0 and {yn}∞n=0 for any arbitrary initial guess (x, y) ∈ A×A, defined
in Definition 2.6 converge to ξ and η respectively and moreover ξ = η.

Proof. Theorem 3.6 is proven [21] except for ξ = η. By [21] there exists (ξ, η) in
A ∩B, which is the unique coupled fixed point for the map F and (ξ, η) is a coupled
fixed point for the map G too. Then

ρ(ξ, η) = ρ(F (ξ, η), G(η, ξ) ≤ αρ(ξ, η) + βρ(η, ξ)) = (α+ β)ρ(ξ, η).

Because of α+ β ∈ [0, 1) it follows that ξ = η. �

4. Main result

Just to fit some of the formulas in the text field we will denote

Pn,m(x, y) = ‖xn − xm‖+ ‖yn − ym‖

and

Wn,m(x, y) = Pn,m(x, y)− (dx + dy) = ‖xn − xm‖+ ‖yn − ym‖ − (dx + dy),

where {xn}∞n=0 and {yn}∞n=0 be the sequences defined in Definition 2.6 and

k = max{α+ γ, β + δ},

where α, β, γ, δ are the constants from Definition 2.4.
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Theorem 4.1. Let Ax, Ay, Bx and By be nonempty convex subsets of a uniformly
convex Banach space (X, ‖ ·‖), F : Ax×Ay → Bx, f : Ax×Ay → By, G : Bx×By →
Ax and g : Bx×By → Ay. Let the ordered pair ((F, f), (G, g)) be a cyclic contraction.
Then (F, f) has a unique coupled best proximity point (ξ, η) ∈ Ax × Ay and (G, g)
has a unique coupled best proximity point (ζ, ς) ∈ Bx × By, (i.e. ‖ξ − F (ξ, η)‖ = dx,
‖η− f(ξ, η)‖ = dy and ‖ζ −G(ζ, ς)‖ = dx, ‖ς − g(ζ, ς)‖ = dy). Moreover ζ = F (ξ, η),
ς = f(ξ, η), ξ = G(ζ, ς) and η = g(ζ, ς). For any arbitrary point (x, y) ∈ A×A there
hold

lim
n→∞

x2n = ξ, lim
n→∞

y2n = η, lim
n→∞

x2n+1 = ζ, lim
n→∞

y2n+1 = ς

and
‖ξ − ζ‖+ ‖η − ς‖ = dx + dy.

Moreover there hold

G(F (ξ, η), f(ξ, η)) = ξ, g(F (ξ, η), f(ξ, η)) = η,
F (G(ζ, ς), g(ζ, ς)) = ζ, f(G(ζ, ς), g(ζ, ς)) = ς.

(4.1)

If in addition (X, ‖ ·‖) has a modulus of convexity of power type with constants C > 0
and q > 1, then

(i) a priori error estimates hold

‖ξ − x2m‖ ≤ P0,1(x, y) q

√
W0,1(x, y)

Cdx
·

q
√
k2m

1− q
√
k2

; (4.2)

‖η − y2m‖ ≤ P0,1(x, y) q

√
W0,1(x, y)

Cdy
·

q
√
k2m

1− q
√
k2

; (4.3)

(ii) a posteriori error estimates hold

‖ξ − x2n‖ ≤ P2n,2n−1(x, y) q

√
W2n,2n−1(x, y)

Cdx
·

q
√
k

1− q
√
k2
. (4.4)

‖η − y2n‖ ≤ P2n,2n−1(x, y) q

√
W2n,2n−1(x, y)

Cdy
·

q
√
k

1− q
√
k2
. (4.5)

Theorem 4.2. Let Ax, Ay, Bx and By be nonempty subsets of a complete metric
space (X, ρ), F : Ax × Ay → Bx, f : Ax × Ay → By, G : Bx × By → Ax and
g : Bx ×By → Ay. Let there exist α, β, γ, δ > 0, max{α+ γ, β + δ} < 1, such that

ρ(F (x, y), G(u, v))+ρ(f(z, w), g(t, s)) ≤ αρ(x, u)+βρ(y, v)+γρ(z, t)+δρ(w, s) (4.6)

for all (x, y) ∈ Ax × Ay, (u, v) ∈ Bx × By, (z, w) ∈ Ax × Ay and (t, s) ∈ Bx × By.
Then

(I) There exists a unique pair (ξ, η) in A ∩ B, which is a common coupled fixed
point for the maps F and G. Moreover the iteration sequences {xn}∞n=0 and
{yn}∞n=0, defined in Definition 2.6 converge to ξ and η respectively.

(II) a priori error estimates hold

max {ρ(xn, ξ), ρ(yn, η)} ≤ kn

1− k
(ρ(x1, x0) + ρ(y1, y0)); (4.7)
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(III) a posteriori error estimates hold

max {ρ(xn, ξ), ρ(yn, η)} ≤ k

1− k
(ρ(xn−1, xn) + ρ(yn−1, yn)); (4.8)

(IV) The rate of convergence for the sequences of successive iterations is given by

ρ(xn, ξ) + ρ(yn, η) ≤ k (ρ(xn−1, ξ) + (yn−1, η)) . (4.9)

5. Auxiliary Results

In what follows we will use the notation d = dx + dy.

Lemma 5.1. Let Ax, Ay, Bx and By be nonempty subsets of a metric space (X, ρ),
F : Ax × Ay → Bx, f : Ax × Ay → By, G : Bx × By → Ax and g : Bx × By → Ay.
Let the ordered pair ((F, f), (G, g)) be a cyclic contraction. Then there holds

lim
n→∞

ρ(xn, xn+1) = dx and lim
n→∞

ρ(yn, yn+1) = dy

for arbitrary chosen (x, y) ∈ Ax ×Ay.

Proof. Let us choose arbitrary (x, y) ∈ Ax × Ay and let us define the sequences
{xn}∞n=0 and {yn}∞n=0.
Using the cyclic contraction condition (2.1) we get that for all n ∈ N there holds

S3 = ρ(x2n+1, x2n+2) + ρ(y2n+1, y2n+2)
= ρ (F (x2n, y2n), G(x2n+1, y2n+1)) + ρ (f(x2n, y2n), g(x2n+1, y2n+1)
≤ αρ(x2n, x2n+1) + βρ(y2n, y2n+1) + γρ(x2n, x2n+1) + δρ(y2n, y2n+1)

+(1− (α+ γ))dx + (1− (β + δ))dy
= (α+ γ)ρ(x2n, x2n+1) + (1− (α+ γ))dx

+(β + δ)ρ(y2n, y2n+1) + (1− (β + δ))dy.

Thus we get

S4 = ρ(x2n+1, x2n+2) + ρ(y2n+1, y2n+2)− d
≤ (α+ γ)(ρ(x2n, x2n+1)− dx) + (β + δ)(ρ(y2n, y2n+1)− dy)
≤ k (ρ(x2n, x2n+1) + ρ(y2n, y2n+1)− d)
≤ k2(ρ(x2n−1, x2n) + ρ(y2n−1, y2n)− d)
≤ k3(ρ(x2n−2, x2n−1) + ρ(y2n−2, y2n−1)− d)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
≤ k2n+1(ρ(x0, x1) + ρ(y0, y1)− d)).

(5.1)

After taking limit in (5.1), when n→∞ we get

lim
n→∞

(ρ(x2n+1, x2n+2) + ρ(y2n+1, y2n+2)− (dx + dy)) = 0

and thus from the inequalities ρ(x2n+1, x2n+2) ≥ dx and ρ(y2n+1, y2n+2) ≥ dy we
obtain

lim
n→∞

ρ(x2n+1, x2n+2) = dx and lim
n→∞

ρ(y2n+1, y2n+2) = dy. �

It is easy to see that inequality (5.1) holds also for indexes m > n, such that n + m
is an odd number

ρ(xn, xm) + ρ(yn, ym)− d ≤ kn(ρ(x0, xm−n) + ρ(y0, ym−n)− d). (5.2)
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Lemma 5.2. Let Ax, Ay, Bx and By be nonempty subsets of a metric space (X, ρ),
F : Ax × Ay → Bx, f : Ax × Ay → By, G : Bx × By → Ax and g : Bx × By → Ay.
Let the ordered pair ((F, f), (G, g)) be a cyclic contraction. For any arbitrary chosen
(x, y) ∈ Ax×Ay the sequences {x2n}∞n=0, {x2n+1}∞n=0, {y2n}∞n=0 and {y2n+1}∞n=0 are
bounded.

Proof. Let (x, y) ∈ Ax ×Ay be arbitrary chosen and fixed. From Lemma 5.1 we have
that limn→∞ ρ(x2n+1, x2n+2) = dx and limn→∞ ρ(y2n+1, y2n+2) = dy and thus it will
be enough to prove that only the sequences {x2n+1}∞n=0 and {y2n+1}∞n=0 are bounded.

Let as choose

M >
d+ (1 + k)k2(ρ(x0, Tx0) + ρ(y0, T y0))

1− k2
.

Let us suppose that at least one of the sequences {x2n+1}∞n=0 and {y2n+1}∞n=0 is not
bounded. Then there exists n0 ∈ N, such that there hold

ρ(T 2x0, T
2n0−1x0) + ρ(T 2y0, T

2n0−1y0) ≤M
and

ρ(T 2x0, T
2n0+1x0) + ρ(T 2y0, T

2n0+1y0) > M. (5.3)

From inequality (5.3) after using (5.2) with n = 2 and m = 2n0 + 1 we get

S5 =
M − d
k2

<
ρ(T 2x0, T

2n0+1x0) + ρ(T 2y0, T
2n0+1y0)− d

k2

≤ ρ(x0, T
2n0−1x0) + ρ(y0, T

2n0−1y0)− d

≤ ρ(x0, T
2x0) + ρ(y0, T

2y0)− d+ ρ(T 2x0, T
2n0−1x0) + ρ(T 2y0, T

2n0−1y0)

≤ ρ(x0, Tx0) + ρ(y0, T y0) + ρ(Tx0, T
2x0) + ρ(Ty0, T

2y0)− d+M

≤ ρ(x0, Tx0) + ρ(y0, T y0) + k(ρ(x0, Tx0) + ρ(y0, T y0)− d)) +M

= (1 + k)(ρ(x0, Tx0) + ρ(y0, T y0)) +M,

which inequality can hold true only if the inequality

M ≤ d+ (1 + k)k2(ρ(x0, Tx0) + ρ(y0, T y0))

1− k2
,

holds, which contradicts with the choice of M . �

Lemma 5.3. Let Ax, Ay, Bx and By be nonempty convex subsets of a uniformly
convex Banach space (X, ‖ ·‖), F : Ax×Ay → Bx, f : Ax×Ay → By, G : Bx×By →
Ax and g : Bx×By → Ay. Let the ordered pair ((F, f), (G, g)) be a cyclic contraction.
Then for every ε > 0 there is n0 ∈ N so that the inequality

‖xm − xn+1‖+ ‖ym − yn+1‖ < d+ ε

holds for any m > n > n0 and m+ n+ 1 be an odd number.

Proof. From Lemma 5.1 we get

lim
n→∞

‖xn − xn+1‖ = lim
n→∞

‖xn+2 − xn+1‖ = dx
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and

lim
n→∞

‖yn − yn+1‖ = lim
n→∞

‖yn+2 − yn+1‖ = dy.

By Lemma 2.8 after using the uniform convexity of (X, ‖ · ‖) it follows that
limn→∞ ‖xn − xn+2‖ = 0 and limn→∞ ‖yn − yn+2‖ = 0.
Let us suppose that there exists ε > 0 such that for every j ∈ N there are mj >
nj + 1 ≥ j so that ‖xmj

− xnj+1‖+ ‖ymj
− ynj+1‖ ≥ d + ε. Let us choose mj to be

the smallest integer so that the above inequality is satisfied, i.e.

‖xmj−2 − xnj+1‖+ ‖ymj−2 − ynj+1‖ < d+ ε.

Thus we get

d+ ε ≤ ‖xmj
− xnj+1‖+ ‖ymj

− ynj+1‖
≤ ‖xmj

− xmj−2‖+ ‖xmj−2 − xnj+1‖
+‖ymj

− ymj−2‖+ ‖ymj−2 − ynj+1‖
< ‖xmj − xmj−2‖+ ‖ymj − ymj−2‖+ d+ ε.

(5.4)

Letting j →∞ in (5.4) we get

lim
j→∞

(‖xmj
− xnj+1‖+ ‖ymj

− ynj+1‖) = d+ ε.

Using the boundedness of the sequences {xn}∞n=0 and{yn}∞n=0 it follows that there
exists M ≥ dx + dy, such that the inequality

M ≥ ‖x0 − xnj−mj+1‖+ ‖y0 − ynj−mj+1‖

holds for every k ∈ N. The inequality

S6 = ‖xmj
− xnj+1‖+ ‖ymj

− ynj+1‖ − d
≤ kmj (‖x0, xnj−mj+1‖+ ‖y0, ynj−mj+1‖ − d) ≤ kmj (M − d)

holds. For any ε > 0 there exists j0 ∈ N, such that kj(M − d) < ε for every j ≥ j0.
Therefore for any mj > nj+1 ≥ j0 there holds ‖xmj

−xnj+1‖+‖ymj
−ynj+1‖ < d+ε,

which is a contradiction. �

Lemma 5.4. Let Ax, Ay, Bx and By be nonempty convex subsets of a uniformly con-
vex Banach space (X, ‖ ·‖), F : Ax×Ay → Bx, f : Ax×Ay → By, G : Bx×By → Ax
and g : Bx×By → Ay. Let the ordered pair ((F, f), (G, g)) be a cyclic contraction. For
an arbitrary chosen (x, y) ∈ Ax ×Ay the sequences {x2n}∞n=0, {x2n+1}∞n=0, {y2n}∞n=0

and {y2n+1}∞n=0 are Cauchy sequences.

Proof. We will prove that {x2n}∞n=0 is a Cauchy sequence. The proofs for the other
three cases are similar. By Lemma 5.3 we have that for every ε > 0 there is n0 ∈ N,
so that for all 2m > 2n+ 1 ≥ n0 holds the inequality

‖x2m − x2n+1‖+ ‖y2m − y2n+1‖ < d+ ε.

From the inequalities dx ≤ ‖x2m − x2n+1‖ and dy ≤ ‖y2m − y2n+1‖ it follows that
the inequality ‖x2m − x2n+1‖ < dx + ε holds for all 2m > 2n+ 1 ≥ n0. From Lemma
5.1 it follows that limn→∞ ‖x2n − x2n+1‖ = dx. According to Lemma 2.9 it follows
that for every ε > 0 there is N0 ∈ N, so that for all m > n ≥ N0 holds the inequality
‖x2m − x2n‖ < ε and consequently {x2n}∞n=0 is a Cauchy sequence. �
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Lemma 5.5. Let Ax, Ay, Bx and By be nonempty subsets of a uniformly convex
Banach space (X, ‖ · ‖), let F : Ax×Ay → Bx, f : Ax×Ay → By, G : Bx×By → Ax
and g : Bx × By → Ay and the ordered pair ((F, f), (G, g)) be a cyclic contraction.
Then for any 1 ≤ l ≤ 2n there hold the inequalities

‖x2n+1 − x2n‖ ≤ klW2n+1−l,2n−l(x, y) + dx;

and

‖y2n+1 − y2n‖ ≤ klW2n+1−l,2n−l(x, y) + dy;

Proof. By Lemma 5.1 we have the inequality

W2n+1,2n(x, y) ≤ kW2n,2n−1(x, y).

and therefore W2n+1,2n(x, y) ≤ klW2n+1−l,2n−l(x, y).
Consequently using the inequalities dy ≤ ‖y2n+1 − y2n‖ and dx ≤ ‖x2n+1 − x2n‖ for
any n ∈ N we get

‖x2n+1 − x2n‖ ≤ klW2n+1−l,2n−l(x, y) + dx + dy − ρ(y2n+1, y2n)
≤ klW2n+1−l,2n−l(x, y) + dx

and

‖y2n+1 − y2n‖ ≤ klW2n+1−l,2n−l(x, y) + dx + dy − ρ(x2n+1, x2n)
≤ klW2n+1−l,2n−l(x, y) + dy.

�

Lemma 5.6. Let Ax, Ay, Bx and By be nonempty closed and convex subsets of
a uniformly convex Banach space. Let F : Ax × Ay → Bx, f : Ax × Ay → By,
G : Bx × By → Ax and g : Bx × By → Ay and the ordered pair ((F, f), (G, g)) be a
cyclic contraction. Then there holds the inequalities

δ‖·‖

(
‖x2n+2 − x2n‖

dx + klW2n+1−l,2n−l(x, y)

)
≤ klW2n+1−l,2n−l(x, y)

dx + klW2n+1−l,2n−l(x, y)

and

δ‖·‖

(
‖y2n+2 − y2n‖

dy + klW2n+1−l,2n−l(x, y)

)
≤ klW2n+1−l,2n−l(x, y)

dy + klW2n+1−l,2n−l(x, y)
.

Proof. From Lemma 5.5 we have the inequalities

‖x2n+1 − x2n‖ ≤ dx + klW2n+1−l,2n−l(x, y),

‖x2n+2 − x2n+1‖ ≤ dx + kl+1W2n+1−l,2n−l(x, y)
≤ dx + klW2n+1−l,2n−l(x, y)

and
‖x2n+2 − x2n‖ ≤ ‖x2n+2 − x2n+1‖+ ‖x2n+1 − x2n‖

≤ 2
(
dx + klW2n+1−l,2n−l(x, y)

)
.

After a substitution in (2.3) with x = x2n, y = x2n+2, z = x2n+1x,

R = dx + klW2n+1−l,2n−l(x, y) and r = ‖x2n+2 − x2n‖



COUPLED BEST PROXIMITY POINTS 443

and using the convexity of the set Ax we get the chain of inequalities

dx ≤
∥∥∥x2n+x2n+2

2 − x2n+1

∥∥∥
≤

(
1− δ‖·‖

(
‖x2n+2−x2n‖

dx+klW2n+1−l,2n−l(x,y)

)) (
dx + klW2n+1−l,2n−l(x, y)

)
.

(5.5)

and thereafter we obtain the inequality

δ‖·‖

(
‖x2n+2 − x2n‖

dy + klW2n+1−l,2n−l(x, y)

)
≤ klW2n+1−l,2n−l(x, y)

dy + klW2n+1−l,2n−l(x, y)
.

The proof that

δ‖·‖

(
‖y2n+2 − y2n‖

dx + klW2n+1−l,2n−l(x, y)

)
≤ klW2n+1−l,2n−l(x, y)

dx + klW2n+1−l,2n−l(x, y)

can be done similarly. �

6. Proof of the Main Results

Proof of Theorem 4.1. For any initial guess (x, y) ∈ Ax × Ay it follows from Lemma
5.4 that the sequences {x2n}∞n=0, {x2n+1}∞n=0, {y2n}∞n=0 and {y2n+1}∞n=0 are Cauchy
sequences. From the assumptions that (X, ‖ · ‖) is a Banach space and Ax, Ay, Bx
and By are closed it follows that there are (ξ, η) ∈ Ax ×Ay, so that

lim
n→∞

T 2nx0 = lim
n→∞

x2n = ξ ∈ Ax and lim
n→∞

T 2ny0 = lim
n→∞

y2n = η ∈ Ay.

From the inequalities by using the continuity of the norm function ‖·−·‖ and Lemma
5.1 we get

S7 = ‖ξ − F (ξ, η)‖+ ‖η − f(ξ, η)‖ − d
= lim

n→∞
‖x2n − F (ξ, η)‖+ lim

n→∞
‖y2n − f(ξ, η)‖ − d

= lim
n→∞

‖G(x2n−1, y2n−1)− F (ξ, η)‖+ lim
n→∞

‖g(x2n−1, y2n−1)− f(ξ, η)‖ − d
≤ lim

n→∞
(α‖x2n−1 − ξ‖+ β‖y2n−1 − η‖+ γ‖x2n−1 − ξ‖+ δ‖y2n−1 − η‖)

−(α+ γ))dx − (β + δ))dy
≤ lim

n→∞
((α+ γ)(‖x2n−1 − x2n‖ − dx) + (β + δ)(‖y2n−1 − y2n‖ − dy)) = 0.

Thus ‖ξ − F (ξ, η)‖ = dx, ‖η − f(ξ, η)‖ = dy. It can be proven in a similar fashion
that ‖ζ − G(ζ, ς)‖ + ‖ς − g(ζ, ς)‖ ≤ dx + dy and consequently ‖ζ − G(ζ, ς)‖ = dx,
‖ς − g(ζ, ς)‖ = dy.
It has remained to prove that there holds (4.1). Indeed from the inequalities

S8 = ‖G(F (ξ, η), f(ξ, η))− F (ξ, η)‖+ ‖g(F (ξ, η), f(ξ, η))− f(ξ, η)‖
≤ α‖ξ − F (ξ, η)‖+ β‖η − f(η, ξ)‖+ γ‖ξ − F (ξ, η)‖+ δ‖η − f(ξ, η)‖

+(1− (α+ γ))dx + (1− (β + δ))dy = d

it follows that

‖G(F (ξ, η), f(ξ, η))− F (ξ, η)‖ = dx, ‖g(F (ξ, η), f(ξ, η))− f(ξ, η)‖ = dy.

From the assumption that (ξ, η) is a coupled best proximity pair for (F, f) i.e.

‖ξ − F (ξ, η)‖ = dx, ‖η − f(ξ, η)‖ = dy
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and the uniform convexity of (X, ‖ · ‖) it follows that

G(F (ξ, η), f(ξ, η)) = ξ, g(F (ξ, η), f(ξ, η)) = η.

By similar arguments it can be proven that

F (G(ζ, ς), g(ζ, ς)) = ζ and f(G(ζ, ς), g(ζ, ς)) = ς.

We will prove the uniqueness of the coupled best proximity points. Let us suppose
that the coupled best proximity point (ξ, η) of (F, f) is not unique, i.e. there exists
(ξ∗, η∗), such that

‖ξ∗ − F (ξ∗, η∗)‖ = dx, ‖η∗ − f(ξ∗, η∗)‖ = dy

and ‖ξ − ξ∗‖+ ‖η − η∗‖ > 0. By similar arguments it can be proven that

G(F (ξ, η), f(ξ, η)) = ξ, g(F (ξ, η), f(ξ, η)) = η,

G(F (ξ∗, η∗), f(ξ∗, η∗)) = ξ∗, g(F (ξ∗, η∗), f(ξ∗, η∗)) = η∗.

Thus we get the inequalities

S9 = ‖ξ − F (ξ∗, η∗)‖+ ‖η − f(ξ∗, η∗)‖
= ‖G(F (ξ, η), f(ξ, η))− F (ξ∗, η∗)‖+ ‖g(F (ξ, η), f(ξ, η))− f(ξ∗, η∗)‖
≤ α‖ξ∗ − F (ξ, η)‖+ β‖η∗ − f(ξ, η)‖+ γ‖ξ∗ − F (ξ, η)‖

+δ‖η∗ − f(ξ, η)‖+ (1− (α+ γ))dx + (1− (β + δ))dy
≤ (α+ γ)‖ξ∗ − F (ξ, η)‖+ (β + δ)‖η∗ − f(ξ, η)‖

+(1− (α+ γ))‖ξ∗ − F (ξ, η)‖+ (1− (β + δ))‖η∗ − f(ξ, η)‖
≤ ‖ξ∗ − F (ξ, η)‖+ ‖η∗ − f(ξ, η)‖.

(6.1)

By similar calculations we obtain

‖ξ∗ − F (ξ, η)‖+ ‖η∗ − f(ξ, η)‖ ≤ ‖ξ − F (ξ∗, η∗)‖+ ‖η − f(ξ∗, η∗)‖. (6.2)

Consequently there holds

‖ξ∗ − F (ξ, η)‖+ ‖η∗ − f(ξ, η)‖ = ‖ξ − F (ξ∗, η∗)‖+ ‖η − f(ξ∗, η∗)‖. (6.3)

We will show that ‖ξ∗−F (ξ, η)‖+‖η∗−f(η, ξ)‖ = d. Let us assume the contrary, i.e.
‖ξ∗ − F (ξ, η)‖ + ‖η∗ − f(ξ, η)‖ > d. Then there holds at least on of the inequalities
‖ξ∗ − F (ξ, η)‖ > dx or ‖η∗ − f(ξ, η)‖ > dy. Then from the chain of inequalities

S10 = ‖ξ − F (ξ∗, η∗)‖+ ‖η − f(ξ∗, η∗)‖
= ‖G(F (ξ, η), f(ξ, η))− F (ξ∗, η∗)‖+ ‖G(F (ξ, η), f(ξ, η))− f(ξ∗, η∗)‖
≤ α‖ξ∗ − F (ξ, η)‖+ β‖η∗ − f(ξ, η) + γ‖ξ∗ − F (ξ, η)‖

+δ‖η∗ − f(ξ, η) + (1− (α+ γ))dx + (1− (β + δ))dy
< ‖ξ∗ − F (ξ, η)‖+ ‖η∗ − F (η, ξ)‖

we get a contradiction with (6.3). Therefore

‖ξ∗ − F (ξ, η)‖+ ‖η∗ − F (η, ξ)‖ = dx + dy.

From the above equalities, the uniform convexity of (X, ‖ · ‖) and ‖ξ−F (ξ, η)‖ = dx,
‖η − F (η, ξ)‖ = dy it follows that (ξ∗, η∗) = (ξ, η).
The proof that (ζ, ς) ∈ B × B is a unique coupled best proximity point of G can be
done in a similar fashion.
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(i) From the uniform convexity of X is follows that δ‖·‖ is strictly increasing and

therefore there exists its inverse function δ−1‖·‖, which is strictly increasing too. From

Lemma 5.6 we get

‖x2n − x2n+2‖ ≤
(
dx + klW2n+1−l,2n−l(x, y)

)
δ−1‖·‖

(
klW2n+1−l,2n−l(x,y)

dx+klW2n+1−l,2n−l(x,y)

)
. (6.4)

By the inequality δ‖·‖(t) ≥ Ctq it follows that δ−1‖·‖(t) ≤
(
t
C

)1/q
. From (6.4) and the

inequalities

dx ≤ dx + (max{α+ γ, β + δ})lW2n+1−l,2n−l(x, y) ≤ P2n−l,2n+1−l(x, y)

we obtain

‖x2n − x2n+2‖ ≤
(
dx + klW2n+1−l,2n−l(x, y)

)
q

√
klW2n+1−l,2n−l(x, y)

C (dx + klW2n+1−l,2n−l(x, y))

≤ P2n−l,2n+1−l(x, y) q

√
W2n+1−l,2n−l(x, y)

Cdx

q
√
kl. (6.5)

We have proven that there exists a unique pair (ξ, η) ∈ Ax ×Ay, such that

‖ξ − F (ξ, η)‖ = dx

and ξ is a limit of the sequence {x2n}∞n=1 for any (x, y) ∈ Ax ×Ay.
After a substitution with l = 2n in (6.5) we get the inequality

S11 =

∞∑
n=1

‖x2n − x2n+2‖

≤ (‖x0 − x1‖+ ‖y0 − y1‖) q

√
‖x0 − x1‖+ ‖y0 − y1‖ − d

Cdx

∞∑
n=1

q
√
k2n

= (‖x0 − x1‖+ ‖y0 − y1‖) q

√
‖x0 − x1‖+ ‖y0 − y1‖ − d

Cdx
·

q
√
k2

1− q
√
k2

and consequently the series
∑∞
n=1(x2n − x2n+2) is absolutely convergent. Thus for

any m ∈ N there holds

ξ = x2m −
∞∑
n=m

(x2n − x2n+2)

and therefore we get the inequality

‖ξ − x2m‖ ≤
∞∑
n=m

‖x2n − x2n+2‖

≤ (‖x0 − x1‖+ ‖y0 − y1‖) q

√
‖x0 − x1‖+ ‖y0 − y1‖ − d

Cdx
·

q
√
k2m

1− q
√
k2
.

The proof for ‖η − y2m‖ can be done in a similar fashion.
(ii) After a substitution with l = 1 + 2i in (6.5) we obtain

‖x2n+2i − x2n+2(i+1)‖ ≤ P2n−1,2n(x, y) q

√
W2n−1,2n(x, y)

Cdx

(
q
√
k
)1+2i

. (6.6)
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From (6.6) we get that there holds the inequality

S12 = ‖x2n − x2(n+m)‖ ≤
m−1∑
i=0

‖x2n+2i − x2n+2(i+1)‖

≤
m−1∑
i=0

P2n−1,2n(x, y) q

√
W2n−1,2n(x, y)

Cdx

q
√
k1+2i

= P2n−1,2n(x, y) q

√
W2n−1,2n(x, y)

Cdx

m−1∑
i=0

q
√
k1+2i

= P2n−1,2n(x, y) q

√
W2n−1,2n(x, y)

Cdx
· 1− q

√
k2m

1− q
√
k2

q
√
k (6.7)

and after letting m→∞ in (6.7) we obtain the inequality

‖x2n − ξ‖ ≤ P2n,2n−1(x, y) q

√
W2n,2n−1(x, y)

Cdx

q
√
k

1− q
√
k2
.

The proof for ‖y2n − η‖ can be done in a similar fashion. �
Proof of Theorem 4.2. It is easy to observe that for any n ∈ N there hold the
inequalities

S13 = ρ(x2n+1, x2n) + ρ(y2n+1, y2n)
= ρ(F (x2n, y2n), G(x2n−1, y2n−1) + ρ(f(x2n, y2n), g(x2n−1, y2n−1)
≤ αρ(x2n, x2n−1) + βρ(y2n, y2n−1) + γρ(x2n, x2n−1) + δρ(y2n, y2n−1)
= (α+ γ)ρ(x2n, x2n−1) + (β + δ)ρ(y2n, y2n−1)
≤ k(ρ(x2n, x2n−1) + ρ(y2n, y2n−l)).

Consequently

ρ(x2n+1, x2n) + ρ(y2n+1, y2n) ≤ kl(ρ(x2n+1−l, x2n−l) + ρ(y2n+1−l, y2n−l)). (6.8)

(I) Let (x, y) ∈ Ax × Ay be arbitrary chosen. Let {xn}∞n=0 and {yn}∞n=0 be the
sequences defined in Definition 2.6. Then from (6.8), because one of n+1 or n is even
and the other is an odd number, applied for l = n we have

max {ρ(xn+1, xn), ρ(yn+1, yn)} ≤ kn(ρ(x1, x0) + ρ(y1, y0)).

Thus

ρ(xn, xn+m) ≤
n+m−1∑
j=n

ρ(xj , xj+1) ≤
n+m−1∑
j=n

kj(ρ(x1, x0) + ρ(y1, y0))

≤ kn
1− kn+m

1− k
(ρ(x1, x0) + ρ(y1, y0)).

(6.9)

Since k ∈ (0, 1) it follows that the sequence {xn}∞n=0 is a Cauchy sequence in Ax∪Bx.
Consequently {xn} converges to some ξ ∈ Ax ∩ Bx. However the sequence {xn}∞n=0

has an infinite number of terms in Ax and in Bx and therefore ξ ∈ Ax ∩ Bx. So
Ax ∩Bx 6= ∅.
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The proof that the sequence {yn}∞n=0 converges to some η ∈ Ay ∩By can be done
in a similar fashion.

Now, we will prove that the pair (ξ, η) is a coupled fixed point of F . Let ξ ∈ Ax∩Bx
and η ∈ Ay ∩ By. WLOG we can assume that (ξ, η) ∈ Ax × Ay. It follows that
(F (ξ, η), f(ξ, η)) ∈ Bx × By. Then by the triangle inequality and (4.6) we get the
chain of inequalities

S14 = ρ(ξ, F (ξ, η)) + ρ(η, f(ξ, η))
≤ ρ(ξ, x2n) + ρ(x2n, F (ξ, η)) + ρ(η, y2n) + ρ(y2n, f(ξ, η))
≤ ρ(ξ, x2n) + ρ(G(x2n−1, y2n−1), F (ξ, η))

+ρ(η, y2n) + ρ(g(x2n−1, y2n−1), f(ξ, η))
≤ ρ(ξ, x2n) + αρ(x2n−1, ξ) + βρ(y2n−1, η)

+ρ(η, x2n) + γρ(x2n−1, ξ) + δρ(y2n−1, η).

Taking the limit when n → ∞, we obtain ρ(ξ, F (ξ, η)) + ρ(η, F (η, ξ)) = 0, i.e
ρ(ξ, F (ξ, η)) = 0 and ρ(η, F (η, ξ)) = 0. Thus the pair (ξ, η) is a coupled fixed point
of (F, f).

The proof that the pair (ξ, η) is a coupled fixed point of (G, g) can be done in a
similar fashion by assuming that (ξ, η) ∈ Bx ×By.

We still have to prove that the pair (ξ, η) is the unique coupled fixed point of (F, f).
Arguing by contradiction, suppose there exists (ξ∗, η∗) ∈ (Ax ∪Bx)× (Ay ∪By) such
that (ξ∗, η∗) 6= (ξ, η) and ξ∗ = F (ξ∗, η∗), η∗ = f(ξ∗, η∗). If we suppose that ξ∗ ∈ Ax
then by the definition of a coupled fixed point it follows that η∗ ∈ Ay and therefore
ξ∗ = F (ξ∗, η∗) ∈ Bx and η∗ = F (η∗, ξ∗) ∈ Bx. A similar argument holds if we assume
that ξ∗ ∈ Bx and η∗ ∈ By. Thus we can assume that if the pair (ξ∗, η∗) is a coupled
fixed point of (F, f) then (ξ∗, η∗) ∈ (Ax ∩ Bx) × (Ay ∩ By). From (4.6), using the
observation that (ξ, η) and (ξ∗, η∗) are coupled fixed points and for (G, g), we have
the inequalities

ρ(ξ∗, ξ) + ρ(η∗, η) = ρ(F (ξ∗, η∗), G(ξ, η) + ρ(f(η∗, ξ∗), g(η, ξ)
≤ αρ(ξ∗, ξ) + βρ(η∗, η) + γρ(ξ∗, ξ) + δρ(η∗, η)
= (α+ γ)ρ(ξ∗, ξ) + (β + δ)ρ(η∗, η) < ρ(ξ∗, ξ) + ρ(η∗, η).

It results that ρ(ξ∗, ξ) = ρ(η∗, η) = 0, which is a contradiction and therefore the pair
(ξ, η) is the unique coupled fixed point of (F, f).

The proof that the pair (ξ, η) is the unique coupled fixed point of (G, g) can be
done in a similar way.

(II) Letting m→∞ in (6.9) we obtain the a priori estimate

ρ(xn, ξ) ≤
kn

1− k
(ρ(x1, x0) + ρ(y1, y0)).

The proof that ρ(yn, ξ) ≤ kn

1−k (ρ(x1, x0) + ρ(y1, y0)) is done in a similar fashion.
Therefore

max{ρ(xn, ξ), ρ(yn, ξ)} ≤
kn

1− k
(ρ(x1, x0) + ρ(y1, y0)).
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(III) From the inequality (6.8) applied for l = k + 1 we get

ρ(xn, xn+m) ≤
m−1∑
j=0

ρ(xn+j , xn+j+1) ≤
m−1∑
j=0

kj+1(ρ(xn−1, xn) + ρ(yn−1, yn))

≤ k

1− k
(1− km+1)(ρ(xn−1, xn) + ρ(yn−1, yn)).

Letting m→∞ we obtain the a posteriori estimate

ρ(xn, ξ) ≤
k

1− k
(ρ(xn−1, xn) + ρ(yn−1, yn)).

The proof that ρ(yn, ξ) ≤ k
1−k (ρ(xn−1, xn) + ρ(yn−1, yn)) is done in a similar fashion

and thus

max{ρ(xn, ξ), ρ(yn, ξ)} ≤
k

1− k
(ρ(xn−1, xn) + ρ(yn−1, yn)).

(IV) Considering that the pair (ξ, η) is a coupled fixed point for (F, f) and (4.6)
we have the inequalities

S15 = ρ(x2n, ξ) + ρ(y2n, η)
= ρ(G(x2n−1, y2n−1), F (ξ, η)) + ρ(g(x2n−1, y2n−1), f(ξ, η))
≤ αρ(x2n−1, ξ) + βρ(y2n−1, η) + γρ(x2n−1, ξ) + δρ(y2n−1, η)
= (α+ γ)ρ(x2n−1, ξ) + (β + δ)ρ(y2n−1, η) ≤ k(ρ(x2n−1, ξ) + ρ(y2n−1, η)).

By similar arguments we get

ρ(x2n+1, ξ) + ρ(y2n+1, η) = ρ(F (x2n, y2n), G(ξ, η)) + ρ(f(x2n, y2n), g(ξ, η))
≤ αρ(x2n, ξ) + βρ(y2n, η) + γρ(x2n, ξ) + δρ(y2n, η)
= (α+ γ)ρ(x2n, ξ) + (β + δ)ρ(y2n, η)
≤ k(ρ(x2n, ξ) + ρ(y2n, η)).

Consequently ρ(xn, ξ) + ρ(yn, η) ≤ k(ρ(xn−1, ξ) + ρ(yn−1, η)). �

7. Applications

If put Ax = Ay = A, Bx = By = B, f(x, y) = F (y, x), g(x, y) = G(y, x), z = y,
w = x, t = v, s = u, γ = β and δ = α, then we get the results from ([21], Theorem 2
and Theorem 3) as corollaries of Theorem 4.1 and Theorem 4.2.

Following [20] we may assume that (R, | · |) is a uniformly convex and δ(R,|·|)(ε) = ε
2 .

In this case the inverse function δ−1X exists ant is equal to 2ε. Thus we get the following
corollary of Theorem 4.1:

Corollary 7.1. Let Ax, Ay, Bx and By be nonempty convex subsets of a (R, | · |),
F : Ax × Ay → Bx, f : Ax × Ay → By, G : Bx × By → Ax and g : Bx × By → Ay.
Let the ordered pair ((F, f), (G, g)) be a cyclic contraction. Then (F, f) has a unique
coupled best proximity point (ξ, η) ∈ Ax × Ay and (G, g) has a unique coupled best
proximity point (ζ, ς) ∈ Bx × By, (i.e. |ξ − F (ξ, η)| = dx, |η − f(ξ, η)| = dy and
|ζ −G(ζ, ς)| = dx, |ς − g(ζ, ς)| = dy). Moreover, ζ = F (ξ, η), ς = f(ξ, η), ξ = G(ζ, ς)
and η = g(ζ, ς). For any arbitrary point (x, y) ∈ A×A there hold

lim
n→∞

x2n = ξ, lim
n→∞

y2n = η, lim
n→∞

x2n+1 = ζ, lim
n→∞

y2n+1 = ς
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and

|ξ − ζ|+ |η − ς| = dx + dy.

Moreover there hold

G(F (ξ, η), f(ξ, η)) = ξ, g(F (ξ, η), f(ξ, η)) = η,
F (G(ζ, ς), g(ζ, ς)) = ζ, f(G(ζ, ς), g(ζ, ς)) = ς.

(7.1)

(i) a priori error estimates hold

|ξ − x2m| ≤ 2P0,1(x, y)
W0,1(x, y)

dx
· k2m

1− k2
; (7.2)

|η − y2m| ≤ 2P0,1(x, y)
W0,1(x, y)

dy
· k2m

1− k2
; (7.3)

(ii) a posteriori error estimates hold

|ξ − x2n| ≤ 2P2n,2n−1(x, y)
W2n,2n−1(x, y)

dx
· k

1− k2
; (7.4)

|η − y2n| ≤ 2P2n,2n−1(x, y)
W2n,2n−1(x, y)

dy
· k

1− k2
. (7.5)

We will illustrate Corollary 7.1 by solving the next system:

Example 7.2. Let us consider the system of nonlinear equations:{
36x + ey = e+ 68

4 arctan
(
x
2

)
+ 18y = π + 18.

(7.6)

Solution. Let us consider the functions

F (x, y) = −x
8
− ey

32
+
e− 60

32
, G(x, y) = −x

8
− ey

32
− e− 60

32
,

f(x, y) = −
arctan

(
x
2

)
4

− y

8
+
π − 14

16
, g(x, y) = −

arctan
(
x
2

)
4

− y

8
− π − 14

16
.

It is easy to check that F : [2,+∞) × [1, 1.5] → (−∞,−2], f : [2,+∞) × [1, 1.5] →
[−1.5,−1], G : (−∞,−2]× [−1.5,−1]→ [2,+∞), g : (−∞,−2]×5−1.5,−1]→ [1, 1.5]
and the system {

x− F (x, y) = 4
y − f(x, y) = 2

(7.7)

is equivalent to (7.6).
Using the inequalities |ey − ev| ≤ e1.5|y − v| for y, v ∈ [1, 1.5] and∣∣∣∣arctan

(z
2

)
− arctan

(
t

2

)∣∣∣∣ ≤ |z − t|4

for z, t ∈ [2,+∞) it is easy to obtain that

S17 = |F (x, y)−G(u, v)|+ |f(z, w)− g(t, s)|

≤ 1
8 |x− u|+

e1.5

32
|y − v|+ 60− e

16
+

1

16
|z − t|+ 1

8
|w − s|+ π − 14

8
.
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We will check that Corollary 7.1 holds for α = 1/8, β = e1.5/32, γ = 1/16, δ = 1/8,
dx = 4 and dy = 2. From the equality∣∣∣∣e− 60

16

∣∣∣∣+

∣∣∣∣π − 14

16

∣∣∣∣− 4

(
1−

(
1

8
+

1

16

))
− 2

(
7

8
− e1.5

32

)
we get

S18 = |F (x, y)−G(u, v)|+ |f(z, w)− g(t, s)|

≤ 1

8
|x− u|+ e1.5

32
|y − v|+ 1

16
|z − t|+ 1

8
|w − s|

+

(
1−

(
1

8
+

1

16

))
dx +

(
7

8
− e1.5

32

)
dy.

Therefore the ordered pair ((F, f), (G, g)) is a cyclic contraction with constants 1
8 ,

e1.5

32 , 1
16 , 1

8 and the unique solution of (7.6) is (2, 1). �

Table 1. Number 2m of iterations needed by the a priori estimate

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
2m 4 6 8 10 12 14

Table 2. Number 2m of iterations needed by the a posteriori estimate

ε 0.1 0.01 0.001 0.0001 0.00001 0.000001
2m 4 8 12 14 16 20

If we try to solve system (7.6) with the help of Maple 2016.0, we get as an answer

x = 2tan(RootOf(72tan( Z) + e−
2
9 Z+ 1

18π+1 − e− 72))

y = −2

9
RootOf(72tan( Z) + e−

2
9 Z+ 1

18π+1 − e− 72) +
π

18
+ 1.

If we try numerically approximate the solutions of the system (7.6) with the help of
Maple 2016.0, we get as an answer {x = 2.000000000, y = .9999999998}.

8. Conclusion

It is interesting to apply the technique from the article for tripled fixed points and
tripled best proximity points [9, 10, 11, 5, 12], as well as for quadruple fixed points
and quadruple best proximity points [23]. It will be also interesting if similar results
could be obtained for coupled, tripled or quadruple fixed points in partially ordered
metric spaces or best proximity points in partially ordered uniformly convex Banach
spaces [15, 26]. An open question can be to generalize the ideas from [7, 19] about
coupled fixed or best proximity points.
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[16] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, V. Zizler, Functional Analysis and
Infinite-Dimensional Geometry, Springer, New York, 2011.

[17] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications,

Nonlinear Anal., 11(1987), no. 5, 623-632.
[18] A. Gupta, S.S. Rajput, P.S. Kaurav, Coupled best proximity point theorem in metric spaces,

International J. Anal. Appl., 4(2014), no. 2, 201-215.

[19] A. Horvat-Marc, M. Petric, Examples of cyclical operators, Carpathian J. Math, 32(2016), no.
3, 331-338.

[20] A. Ilchev, On an application of coupled best proximity points theorems for solving systems of

linear equations, AIP Conference Proceedings, 2048(2018):050003.
[21] A. Ilchev, B. Zlatanov, Error estimates for approximation of coupled best proximity points for

cyclic contractive maps, Appl. Math. Comput., 290(2016), 412-425.
[22] A. Ilchev, B. Zlatanov, Error estimates of best proximity points for Reich maps in uniformly

convex Banach spaces, Annual of Konstantin Preslavsky University of Shumen, Faculty of Math-
ematics and Informatics, XIX C(2018), 3-20.

[23] E. Karapinar, V. Berinde, Quadruple fixed point theorems for nonlinear contractions in partially
ordered metric spaces, Banach J. Math. Anal., 6(2012), no. 1, 74-89.

[24] A. Meir, On the uniform convexity of Lp spaces, 1 < p ≤ 2, Illinois J. Math., 28(1984), no. 3,
420-424.

[25] W. Sintunavarat, P. Kumam, Coupled best proxitmity point theorem in metric spaces, Fixed
Point Theory Appl., 2012(2012):93.

[26] H. Yang, R.P. Agarwal, H.K. Nashine, Y. Liang, Fixed point theorems in partially ordered
Banach spaces with applications to nonlinear fractional evolution equations, J. Fixed Point

Theory Appl., 19(2017), no. 3, 1661-1678.



452 BOYAN ZLATANOV

[27] B. Zlatanov, Error estimates for approximating of best proximity points for cyclic contractive

maps, Carpathian J. Math., 32(2016), no. 2, 241-246.

Received: February 14, 2019; Accepted: February 7, 2020.


