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1. Introduction

In this paper, we study the following system involving fractional Laplacian:
(−∆)su = λf(x)|u|q−2u+ 2α

α+βh(x)|u|α−2u|v|β in Ω,

(−∆)sv = µg(x)|v|q−2v + 2β
α+βh(x)|u|α|v|β−2v in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω ∈ Rn is a bounded domain of Rn, s ∈ (0, 1), n > 2s, 1 < q < 2 and α > 1,
β > 1 satisfy

2 < α+ β < 2? =
2n

n− 2s
.

The pair of parameters (λ, µ) ∈ Rn \ {(0, 0)} and the weight functions f, g, h satisfy
the following conditions;

(A) f, g ∈ Lp?(Ω) where

p? =
α+ β

α+ β − q
and f+ = max{±f, 0} 6= 0 or g+ = max{±g, 0} 6= 0,
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(B) h ∈ C(Ω) with ‖h‖∞ = 1.
In the past decades, the Laplacian equation or system has been widely investigated

and a lot of work has been done for ground state solutions, multiple positive solutions,
sign-changing solutions and so on (see [34, 33, 14, 16, 17, 15, 18] and references
therein).

Recently, a great attention has been focused on the study of equations or systems
involving fractional Laplacian with nonlinear terms, both for their interesting theoret-
ical structure and their concrete applications(see [4, 19, 31, 9, 36, 8, 37, 14, 16, 17] and
references therein). This type of operator arises in a quite natural way in many differ-
ent contexts, such as, the thin obstacle problem, finance, phase transitions, anomalous
diffusion, flame propagation and many others(see[21, 32, 38] and references therein).

Compared to the Laplacian problems, the fractional Laplacian problems is nonlocal
and more challenging. In 2007, L. Caffarelli and L. Silvestre [10] studied an extension
problem related to the fractional Laplacian in Rn, which can transform the nonlocal
problem into a local problem in Rn+1

+ . This method can be extended to bounded
regions and is extensively used in recent articles. For example, the following fractional
Laplacian equation {

(−∆)su = F (u) in Ω,

u = 0 on ∂Ω,

has been studied by many authors under various hypotheses on the nonlinearity f .
When F (u) = λuq + up with 0 < q < 1 < p < n+2s

n−2s and λ ≥ 0, C. Brändle, E.

Colorado, A. de Pablo and U. Sánchez [6] showed that there exists a finite parameter
Λ > 0 such that for 0 < λ < Λ there exist at least two solutions, for λ = Λ there
exists at least one solution and for λ > Λ there is no solution. Moreover, for s ≥ 1/2
they prove a universal L∞ bound for every solution of the problem, independently of

λ. Furthermore, when F (u) = λuq +u
n+2s
n−2s , B. Barrios, E. Colorado, A. de Pablo and

U. Sánchez [4] showed that the existence and multiplicity of solutions under suitable
conditions of s and q. When F (u) = |u|2∗−2u+f(x), E. Colorado, A. de Pablo and U.
Sánchez [19] showed that the existence and the multiplicity of solutions were proved
under appropriate conditions on the size of f

It is also natural to study the coupled system of equations. For the following
fractional Laplacian system

(−∆)su = F (u, v) in Rn,
(−∆)sv = G(u, v) in Rn,
u, v ∈ Ds(Rn),

When

F (u, v) = µ1|u|2
∗−2u+

αγ

2∗
|u|α−2u|v|β , G(u, v) = µ2|v|2

∗−2v +
βγ

2∗
|u|α|v|β−2v,

M.D. Zhen, J.C. He and H.Y. Xu [42] showed that the existence and nonexistence of
positive least energy solution of the system under proper conditions of α, β, γ,N, s.
Z. Guo, S. Luo and W. Zou [26] showed the existence of positive least energy solution,
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which is radially symmetric with respect to some point in Rn and decays at infinity
with certain rate. For other related articles (see [27, 42, 43] and references therein).

We should point out that in all these works, they only consider equation or system
without sign-changing weight functions, in the case of Laplacian system, the problem
has been done by T.F. Wu in [41]. For system (1.1), when f(x) = g(x) = h(x) = 1
X. He, M. Squassina and W. Zou [27] showed that the system admits at least two
positive solutions under proper conditions of λ and µ. When the fractional Laplacian
operator is replaced by fractional p-Laplacian operator and f(x) = g(x) = h(x) = 1
W.J. Chen, S.B. Deng [13] showed the similar results for system (1.1).

The purpose of this paper is to study system (1.1) in the case of 2 < α+β < 2?, by
variational methods and a Nehari manifold decomposition, we prove that the system
admits at least two positive solutions when the pair of parameters (λ, µ) belongs to
certain subset of R2. We note that the fractional Laplacian operator (−∆)s is defined
through the spectral decomposition using the powers of the eigenvalues of the positive
Laplace operator (−∆) with zero Dirichlet boundary data.

To express the main results, we introduce

Θ = {z ∈ R2 \ {(0, 0)} | 0 < (|λ|‖f‖Lp? )
2

2−q + (|µ|‖g‖Lp? )
2

2−q < C(α, β, κs, q, S)}
and

C(α, β, κs, q, S) =

[
2− q

2(α+ β − q)
(κsS)

α+β
2

] 2
α+β−2

(
(
κsS

2
)−

q
2
α+ β − q
α+ β − 2

)− 2
2−q

.

Ψ = {z ∈ R2 \ {(0, 0)} | 0 < (|λ|‖f‖Lp? )
2

2−q + (|µ|‖g‖Lp? )
2

2−q < D(α, β, κs, q, S)}
and

D(α, β, κs, q, S)=
(q

2

) 2
2−q
[

2− q
2(α+β−q)

(κsS)
α+β

2

] 2
α+β−2

((
κsS

2

)− q2 α+ β − q
α+β−2

)− 2
2−q

,

where κs is a normalization constant and S is the best Sobolev constants that will be
introduced later.

Our main results are:

Theorem 1.1. Suppose that the weight functions f, g, h be satisfied with the condi-
tions (A) and (B), for each (λ, µ) ∈ Θ, then system (1.1) has at least one positive
solution in Hs

0(Ω)×Hs
0(Ω).

Theorem 1.2. Suppose that the weight functions f, g, h be satisfied with the condi-
tions (A) and (B), for each (λ, µ) ∈ Ψ, then system (1.1) has at least two positive
solution in Hs

0(Ω)×Hs
0(Ω).

Remark 1.1. The aim of this paper is to generalized the results in [41] for local
Laplacian equation to no-local fractional Laplacian case and when f(x) = g(x) =
h(x) = 1 X. He, M. Squassina and W. Zou [27] showed that the system admits at
least two positive solutions under proper conditions of λ and µ.

Remark 1.2. For system (1.1), if the fractional Laplacian operator is replaced by
the fractional p-Laplacian operator, by using the similar method as this paper, we
can get similar results. That is
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(i) Suppose that the weight functions f, g, h be satisfied with the conditions (A)
and (B), for each (λ, µ) ∈ Θ1, then system (1.1) has at least one nontrivial solution.

(ii) Suppose that the weight functions f, g, h be satisfied with the conditions (A)
and (B), for each (λ, µ) ∈ Ψ1, then system (1.1) has at least two nontrivial solutions.

Where Θ1 and Ψ1 are slightly change in Θ and Ψ.

Remark 1.3. Compared with already know results in [13] for fractional p-Laplacian,
the authors in [13] consider the case of f(x) = g(x) = h(x) = 1 and get similar
results as remark 1.2. However, for system (1.1), we can get at least two positive
nontrivial solutions, but for the corresponding fractional p-Laplacian system we only
obtain nontrivial solutions.

The paper is organized as follows. In section 2, we introduce some preliminaries
and functional setting. In section 3, we define the Nehari manifold and give some
Lemmas that will be used later. In section 4, we prove the existence of Palais-Smale
sequence. In section 5, we give the results of local minimization problem for system
(2.1). Finally, the proofs of Theorem 1.1 and Theorem 1.2 are given in section 6.

2. Preliminaries and functional setting

In this section, we introduce some preliminaries that will be used to establish the
energy functional for system (1.1). First, we denote the upper half-space in Rn+1

+ by

Rn+1
+ = {z = (x, y) = (x1, · · · , xn, y) ∈ Rn+1 : y > 0}.

Let Ω ∈ Rn be a small bounded domain. Denote CΩ = Ω × (0,+∞) ∈ Rn+1
+ and its

boundary by ∂LCΩ = ∂Ω×(0,∞). The powers (−∆)s of the positive Laplace operator
(−∆), in a bounded domain Ω with zero Dirichlet date are defined via its spectral
decomposition, namely

(−∆)s =

∞∑
j=1

ajρ
s
jϕj(x),

where (ρj , ϕj) is the sequence of eigenvalues and eigenfunctions of the operator −∆
in Ω under zero Dirichlet boundary date and aj are the coefficients of u for the base
{ϕj}∞j=1 in L2(Ω). In fact, the fractional Laplacian (−∆)s is well defined in the space
of functions

Hs
0(Ω) =

u =

∞∑
j=1

ajϕj ∈ L2(Ω) : ‖u‖Hs0 =

 ∞∑
j=1

a2
jρ
s
j

 1
2

<∞

 ,

and ‖u‖Hs0 (Ω) = ‖(−∆)
s
2u‖L2(Ω). The dual space H−s(Ω) is defined in the standard

way, as well as the inverse operator (−∆)−s.
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Definition 2.1. We say that (u, v) ∈ Hs
0(Ω) × Hs

0(Ω) is a solution of (1.1) if the
identity∫

Ω

(
(−∆)

s
2u(−∆)

s
2ϕ1 + (−∆)

s
2 v(−∆)

s
2ϕ2

)
dx−

∫
Ω

(
λf |u|q−2uϕ1 + µg|v|q−2vϕ2

)
dx

− 2α

α+ β

∫
Ω

h|u|α−2u|v|βϕ1dx−
2β

α+ β

∫
Ω

h|u|α|v|β−2vϕ2dx = 0

holds for all (ϕ1, ϕ2) ∈ Hs
0(Ω)×Hs

0(Ω).

Note that, the energy functional associated with (1.1) is given by

Jλ,µ(u, v) :=
1

2

∫
Ω

(
|(−∆)

s
2u|2 + |(−∆)

s
2 v|2

)
dx− 1

q

∫
Ω

(λf |u|q + µg|v|q) dx

− 2

α+ β

∫
Ω

h|u|α|v|βdx.

The functional is well defined in Hs
0(Ω) ×Hs

0(Ω) and the critical points of the func-
tional Jλ,µ correspond to solutions of (1.1). Motivated by the works of Caffarelli and
Silvestre [10], to deal with the nonlocal problem (1.1), we can study a corresponding
extension problem, which allows us to investigate problem (1.1) via classic variational
methods.

We define the extension operator and fractional Laplacian for functions in

Hs
0(Ω)×Hs

0(Ω).

Definition 2.2. For a function u ∈ Hs
0(Ω), we denote its s-harmony extension w =

Es(u) to the cylinder CΩ as the solution of the problem
div(y1−2s∇w) = 0 in CΩ,
w = 0 on ∂LCΩ,
w = u on Ω× (0)

and

(−∆)su(x) = −κs lim
y→0+

y1−2s ∂w

∂y
(x, y),

where κs = 21−2s Γ(1−s)
Γ(s) is a normalization constant.

The extension function w(x, y) belongs to the space

Xs
0(CΩ) := C∞0 (Ω× [0,+∞))

‖·‖Xs0(CΩ)

with the norm

‖z‖CΩ :=

(
κs

∫
CΩ
y1−2s|∇z|2dxdy

) 1
2

.

With the normalization constant κs we have that the extension operator is an isometry
between Hs

0(Ω) and Xs
0(CΩ, namely

‖u‖Hs0 (Ω) = ‖Es(u)‖Xs0 (CΩ , ∀ u ∈ H
s
0(Ω).
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With this extension we can reformulate (1.1) as the following local problem

−div(y1−2s∇w1) = 0, −div(y1−2s∇w2) = 0 in CΩ
w1 = w2 = 0 on ∂LCΩ
w1 = u,w2 = v on Ω× (0)
∂w1

∂νs = λf(x)|w1|q−2w1 + 2α
α+βh(x)|w1|α−2w1|w2|β on Ω× (0)

∂w2

∂νs = µg(x)|w2|q−2w2 + 2β
α+βh(x)|w1|α|w2|β−2w2 on Ω× (0),

(2.1)

where
∂wi
∂νs

= −κs lim
y→0+

y1−2s ∂wi
∂y

(x, y), i = 1, 2

and w1, w2 ∈ Xs
0(CΩ are the s-harmony extension of u, v ∈ Hs

0(Ω). Let

Es0(CΩ) := Xs
0(CΩ)×Xs

0(CΩ).

An energy solution to problem (2.1) is a function (w1, w2) ∈ Es0(CΩ) satisfying

κs

∫
CΩ
y1−2s∇w1 · ∇ϕ1dxdy + κs

∫
CΩ
y1−2s∇w2 · ∇ϕ2dxdy

= λ

∫
Ω

f(x)|w1|q−2w1ϕ1dx+
2α

α+ β

∫
Ω

h(x)|w1|α−2w1|w2|βϕ1dx

+ µ

∫
Ω

g(x)|w2|q−2w2ϕ2dx+
2β

α+ β

∫
Ω

h(x)|w1|α|w2|β−2w2ϕ2dx.

for all (ϕ1, ϕ2) ∈ Es0(CΩ).
If (w1, w2) ∈ Es0(CΩ) satisfies (2.1), then (u, v) = (w1(·, 0), w2(·, 0)) defined in the
sense of traces, belongs to the space Hs

0(Ω)×Hs
0(Ω) and it is a solution of the problem

(1.1). The energy functional associated with (2.1) is given by

Iλ,µ(w) := Iλ,µ(w1, w2) =
κs
2

∫
CΩ
y1−2s

(
|∇w1|2 + |∇w2|2

)
dxdy

− 1

q

∫
Ω

(λf(x)|w1|q + µg(x)|w2|q) dx−
2

α+ β

∫
Ω

h(x)|w1|α|w2|βdx.

Critical points of Iλ,µ in Es0(CΩ) correspond to critical points of

Jλ,µ : Hs
0(Ω)×Hs

0(Ω)→ R.

Lemma 2.3. [6] For any 1 ≤ r ≤ 2? and any z ∈ Xs
0(CΩ), it holds(∫

Ω

|u(x)|rdx
) 2
r

≤ C
∫
CΩ
y1−2s|∇z(x, y)|2dxdy, u := Trz,

for some positive constant C = C(r, s, n,Ω). Furthermore, the space Xs
0(CΩ) is com-

pactly embedded into Lr(Ω) for every r < 2?.

Let S be the best Sobolev constant for the embedding of Xs
0(CΩ) in Lα+β(Ω)

defined by

S = inf
z∈Xs0 (CΩ)\{0}

∫
CΩ y

1−2s|∇z(x, y)|2dxdy(∫
Ω
|z(x)|α+βdx

) 2
α+β

.
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In the end of this section, we recall some notations that will be used in the sequel.
• Lp(Ω), 1 ≤ p ≤ ∞ denotes Lebesgue space with norm ‖ · ‖p and

E = Xs
0(CΩ)×Xs

0(CΩ)

is equipped with the norm ‖z‖2 = ‖(w1, w2)‖2 = ‖w1‖2Xs0 (CΩ) + ‖w2‖2Xs0 (CΩ).

• The dual space of a Banach space E will be denoted by E−1. We set

tz = t(w1, w2) = (tw1, tw2)

for all z ∈ E and t ∈ R, z = (w1, w2) is said to be positive if w1(x, y) > 0, w2(x, y) > 0
in C(Ω) and to be non-negative if w1(x, y) ≥ 0, w2(x, y) ≥ 0 in C(Ω).
• B(0; r) is the ball at the origin with radius r. on(1) denotes on(1)→ 0 as n→ +∞.
• C,Ci, c will denote various positive constants which may vary from line to line.

3. The Nehari manifold

We consider the Nehari minimization problem: for (λ, µ) ∈ R2 \ {(0, 0)},

θλ,µ = inf{Iλ,µ(z) | z ∈ Nλ,µ}

where Nλ,µ := {z ∈ E \ {0} | 〈I ′λ,µ(z), z〉 = 0} and

〈I ′λ,µ(z), z〉 = ‖z‖2 −
∫

Ω

(λf |w1|q + µg|w2|q) dx− 2

∫
Ω

h|w1|α|w2|βdx. (3.1)

Note that Nλ,µ contains every nonzero solution of problem (2.1).
Define

〈Φλ,µ(z), z〉 = 〈I ′λ,µ(z), z〉.

Then

〈Φ′λ,µ(z), z〉 = 2‖z‖2 − q
∫

Ω

(λf |w1|q + µg|w2|q) dx− 2(α+ β)

∫
Ω

h|w1|α|w2|βdx.

Moreover, if
∫

Ω
(λf |w1|q + µg|w2|q) dx 6= 0 and z ∈ Nλ,µ, we have

〈Φ′λ,µ(z), z〉 = (2− q)‖z‖2 − 2(α+ β − q)
∫

Ω

h|w1|α|w2|βdx. (3.2)

Similarly to the method used in [40], we split Nλ,µ into three parts.

N+
λ,µ = {z ∈ Nλ,µ | 〈Φ′λ,µ(z), z〉 > 0};

N0
λ,µ = {z ∈ Nλ,µ | 〈Φ′λ,µ(z), z〉 = 0};

N−λ,µ = {z ∈ Nλ,µ | 〈Φ′λ,µ(z), z〉 < 0}.

Then, we have the following result.

Lemma 3.1. For each (λ, µ) ∈ Θ, we have N0
λ,µ = ∅.
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Proof. We consider the following two cases
Case 1: z ∈ Nλ,µ and

∫
Ω
h|w1|α|w2|βdx ≤ 0, we have∫

Ω

(λf |w1|q + µg|w2|q) dx = ‖z‖2 − 2

∫
Ω

h|w1|α|w2|βdx > 0.

Thus 〈Φ′λ,µ(z), z〉 = (2− q)‖z‖2− 2(α+β− q)
∫

Ω
h|w1|α|w2|βdx > 0 and so z /∈ N0

λ,µ.

Case 2: z ∈ Nλ,µ and
∫

Ω
h|w1|α|w2|βdx > 0.

Suppose that N0
λ,µ 6= ∅ for all (λ, µ) ∈ R2 \ {(0, 0)}. Then for each z ∈ N0

λ,µ, we have

〈Φ′λ,µ(z), z〉 = (2− q)‖z‖2 − 2(α+ β − q)
∫

Ω

h|w1|α|w2|βdx = 0. (3.3)

Thus

‖z‖2 =
2(α+ β − q)

2− q

∫
Ω

h|w1|α|w2|βdx

and ∫
Ω

(λf |w1|q + µg|w2|q) dx = ‖z‖2 − 2

∫
Ω

h|w1|α|w2|βdx

=
2(α+ β − 2)

2− q

∫
Ω

h|w1|α|w2|βdx > 0.

By the Hölder inequality, Sobolev inequality and 2-p inequality, we have

‖z‖ ≥
[

2− q
2(α+ β − q)

(κsS)
α+β

2

] 1
α+β−2

(3.4)

and

α+ β − 2

α+ β − q
‖z‖2 = ‖z‖2 − 2

∫
Ω

h|w1|α|w2|βdx =

∫
Ω

(λf |w1|q + µg|w2|q) dx

≤ |λ|‖f‖Lp? |‖w1‖qLα+β + |µ|‖g‖Lp? |‖w2‖qLα+β

≤ [(|λ|‖f‖Lp? )
2

2−q + (|µ|‖g‖Lp? )
2

2−q ]
2−q

2 (
κsS

2
)−

q
2 ‖z‖q.

This implies

‖z‖ ≤

((
κsS

2

)− q2 α+ β − q
α+ β − 2

) 1
2−q [

(|λ|‖f‖Lp? )
2

2−q + (|µ|‖g‖Lp? )
2

2−q

] 1
2

. (3.5)

By (3.4) and (3.5), we have[
(|λ|‖f‖Lp? )

2
2−q + (|µ|‖g‖Lp? )

2
2−q

]

≥
[

2− q
2(α+ β − q)

(κsS)
α+β

2

] 2
α+β−2

((
κsS

2

)− q2 α+ β − q
α+ β − 2

)− 2
2−q

,

contradicting with the assumption. �
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Lemma 3.1 suggests that for each (λ, µ) ∈ Θ, we can write Nλ,µ = N+
λ,µ ∪N

−
λ,µ.

Next, we define

θ+
λ,µ = inf

z∈N+
λ,µ

Iλ,µ(z) and θ−λ,µ = inf
z∈N−λ,µ

Iλ,µ(z).

The following lemma shows that the minimizer on Nλ,µ is critical point for Iλ,µ

Lemma 3.2. For each (λ, µ) ∈ Θ, let z0 be a local minimizer for Iλ,µ on Nλ,µ, then
I ′λ,µ(z0) = 0 in E−1.

Proof. Since z0 is a local minimizer for Iλ,µ on Nλ,µ, that is z0 is a solution of the
optimization problem

min{Iλ,µ(z) | Φλ,µ(z) = 0}.
Then, by the theory of Lagrange multipliers, there exists a constant L ∈ R such that

〈I ′λ,µ(z0), z0〉 = L〈Φ′λ,µ(z0), z0〉.

Since z0 /∈ N0
λ,µ, we have 〈Φ′λ,µ(z0), z0〉 6= 0, thus L = 0, this completes the proof. �

Moreover, we have the following properties about the Nehari manifold Nλ,µ.

Lemma 3.3. We have
(i) If z ∈ N+

λ,µ, then
∫

Ω
(λf |w1|q + µg|w2|q) dx > 0;

(ii) If z ∈ N−λ,µ, then
∫

Ω
h|w1|α|w2|βdx > 0.

Proof. (i) We consider the following two cases.
Case 1: If

∫
Ω
h|w1|α|w2|βdx ≤ 0, we have∫

Ω

(λf |w1|q + µg|w2|q) dx = ‖z‖2 − 2

∫
Ω

h|w1|α|w2|βdx > 0.

Case 2: If
∫

Ω
h|w1|α|w2|βdx > 0, since

‖z‖2 −
∫

Ω

(λf |w1|q + µg|w2|q) dx− 2

∫
Ω

h|w1|α|w2|βdx = 0

and

〈Φ′λ,µ(z), z〉 = 2‖z‖2 − q
∫

Ω

(λf |w1|q + µg|w2|q) dx− 2(α+ β)

∫
Ω

h|w1|α|w2|βdx > 0,

it follows that

(2− q)
∫

Ω

(λf |w1|q + µg|w2|q) dx− 2(α+ β − 2)

∫
Ω

h|w1|α|w2|βdx > 0,

which implies∫
Ω

(λf |w1|q + µg|w2|q) dx >
2(α+ β − 2)

2− q

∫
Ω

h|w1|α|w2|βdx > 0.

(ii) We consider the following two cases.
Case 1: If

∫
Ω

(λf |w1|q + µg|w2|q) dx = 0, we have

2

∫
Ω

h|w1|α|w2|βdx = ‖z‖2 > 0.
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Case 2: If
∫

Ω
(λf |w1|q + µg|w2|q) dx 6= 0, we have

(2− q)‖z‖2 − 2(α+ β − q)
∫

Ω

h|w1|α|w2|βdx = 〈Φ′λ,µ(z), z〉 < 0.

Thus
∫

Ω
h|w1|α|w2|βdx > 0. �

Lemma 3.4. The following facts hold
(i) If (λ, µ) ∈ Θ, then we have θλ,µ ≤ θ+

λ,µ < 0;

(ii If (λ, µ) ∈ Ψ, then we have θ−λ,µ > c0 for some positive constant c0 depending
on λ, µ, q, S, κs;

(iii) The energy functional Iλ,µ is bounded below and coercive on Nλ,µ.

Proof. (i) Let z ∈ N+
λ,µ, by (3.2), we have

2− q
2(α+ β − q)

‖z‖2 >
∫

Ω

h|w1|α|w2|βdx.

Hence

Iλ,µ(z) =

(
1

2
− 1

q

)
‖z‖2 + 2

(
1

q
− 1

α+ β

)∫
Ω

h|w1|α|w2|βdx

≤
[(

1

2
− 1

q

)
+

(
1

q
− 1

α+ β

)
2− q

α+ β − q

]
‖z‖2

≤ (q − 2)(α+ β − 2)

2q(α+ β)
‖z‖2 < 0.

Therefore, by the definition of θλ,µ, θ
+
λ,µ, we can deduce that θλ,µ ≤ θ+

λ,µ < 0.

(ii) Let z ∈ N−λ,µ, by (3.2), we have

2− q
2(α+ β − q)

‖z‖2 <
∫

Ω

h|w1|α|w2|βdx.

By the Hölder inequality and the Sobolev embedding theorem, we have∫
Ω

h|w1|α|w2|βdx ≤ (κsS)−
α+β

2 ‖z‖α+β .

Hence,

‖z‖ >
(

2− q
2(α+ β − q)

(κsS)
α+β

2

) 1
α+β−2

for all z ∈ N−λ,µ. (3.6)

By (3.6), we have

Iλ,µ(z) =
α+ β − 2

2(α+ β)
‖z‖2 − α+ β − q

q(α+ β)

∫
Ω

(λf |w1|q + µg|w2|q) dx

≥‖z‖q
[
α+β−2

2(α+ β)
‖z‖2−q− α+β−q

q(α+ β)

[
(|λ|‖f‖Lp? )

2
2−q + (|µ|‖g‖Lp? )

2
2−q

] 2−q
2

(
κsS

2

)− q2]

>

{
−α+ β − q
q(α+ β)

[
(|λ|‖f‖Lp? )

2
2−q + (|µ|‖g‖Lp? )

2
2−q

] 2−q
2

(
κsS

2

)− q2
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+
α+ β − 2

2(α+ β)

(
2− q

2(α+ β − q)
(κsS)

α+β
2

) 2−q
α+β−2

}
×
(

2− q
2(α+ β − q)

(κsS)
α+β

2

) q
α+β−2

.

Thus, if (λ, µ) ∈ Ψ, then

Iλ,µ > c0, for all z ∈ N−λ,µ,

for some positive constant c0 = c0(λ, µ, S, q, κs).
(iii) Let z ∈ Nλ,µ, by (3.1), Hölder inequality and Sobolev inequality, we have

Iλ,µ(z) =
α+ β − 2

2(α+ β)
‖z‖2 − α+ β − q

q(α+ β)

∫
Ω

(λf |w1|q + µg|w2|q) dx

≥ α+ β − 2

2(α+ β)
‖z‖2 − α+ β − q

q(α+ β)

[
(|λ|‖f‖Lp? )

2
2−q + (|µ|‖g‖Lp? )

2
2−q

] 2−q
2

(
κsS

2

)− q2
‖z‖q.

Since 1 < q < 2, then the energy functional Iλ,µ is bounded below and coercive on
Nλ,µ. �

For each z ∈ N−λ,µ, we write

tmax =

(
(2− q)‖z‖2

2(α+ β − q)
∫

Ω
h|w1|α|w2|βdx

) 1
α+β−2

> 0.

Then the following Lemma holds.

Lemma 3.5. For each (λ, µ) ∈ Θ and z ∈ N−λ,µ, we have

(i) If ∫
Ω

(λf |w1|q + µg|w2|q) dx ≤ 0,

then there exists a unique t− = t−(z) > 0 such that t−(z) ∈ N−λ,µ and

Iλ,µ(t−(z)) = max
t>0

Iλ,µ(tz);

(ii) If ∫
Ω

(λf |w1|q + µg|w2|q) dx > 0,

then there exist unique 0 < t+ < tmax < t−, such that t+(z) ∈ N+
λ,µ, t

−z ∈ N−λ,µ and

Iλ,µ(t+(z)) = min
0<t<tmax

Iλ,µ(tz), Iλ,µ(t−(z)) = max
t≥0

Iλ,µ(tz).

Proof. Fix z ∈ N−λ,µ, by Lemma 3.3, we have
∫

Ω
h|w1|α|w2|βdx > 0. Let

m(t) = t2−q‖z‖2 − 2tα+β−q
∫

Ω

h|w1|α|w2|βdx, for t ≥ 0.

Clearly, m(0) = 0, m(t)→ −∞ as t→∞. Since

m′(t) = (2− q)t1−q‖z‖2 − 2(α+ β − q)tα+β−q−1

∫
Ω

h|w1|α|w2|βdx,
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we have that m(t) is increasing for t ∈ [0, tmax), decreasing for t ∈ (tmax,+∞) and
achieves its maximum at tmax. Moreover,

m(tmax) =

(
(2− q)‖z‖2

2(α+ β − q)
∫

Ω
h|w1|α|w2|βdx

) 2−q
α+β−2

‖z‖2

− 2

(
(2− q)‖z‖2

2(α+ β − q)
∫

Ω
h|w1|α|w2|βdx

)α+β−q
α+β−2

∫
Ω

h|w1|α|w2|βdx

=‖z‖q
[(

2− q
2(α+ β − q)

) 2−q
α+β−2

−2

(
2− q

2(α+ β − q)

)α+β−q
α+β−2

](
‖z‖α+β∫

Ω
h|w1|α|w2|βdx

) 2−q
α+β−2

≥ ‖z‖q
(
α+ β − 2

α+ β − q

)(
(κsS)

α+β
2

2− q
2(α+ β − q)

) 2−q
α+β−2

.

That is

m(tmax) ≥ ‖z‖q
(
α+ β − 2

α+ β − q

)(
(κsS)

α+β
2

2− q
2(α+ β − q)

) 2−q
α+β−2

. (3.7)

(i) If ∫
Ω

(λf |w1|q + µg|w2|q) dx ≤ 0,

by the property of m(t), there is a unique t− > tmax such that

m(t−) =

∫
Ω

(λf |w1|q + µg|w2|q) dx and m′(t−) < 0.

Since

〈Φ′λ,µ(t−z), t−z〉 = (2− q)(t−)2‖z‖2 − 2(α+ β − q)(t−)α+β

∫
Ω

h|w1|α|w2|βdx (3.8)

= (t−)1+q

[
(2− q)(t−)1−q‖z‖2 − 2(α+ β − q)(t−)α+β−q−1

∫
Ω

h|w1|α|w2|βdx
]

= (t−)1+qm′(t−) < 0

and

〈I ′λ,µ(t−z), t−z〉

= (t−)2‖z‖2 − (t−)q
∫

Ω

(λf |w1|q + µg|w2|q) dx− 2(t−)α+β

∫
Ω

h|w1|α|w2|βdx

= (t−)q
[
(t−)2−q‖z‖2 −

∫
Ω

(λf |w1|q + µg|w2|q) dx− 2(t−)α+β−q
∫

Ω

h|w1|α|w2|βdx
]

= (t−)q
[
m(t−)−

∫
Ω

(λf |w1|q + µg|w2|q) dx
]

= 0.

Thus t−(z) ∈ N−λ,µ.

For t > tmax, by (3.8), we know

(2− q)t2‖z‖2 − 2(α+ β − q)tα+β

∫
Ω

h|w1|α|w2|βdx < 0.
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When tz ∈ Nλ,µ, we have

‖z‖2 − tq−2

∫
Ω

(λf |w1|q + µg|w2|q) dx− 2tα+β−2

∫
Ω

h|w1|α|w2|βdx = 0

and

d2

dt2
Iλ,µ(tz) = ‖z‖2 − (q − 1)tq−2

∫
Ω

(λf |w1|q + µg|w2|q) dx

− 2(α+ β − 1)tα+β−2

∫
Ω

h|w1|α|w2|βdx.

Consequently,

d2

dt2
Iλ,µ(tz) = tq−1m′(t) < 0.

Since

d

dt
Iλ,µ(tz) = t‖z‖2 − tq−1

∫
Ω

(λf |w1|q + µg|w2|q) dx− 2tα+β−1

∫
Ω

h|w1|α|w2|βdx,

we have d
dtIλ,µ(tz) = 0 for t = t−. Thus, Iλ,µ(t−(z)) = max

t>0
Iλ,µ(tz).

(ii) If ∫
Ω

(λf |w1|q + µg|w2|q) dx > 0.

Since

m(0) = 0 <

∫
Ω

(λf |w1|q + µg|w2|q) dx

≤
[
(|λ|‖f‖Lp? )

2
2−q + (|µ|‖g‖Lp? )

2
2−q

] 2−q
2

(
κsS

2

)− q2
‖z‖q

≤ ‖z‖q
(
α+ β − 2

α+ β − q

)(
(κsS)

α+β
2

2− q
2(α+ β − q)

) 2−q
α+β−2

≤ m(tmax) for (λ, µ) ∈ Θ,

therefore, there are unique t+ and t− such that 0 < t+ < tmax < t−,

m(t+) =

∫
Ω

(λf |w1|q + µg|w2|q) dx = m(t−)

and

m′(t+) > 0 > m′(t−).

By the same arguments as (i), we have

t+z ∈ N+
λ,µ, t

−z ∈ N−λ,µ, Iλ,µ(t−z) ≥ Iλ,µ(tz) ≥ Iλ,µ(t+z)

for each t ∈ [t+, t−] and Iλ,µ(t+z) ≤ Iλ,µ(tz) for each t ∈ [0, t+].
That is

Iλ,µ(t+(z)) = min
0<t<tmax

Iλ,µ(tz), Iλ,µ(t−(z)) = max
t≥0

Iλ,µ(tz). �
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4. Existence of Palais-Smale sequence

Definition 4.1. We say that zn ∈ E is a (PS)c sequence in E for Iλµ, if

Iλµ(zn) = c+ on(1)

and I ′λµ(zn) = on(1) strongly in E−1 as n→∞. If any (PS)c sequence in E for Iλµ
admits a convergent subsequence, we say that Iλµ satisfies the (PS)c condition.

First, we will use the idea of [27] to get the following results.

Lemma 4.2. Let (λ, µ) ∈ Θ, then for each z ∈ Nλ,µ, there exists r > 0 and a
differentiable function ξ : B(0, r) ⊂ E → R+ such that ξ(0) = 1 and ξ(v)(z−v) ∈ Nλ,µ
for every v ∈ B(0, r). Let

T1 := 2κs

∫
CΩ
y1−2s(∇w1∇v1 +∇w2∇v2)dxdy,

T2 := q

∫
Ω

(
λf |w1|q−2w1v1 + µg|w2|q−2w2v2

)
dx,

T3 := 2

∫
Ω

(
αh|w1|α−2w1v1|w2|β + βh|w1|α|w2|β−2w2v2

)
dx,

then,

〈ξ′(0), v〉 =
T2 + T3 − T1

(2− q)‖z‖2 − 2(α+ β − q)
∫

Ω
h|w1|α|w2|βdx

(4.1)

holds for all v ∈ E.

Proof. For z = (w1, w2) ∈ Nλ,µ, define a function F : R× E → R by

Fz(ξ, p) := 〈I ′λ,µ(ξ(z − p)), ξ(z − p)〉

= ξ2κs

∫
CΩ
y1−2s(|∇(w1 − p1)|2 + |∇(w2 − p2)|2)dxdy

− ξq
∫

Ω

(λf |w1 − p1|q + µg|w2 − p2|q) dx− 2ξα+β

∫
Ω

h|w1 − p1|α|w2 − p2|βdx.

Then, Fz(1, 0) = 〈I ′λ,µ(z), z〉 = 0 and by lemma 3.1, we have N0
λ,µ = ∅.

That is

dFz(1, 0)

dξ
= 2‖z‖2 − q

∫
Ω

(λf |w1|q + µg|w2|q) dx− 2(α+ β)

∫
Ω

h|w1|α|w2|βdx

= (2− q)‖z‖2 − 2(α+ β − q)
∫

Ω

h|w1|α|w2|βdx 6= 0.

According to the implicit function theorem, there exist r > 0 and a differentiable
function ξ : B(0, r) ⊂ E → R+ such that ξ(0) = 1 and (4.1) holds. Moreover,
Fz(ξ(v), v) = 0 holds for all v ∈ B(0, r) is equivalent to

〈I ′λ,µ(ξ(v)(z − v)), ξ(v)(z − v)〉 = 0

for all v ∈ B(0, r). That is ξ(v)(z − v) ∈ Nλ,µ. �
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Lemma 4.3. Let (λ, µ) ∈ Θ, then for each z ∈ N−λ,µ, there exists r > 0 and a

differentiable function ξ− : B(0, r) ⊂ E → R+ such that

ξ−(0) = 1 and ξ−(v)(z − v) ∈ Nλ,µ
for every v ∈ B(0, r) and formula (4.1) holds.

Proof. Similar to the argument in Lemma 4.2, there exists r > 0 and a differentiable
function ξ− : B(0, r) ⊂ E → R+ such that ξ−(0) = 1 and ξ−(v)(z − v) ∈ Nλ,µ for
every v ∈ B(0, r) and formula (4.1) holds. Since

〈Φ′λ,µ(z), z〉 = (2− q)‖z‖2 − 2(α+ β − q)
∫

Ω

h|w1|α|w2|βdx < 0,

by the continuity of function Φ′λ,µ and ξ−, we have

〈Φ′λ,µ(ξ−(v)(z − v)), ξ−(v)(z − v)〉 = (2− q)‖ξ−(v)(z − v)‖2

−2(α+ β − q)
∫

Ω

h|(ξ−(v)(z − v))1|α|(ξ−(v)(z − v))2|βdx < 0.

This implies that ξ−(v)(z − v) ∈ N−λ,µ. �

Lemma 4.4. The following facts hold:
(i) If (λ, µ) ∈ Θ, then there is a (PS)θλ,µ-sequence {zn} ⊂ Nλ,µ for Iλ,µ;

(ii) If (λ, µ) ∈ Ψ, then there is a (PS)θ−λ,µ
-sequence {zn} ⊂ N−λ,µ for Iλ,µ.

Proof. (i) By Lemma 3.4(iii) and Ekeland Variational Principle, there exists a mini-
mizing sequence {zn} ⊂ Nλ,µ such that

Iλ,µ(zn) < θλ,µ +
1

n
, (4.2)

Iλ,µ(zn) < Iλ,µ(w) +
1

n
‖w − zn‖, ∀ w ∈ Nλ,µ.

By taking n large, from Lemma 3.4(i), we have θλ,µ < 0, thus

Iλ,µ(zn) =

(
1

2
− 1

α+ β

)
‖zn‖2 −

(
1

q
− 1

α+ β

)∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx

< θλ,µ +
1

n
<
θλ,µ

2
. (4.3)

This implies

− q(α+ β)

2(α+ β − q)
θλ,µ <

∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx (4.4)

≤
[
(|λ|‖f‖Lp? )

2
2−q + (|µ|‖g‖Lp? )

2
2−q

] 2−q
2

(
κsS

2

)− q2
‖zn‖q.

Consequently, zn 6= 0 and putting together (4.3), (4.4) and the Hölder inequality, we
obtain

‖zn‖ >

[
− q(α+ β)

2(α+ β − q)
θλ,µ

[
(|λ|‖f‖Lp? )

2
2−q + (|µ|‖g‖Lp? )

2
2−q

] q−2
2

(
κsS

2

) q
2

] 1
q

.
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and

‖zn‖ <

[
2(α+ β − q)
q(α+ β − 2)

[
(|λ|‖f‖Lp? )

2
2−q + (|µ|‖g‖Lp? )

2
2−q

] 2−q
2

(
κsS

2

)− q2] 1
2−q

. (4.5)

Now, we will show that

‖I ′λ,µ(zn)‖E−1 → 0 as n→ +∞.

Applying Lemma 4.2 to zn, we can obtain the function ξn : B(0, rn) ⊂ E → R+ such
that ξn(0) = 1 and ξn(v)(zn − v) ∈ Nλ,µ for every v ∈ B(0, rn). Taking 0 < ρ < rn,
let w ∈ E with w 6= 0 and put v? = ρw

‖w‖ . We set vρ = ξn(v?)(zn−v?), then vρ ∈ Nλ,µ.

By (4.2), we have

Iλ,µ(vρ)− Iλ,µ(zn) ≥ − 1

n
‖vρ − zn‖.

By the Mean Value Theorem, we get

〈I ′λ,µ(zn), vρ − zn〉+ o(‖vρ − zn‖) ≥ −
1

n
‖vρ − zn‖.

Thus, we have

〈I ′λ,µ(zn),−v?〉+ (ξn(v?)− 1)〈I ′λ,µ(zn), zn − v?〉 ≥ −
1

n
‖vρ − zn‖+ o(‖vρ − zn‖).

(4.6)

From ξn(v?)(zn − v?) ∈ Nλ,µ and (4.6), we obtain

−ρ
〈
I ′λ,µ(zn),

w

‖w‖

〉
+ (ξn(v?)− 1)〈I ′λ,µ(zn)− I ′λ,µ(vρ), zn − v?〉

≥ − 1

n
‖vρ − zn‖+ o(‖vρ − zn‖).

So, we get 〈
I ′λ,µ(zn),

w

‖w‖

〉
≤ ‖vρ − zn‖

nρ
+
o(‖vρ − zn‖)

ρ
(4.7)

+
(ξn(v?)− 1)

ρ
〈I ′λ,µ(zn)− I ′λ,µ(vρ), zn − v?〉.

Since

‖vρ − zn‖ ≤ ρ|ξn(v?)|+ |ξn(v?)− 1|‖zn‖
and

lim
ρ→0

|ξn(v?)− 1|
ρ

≤ ‖ξ′n(0)‖.

If we let ρ → 0 in (4.7) for fixed n ∈ N, then by (4.5) we can find a constant C > 0,
independent of ρ such that

〈I ′λ,µ(zn),
w

‖w‖
〉 ≤ C

n
(1 + ‖ξ′n(0)‖) .
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Thus, we are done once we show that ‖ξ′n(0)‖ is uniformly bounded. By (4.1), (4.5)
and Hölder inequality, we have

|〈ξ′n(0), v〉| ≤ C1‖v‖∣∣(2− q)‖zn‖2 − 2(α+ β − q)
∫

Ω
h|w1,n|α|w2,n|βdx

∣∣ ,
for some C1 > 0. We only need to show that∣∣∣∣(2− q)‖zn‖2 − 2(α+ β − q)

∫
Ω

h|w1,n|α|w2,n|βdx
∣∣∣∣ ≥ C2,

for some C2 > 0 and n large enough. We argue by contradiction. Assume that there
exists a subsequence zn such that

(2− q)‖zn‖2 − 2(α+ β − q)
∫

Ω

h|w1,n|α|w2,n|βdx = on(1). (4.8)

By (4.8) and the fact that zn ∈ Nλ,µ, we have

‖zn‖2 =
2(α+ β − q)

2− q

∫
Ω

h|w1,n|α|w2,n|βdx+ on(1)

and

‖zn‖2 =
α+ β − q
α+ β − 2

∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx+ on(1).

By the Hölder and Sobolev inequalities, when n large enough, we have

‖zn‖ ≥ [
2− q

2(α+ β − q)
(κsS)

α+β
2 ]

1
α+β−2 (4.9)

and

α+ β − 2

α+ β − q
‖zn‖2 =

∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx

≤ |λ|‖f‖Lp? |‖w1,n‖qLα+β + |µ|‖g‖Lp? |‖w2,n‖qLα+β

≤ [(|λ|‖f‖Lp? )
2

2−q + (|µ|‖g‖Lp? )
2

2−q ]
2−q

2 (
κsS

2
)−

q
2 ‖zn‖q.

This implies

‖zn‖ ≤

((
κsS

2

)− q2 α+ β − q
α+ β − 2

) 1
2−q

[(|λ|‖f‖Lp? )
2

2−q + (|µ|‖g‖Lp? )
2

2−q ]
1
2 . (4.10)

By (4.9) and (4.10), we have

[(|λ|‖f‖Lp? )
2

2−q + (|µ|‖g‖Lp? )
2

2−q ]

≥
[

2− q
2(α+ β − q)

(κsS)
α+β

2

] 2
α+β−2

((
κsS

2

)− q2 α+ β − q
α+ β − 2

)− 2
2−q

,

contradicting the assumption, that is〈
I ′λ,µ(zn),

w

‖w‖

〉
≤ C

n
.



424 MAODING ZHEN

This completes the proof of (1).
Similarly, by Lemma 4.3, we can prove (ii), we omit the details here. �

Lemma 4.5. If {zn} ⊂ E is a (PS)c-sequence for Iλ,µ, then {zn} is bounded in E.

Proof. Let zn = (w1,n, w2,n) ⊂ E be a (PS)c-sequence for Iλ,µ, suppose by contra-
diction that ‖zn‖ → +∞ as n→ +∞. Let

z̃n = (w̃1,n, w̃2,n) :=
zn
‖zn‖

=

(
w1,n

‖zn‖
,
w2,n

‖zn‖

)
.

We may assume that z̃n ⇀ z̃ = (w̃1, w̃2) in E. By the compact embedding theorem,
we know w̃1,n(·, 0) → w̃1(·, 0) and w̃2,n(·, 0) → w̃2(·, 0) strongly in Lr(Ω) for all
1 ≤ r < 2?. Thus, by Hölder inequality and Dominated convergence theorem, we
have ∫

Ω

(λf |w̃1,n|q + µg|w̃2,n|q) dx =

∫
Ω

(λf |w̃1|q + µg|w̃2|q) dx+ on(1).

Since {zn} is a (PS)c-sequence for Iλ,µ and ‖zn‖ → +∞, we have

κs
2

∫
CΩ
y1−2s

(
|∇w̃1,n|2 + |∇w̃2,n|2

)
dxdy (4.11)

− ‖zn‖
q−2

q

∫
Ω

(λf(x)|w̃1,n|q + µg(x)|w̃2,n|q) dx

− 2‖zn‖α+β−2

α+ β

∫
Ω

h(x)|w̃1,n|α|w̃2,n|βdx = on(1)

and

κs

∫
CΩ
y1−2s

(
|∇w̃1,n|2 + |∇w̃2,n|2

)
dxdy (4.12)

− ‖zn‖q−2

∫
Ω

(λf(x)|w̃1,n|q + µg(x)|w̃2,n|q) dx

− 2‖zn‖α+β−2

∫
Ω

h(x)|w̃1,n|α|w̃2,n|βdx = on(1).

Combining (4.11) and (4.12), as n→∞, we obtain

κs

∫
CΩ
y1−2s

(
|∇w̃1,n|2 + |∇w̃2,n|2

)
dxdy (4.13)

=
2(α+ β − q)
q(α+ β − 2)

‖zn‖q−2

∫
Ω

(λf(x)|w̃1,n|q + µg(x)|w̃2,n|q) dx+ on(1).

Since 1 < q < 2 and ‖zn‖ → +∞ as n→ +∞, (4.13) implies

κs

∫
CΩ
y1−2s

(
|∇w̃1,n|2 + |∇w̃2,n|2

)
dxdy → 0.

Which contradicts the fact that ‖z̃n‖ = 1 for any n ≥ 1. �
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5. Local minimization problem

Now, we establish the existence of a local minimum for Iλ,µ on N+
λ,µ.

Theorem 5.1. Let (λ, µ) ∈ Θ, then Iλ,µ has a local minimizer z+ in N+
λ,µ satisfying

(i) Iλ,µ(z+) = θλ,µ = θ+
λ,µ;

(ii) z+ is a positive solution of (2.1).

Proof. By (i) of Lemma 4.4 there exists a minimizing sequence {zn} = {(w1,n, w2,n)}
for Iλ,µ in Nλ,µ such that

Iλ,µ(zn) = θλ,µ + on(1) and I ′λ,µ(zn) = on(1) in E−1. (5.1)

By Lemma 3.4, Lemma 4.5 and the compact imbedding theorem, we know there is a
subsequence, still denoted by {zn} and z+ = (w+

1 , w
+
2 ) ∈ E such that{

w1,n ⇀ w+
1 , w2,n ⇀ w+

2 , weakly in Xs
0(Ω),

w1,n → w+
1 , w2,n → w+

2 , srongly in Lr(Ω) for all 1 ≤ r < 2?.

As n→∞, by Hölder inequality and Dominated convergence theorem, we obtain∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx =

∫
Ω

(
λf |w+

1 |q + µg|w+
2 |q
)
dx+ on(1) (5.2)

and ∫
Ω

h|w1,n|α|w2,n|βdx =

∫
Ω

h|w+
1 |α|w

+
2 |βdx+ on(1). (5.3)

First, we claim that ∫
Ω

(
λf |w+

1 |q + µg|w+
2 |q
)
dx 6= 0,

we argue by contradiction, then we have
∫

Ω
(λf |w1,n|q + µg|w2,n|q) dx→ 0 as n→∞.

Thus

‖zn‖2 = 2

∫
Ω

h|w1,n|α|w2,n|βdx+ on(1)

and

Iλ,µ(zn) =
1

2
‖zn‖2 −

2

α+ β

∫
Ω

h(x)|w1,n|α|w2,n|βdx+ on(1)

=

(
1

2
− 1

α+ β

)
‖zn‖2 + on(1).

This contradicts Iλ,µ(zn)→ θλ,µ < 0 as n→∞.
Now, we claim z+ is a nontrivial solution of (2.1). From (5.1), (5.2) and (5.3), we
know z+ is a weak solution of (2.1). From zn ∈ Nλ,µ, we have

Iλ,µ(zn) =
α+ β − 2

2(α+ β)
‖zn‖2 −

α+ β − q
q(α+ β)

∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx. (5.4)

That is∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx =
q(α+ β − 2)

2(α+ β − q)
‖zn‖2 −

q(α+ β)

α+ β − q
Iλ,µ(zn). (5.5)
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Let n→∞ in (5.5), by (5.1), (5.2) and θλ,µ < 0, we have∫
Ω

(
λf |w+

1 |q + µg|w+
2 |q
)
dx ≥ − q(α+ β)

α+ β − q
θλ,µ > 0.

Therefore, z+ ∈ Nλ,µ is a nontrival solution of (2.1). Next, we show that zn → z+

strongly in E and Iλ,µ(z+) = θλ,µ. Since z+ ∈ Nλ,µ, then by (5.4), we obtain

θλ,µ ≤ Iλ,µ(z+) =
α+ β − 2

2(α+ β)
‖z+‖2 − α+ β − q

q(α+ β)

∫
Ω

(
λf |w+

1 |q + µg|w+
2 |q
)
dx (5.6)

≤ lim inf
n→∞

(
α+β−2

2(α+ β)
‖zn‖2 −

α+β−q
q(α+ β)

∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx
)

≤ lim
n→∞

(
α+ β − 2

2(α+ β)
‖zn‖2 −

α+ β − q
q(α+ β)

∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx
)

≤ lim
n→∞

Iλ,µ(zn) = θλ,µ.

This implies that Iλ,µ(z+) = θλ,µ and lim
n→∞

‖zn‖2 = ‖z+‖2. Hence zn → z+ srongly

in E.
Finally, we claim that z+ ∈ N+

λ,µ. Assume by contradiction that z+ ∈ N−λ,µ, then by

Lemma 3.5, there exist unique t+1 and t−1 , such that t+1 (z+) ∈ N+
λ,µ, t

−
1 (z+) ∈ N−λ,µ.

In particular, we have t+1 < t−1 = 1. Since

d

dt
Iλ,µ(t+1 z

+) = 0 and
d2

dt2
Iλ,µ(t+1 z

+) > 0,

there exists t+1 < t? < t−1 such that Iλ,µ(t+1 z
+) < Iλ,µ(t?z+). By Lemma 3.5, we have

Iλ,µ(t+1 z
+) < Iλ,µ(t?z+) ≤ Iλ,µ(t−1 z

+) = Iλ,µ(z+),

a contraction. Since Iλ,µ(z+) = Iλ,µ(|w+
1 |, |w

+
2 |) and (|w+

1 |, |w
+
2 |) ∈ Nλ,µ, by Lemma

3.2, we may assume that z+ is a nontrivial nonnegative solution of (2.1). Then by the
Strong Maximum Principle [11], we have w+

1 , w
+
2 > 0 in C(Ω), hence z+ is positive

solution for (2.1). �

Next, we establish the existence of a local minimum for Iλ,µ on N−λ,µ.

Theorem 5.2. Let (λ, µ) ∈ Ψ, then Iλ,µ has a local minimizer z− in N−λ,µ satisfying

(i) Iλ,µ(z−) = θ−λ,µ;

(ii) z− is a positive solution of (2.1).

Proof. By (ii) of Lemma 4.4 there exists a minimizing sequence {zn} = {(w1,n, w2,n)}
for Iλ,µ in N−λ,µ such that

Iλ,µ(zn) = θ−λ,µ + on(1) and I ′λ,µ(zn) = on(1) in E−1.

By Lemma 3.4 (iii), Lemma 4.5 and the compact imbedding theorem, we know there
is a subsequence, still denoted by {zn} and z− = (w−1 , w

−
2 ) ∈ N−λ,µ such that{

w1,n ⇀ w−1 , w2,n ⇀ w−2 , weakly inXs
0(Ω),

w1,n → w−1 , w2,n → w−2 , srongly inLr(Ω) for all 1 ≤ r < 2?.
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As n→∞, this implies that∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx =

∫
Ω

(
λf |w−1 |q + µg|w−2 |q

)
dx+ on(1)

and ∫
Ω

h|w1,n|α|w2,n|βdx =

∫
Ω

h|w−1 |α|w
−
2 |βdx+ on(1).

First, we claim that ∫
Ω

(
λf |w−1 |q + µg|w−2 |q

)
dx 6= 0,

suppose by contradiction, then we have∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx→ 0 as n→∞.

Thus

‖zn‖2 = 2

∫
Ω

h|w1,n|α|w2,n|βdx+ on(1)

and

Iλ,µ(zn) =
1

2
‖zn‖2 −

2

α+ β

∫
Ω

h(x)|w1,n|α|w2,n|βdx+ on(1)

=

(
1

2
− 1

α+ β

)
‖zn‖2 + on(1).

This contradicts Iλ,µ(zn)→ θλ,µ < 0 as n→∞.
Now, we prove that zn → z− strongly in E. Othercase, we have

‖z−‖2 −
∫

Ω

(
λf |w−1 |q + µg|w−2 |q

)
dx− 2

∫
Ω

h|w−1 |α|w
−
2 |βdx

≤ lim inf
n→∞

(
‖zn‖2 −

∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx− 2

∫
Ω

h|w1,n|α|w2,n|βdx
)

≤ lim
n→∞

(
‖zn‖2 −

∫
Ω

(λf |w1,n|q + µg|w2,n|q) dx− 2

∫
Ω

h|w1,n|α|w2,n|βdx
)

= 0.

Which contradicts z− ∈ N−λ,µ. Hence zn → z− strongly in E. This implies

Iλ,µ(zn)→ Iλ,µ(z−) = θ−λ,µ as n→ +∞.

Since Iλ,µ(zn = Iλ,µ(|z−|) and |z−| ∈ N−λ,µ, by Lemma 3.2, we have z− is a solution

of problem (2.1), such that z− ≥ 0 in C(Ω). Finally, by the same arguements as in
the proof of Theorem 5.1, we have that z− is a positive solotion of (2.1). �
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6. Proof of Theorem 1.1 and Theorem 1.2

Now, we complete the proof of Theorem 1.1 and Theorem 1.2.

Proof. For (λ, µ) ∈ Θ, by Theorem 5.1, system (2.1) admits at least one positive
solution z+ ∈ N+

λ,µ such that z+ > 0 in C(Ω). By Theorem 5.1 and Theorem 5.2,

we obtain that for (λ, µ) ∈ Ψ, system (2.1) admits at least two positive solution
z+ and z− such that z+ ∈ N+

λ,µ, z− ∈ N−λ,µ and z+ > 0, z− > 0 in C(Ω). Since

N+
λ,µ ∩ N

+
λ,µ = ∅, then z+ and z− are distinct solutions of syetem (2.1). In turn,

(u±(x), v±(x)) = (w±1 (x, 0), w±2 (x, 0)) are distinct solutions of (1.1). �
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[6] C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving
the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143(2013), no. 1, 39-71.

[7] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and functionals, Proc.

Amer. Math. Soc., 88(1983), no. 3, 486-490.
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