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1. Introduction

The concept of metric regularity (closely tied with the covering property, Aubin
property) traces back to the classical Banach open mapping principle for linear con-
tinuous operators. In the past few decades, metric regularity has been widely recog-
nized as a fundamental property in various aspects of optimization, and especially it’s
valuable in convergence analysis of algorithms for solving optimization problems and
beyond. For a comprehensive understanding of the developments, historical remarks
together with applications of mapping regularities, see [15, 23].

Let X and Y be normed vector spaces. We recall that a closed multifunction
F : X ⇒ Y is said to be metrically regular around

(x̄, ȳ) ∈ gph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)}

with constant κ > 0, if there are δ > 0 and some neighborhoods U ⊂ X and V ⊂ Y
of x̄ and ȳ such that

d(x, F−1(y)) ≤ κd(y, F (x)) ∀(x, y) ∈ U × V with d(y, F (x)) < δ, (1.1)
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where d(y, F (x)) denotes the distance of point y to the set F (x). It is well-known
that the metric regularity is equivalent to the property of local covering, for more
details, see [15, 23].

For a pair of set-valued mappings F,G : X ⇒ Y , x ∈ X is said to be the coincidence
point of (F,G), if F (x) ∩G(x) 6= ∅. In the papers [3, 4], A.V. Arutyunov established
the theory of coincidence point for covering mappings and Lipschitzian mappings.
Later these results were extended to local case in [10]. There exists a tight connection
between the property of covering/metric regularity and the theory of coincidence
points for set-valued mappings due to the fact that both theories share common
Lipschitz-type properties (see, [1, 3, 4, 12, 14, 20, 22]). Earliest discussions on the
relationship between the aforementioned theories can be traced back to the proof
of the Lyusternik-Graves theorem by virtue of the set-valued contraction mapping
principle (see [19, 24]). Based on the approach and theory proposed by A.V. Arutynov,
many scholars studied the theory of coincidence point and its related applications. For
instance, in [7, 8], the authors studied the theory of coincidence points in partially
ordered spaces. Under regularity assumptions, the author in [20, 22] considered a so
called “double fixed point” and the authors in [14] established both local and global
versions of fixed point theorems for F−1G. The aforementioned metric fixed point
theories can be viewed as modifications of the results from [3] on coincidence points of
a pair of mappings (F,G). The theory of coincidence point and its related metric fixed
point theory was applied to various problems, see [2, 9, 11, 13, 21] and the references
therein.

Recently, the classical notions of regularity which imply the action of mappings
around the reference points in all directions have been extended to the case where
the relations defining these properties hold only on some directions by many authors,
for more details (see [6, 5, 17, 18, 26], and the comments therein). Motivated by
the fact that the classical regularity properties do not distinguish between minima
and maxima, Durea, Pantiruc and Strugariu [17] introduced a new directional metric
regularity property for set-valued mappings acting between normed vector spaces
using directional minimal time function instead of the distance of point to set in
(1.1). It then naturally brings us the idea to propose a question that if we relax the
hypotheses in coincidence point theories to directional cases, would the corresponding
results still be true?

The main objective in this paper is to explore the connection between the afore-
mentioned directional metric regularity and coincidence point theories for set-valued
mappings. Under the assumptions of F : X ⇒ Y being directionally metrically
regular and G : X ⇒ Y being directional Aubin continuous, the existence of the co-
incidence points of set-valued mappings (F,G) and (F−1, G−1) were considered and
the “directional distance” with the corresponding directions from given sets to the
set of coincidence points of set-valued mappings (F,G) and (F−1, G−1), respectively,
were all estimated.

The rest of the paper is organized as follows. Section 2 contains definitions of
the basic properties under consideration and some preliminary results. In sections
3, we investigate in detail the interrelation between directional regularity properties
and coincidence point theories for both local and global cases. A sufficient condition
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for directional Aubin continuity of the solution mapping of partial-parameterized
variational system was also established.

2. Notations and preliminary results

This section presents basic definitions and preliminaries widely used in what fol-
lows. Let X be a normed vector space, the symbol SX stands for the unit sphere of
X while Bα(x) indicates the closed ball of radius α > 0 centered at x ∈ X in the
space X. For a set-valued mapping F : X ⇒ Y , its domain and graph are defined
as dom(F ) := {x ∈ X : F (x) 6= ∅} and gph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)},
respectively. The symbol F−1 : Y ⇒ X stands for the inverse mapping of F with
F−1(y) = {x ∈ X : y ∈ F (x)}.

Let A ⊂ X be a nonempty set. The cone generated by A is designated by coneA.
A is said to be locally closed (resp., complete) at x̄ ∈ A when there exists r ∈ (0,∞)
such that A ∩ Br(x̄) is closed (resp., complete). Recall that for a point u ∈ X\{0},
the minimal time function is defined as follows [16, 25]: for any x ∈ X,

Tu(x,A) := inf{t ≥ 0 : x+ tu ∈ A}.

It is easy to see that Tu(x,A) = λTλu(x,A), for any λ > 0, and hence one can consider
that u ∈ SX . To study the directional regularity for multifunctions, the authors in
[17] introduced the following definition of directional minimal time function:

Definition 2.1. Consider M ⊂ SX and nonempty sets A,B ⊂ X. Then the function

TM (x,A) : = inf{t ≥ 0 : ∃u ∈M s.t. x+ tu ∈ A}
= inf{t ≥ 0 : (x+ tM) ∩A 6= ∅} ∀x ∈ X

(2.2)

is called the directional minimal time function with respect to M .
We put TM (x,A) =∞ if (x+tM)∩A = ∅ for every t ≥ 0. We consider the directional
excess from A to B with respect to M as

eM (A,B) := sup
x∈A

TM (x,B).

For the purpose of covering all the situations, the following conventions are adopted:

TM (x, ∅) :=∞,∀x ∈ X, eM (∅, B) := 0,∀B ⊂ X.

Note that eM (A, ∅) = ∞ for every A ⊂ X\{∅}. For convenience, we denote in what
follows TM (x, {u}) by TM (x, u). It is easy to see that

TM (x, u) = T−M (u, x) = T−M (−x,−u) and TM (x, u) = ‖x− u‖

whenever u ∈ x+ coneM . It also has been established that if coneM is convex, then
TM has the properties of a generalized extended-valued quasi-metric:

(i) TM (x, u) = 0 if and only if x = u,
(ii) TM (x, u) ≤ TM (x, v) + TM (v, u) ∀x, u, v ∈ X.
Moreover, for any set A ⊂ X, one has TSX

(·, A) = d(·, A). In addition, for any
nonempty set M ⊂ SX and x ∈ X, TM (x,A) < ∞ implies that A 6= ∅ and x ∈
A − coneM , for more discussion on the directional minimal time function, see [17]
and the references therein.
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We denote the set of coincidence points of a pair of set-valued mappings F,G : X ⇒ Y
by

Coin(F,G) := {x ∈ X : F (x) ∩G(x) 6= ∅}.
Next we recall the major notions of directional metric regularity and Lipschitzian
properties of set-valued mappings in our study, which are introduced in [17].

Definition 2.2. Let F : X ⇒ Y be a multifunction, (x̄, ȳ) ∈ gph(F ), ∅ 6= M ⊂ SX
and ∅ 6= N ⊂ SY .

(i) F is said to be directionally metrically regular around (x̄, ȳ) with respect to M
and N with constant κ > 0, if there are δ > 0 and some neighborhoods U ⊂ X and
V ⊂ Y of x̄ and ȳ such that

TM (x, F−1(y)) ≤ κTN (y, F (x)) ∀(x, y) ∈ U × V with TN (y, F (x)) < δ. (2.3)

We say that F is globally directionally metrically regular with respect to M and N
with constant κ > 0, if

TM (x, F−1(y)) ≤ κTN (y, F (x)) ∀(x, y) ∈ X × Y. (2.4)

(ii) F is said to be directionally Aubin continuous around (x̄, ȳ) with respect to M
and N with constant µ > 0, if there are neighborhoods U ⊂ X and V ⊂ Y of x̄ and
ȳ such that

eN (F (x) ∩ V, F (x′)) ≤ µTM (x′, x) ∀x, x′ ∈ U. (2.5)

We say that F is globally directionally Aubin continuous with respect to M and N
with constant µ > 0, if (2.5) holds for U = X and V = Y .

Observe that if we take M = SX and N = SY , then the aforementioned concepts
reduce to the usual metric regularity and Aubin property around the reference points.
The relation between directional metric regularity and directional Aubin continuity is
similar to the equivalence between metric regularity of mappings and Aubin continuity
of their inverses (see [17, Proposition 2.4]). For global notions we also have the same
conclusion as follows and for completeness we provide the proof as well.

Proposition 2.3. Let F : X ⇒ Y be an arbitrary mapping, ∅ 6= M ⊂ SX , ∅ 6= N ⊂
SY and κ > 0. Then F is globally directionally metrically regular with respect to M
and N with constant κ if and only if the inverse mapping F−1 is globally directionally
Aubin continuous with respect to −N and M with constant κ.

Proof. Suppose that F is globally directionally metrically regular with respect to M
and N with constant κ, i.e. (2.4) holds and we are going to show that

eM (F−1(y), F−1(y′)) ≤ κT−N (y, y′) ∀y, y′ ∈ Y. (2.6)

Pick y, y′ ∈ Y and x ∈ F−1(y). If there is no such x or T−N (y, y′) = ∞, then (2.6)
holds automatically. Otherwise T−N (y, y′) <∞, which implies that y′ ∈ y − coneN .
According to inequality (2.4), one has that

TM (x, F−1(y′)) ≤ κTN (y′, F (x)) ≤ κTN (y′, y) = κT−N (y, y′),

which shows that inequality (2.6) also holds. Therefore, F−1 is directionally Aubin
continuous with respect to −N and M with constant κ.
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Conversely we assume that (2.6) holds and aim to show the validity of (2.4). To
this end, we pick any x ∈ X and y ∈ Y . If TN (y, F (x)) = ∞, then (2.4) holds
automatically. So we assume that TN (y, F (x)) <∞. Then, for any ε > 0, there exists
v ∈ F (x)∩ (y+ coneN) such that TN (y, v) < TN (y, F (x)) + ε. Thus, x ∈ F−1(v) and
from (2.6), we have

TM (x, F−1(y)) ≤ eM (F−1(v), F−1(y))

≤ κT−N (v, y) = κTN (y, v)

< κTN (y, F (x)) + κε.

As ε→ 0, the above inequality ensures that (2.4) is true. The proof is complete.

3. Main results

We first give a coincidence point theorem regarding two set-valued mappings under
the assumption of directional metric regularity and directional Aubin continuity, the
proof of which is based on the inverse mapping iteration.

Theorem 3.1. Let X,Y be normed vector spaces, M ⊂ SX , N ⊂ SY be nonempty
sets such that coneM and coneN be closed and convex and α, β, δ, κ, µ be positive
constants such that κµ < 1. Consider any two set-valued mappings F : X ⇒ Y and
G : X ⇒ Y and points (x̄, ȳ) ∈ gph(F ) and (x̃, ỹ) ∈ gph(G) with ‖x̄ − x̃‖ < α and
‖ȳ − ỹ‖ < β such that the following conditions hold:

(i) either one of the sets gph(F )∩ (Bα(x̄)×Bβ(ȳ)) and gph(G)∩ (Bα(x̃)×Bβ(ỹ))
is complete while the other is closed;

(ii) F is directionally metrically regular around (x̄, ȳ) with respect to M and −N
for constants κ, δ and neighborhoods Bα(x̄) and Bβ(ȳ), that is,

TM (x, F−1(y)) ≤ κT−N (y, F (x)) ∀(x, y) ∈ Bα(x̄)×Bβ(ȳ) with T−N (y, F (x)) < δ;
(3.7)

(iii) G is directionally Aubin continuous around (x̃, ỹ) with respect to M and N
for constant µ and neighborhoods Bα(x̃) and Bβ(ỹ), that is,

eN (G(x′) ∩Bβ(ỹ), G(x)) ≤ µTM (x′, x) ∀x, x′ ∈ BX(x̃, α). (3.8)

Let a, b and r be any positive reals satisfying

r < δ,
κr

1− κµ
+ a < α,

µκr

1− κµ
+ b < β. (3.9)

Then for any x ∈ Ba(x̄) ∩Ba(x̃),

TM (x,Coin(F,G)) ≤ κ

1− κµ
inf

y∈G(x)∩V (x)
T−N (y, F (x)), (3.10)

where V (x) := {y ∈ Bb(ȳ)∩Bb(ỹ) : T−N (y, F (x)) < r}, and for any y ∈ G(x)∩V (x),

TN (y,Coin(F−1, G−1)) ≤ κµ

1− κµ
T−N (y, F (x)) (3.11)
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Proof. According the assumptions on constants a, b, r in (3.9), we pick sufficiently
small ε ∈ (0, 1) such that

κ(µ+ ε) + ε < 1,

r < δ, (µ+ ε)(κr + ε) < δ,

κr + ε

1− (κ(µ+ ε) + ε)
+ a < α,

(µ+ ε)(κr + ε)

1− (κ(µ+ ε) + ε)
+ b < β,

(3.12)

and aim to show the validity of (3.10) and (3.11). Pick any x ∈ Ba(x̄) ∩ Ba(x̃) and
let it be fixed. If there is no such x or G(x) ∩ V (x) = ∅, then there is nothing more
to prove. Otherwise, for any y ∈ G(x) ∩ V (x), one has that ‖ȳ − y‖ ≤ b, ‖ỹ − y‖ ≤ b
and T−N (y, F (x)) < r. Note that r < δ, it follows from assumption (3.7) that, there
exists x1 ∈ F−1(y) with x1 ∈ x+ coneM such that

TM (x, x1) < TM (x, F−1(y)) + ε ≤ κT−N (y, F (x)) + ε ≤ κr + ε. (3.13)

Furthermore,

max{‖x̄− x1‖, ‖x̃− x1‖} ≤ max{‖x̄− x‖, ‖x̃− x‖}+ ‖x− x1‖ (3.14)

≤ TM (x, x1) + a ≤ κr + ε+ a < α.

If x1 = x, then x ∈ Coin(F,G) and y ∈ Coin(F−1, G−1), and hence (3.10) and (3.11)
hold automatically. Next we assume that x1 6= x. Then 0 < TX(x, x1) < ∞ and
according to (3.8) and the definition of V (x), there exists y1 ∈ G(x1) ∩ (y + coneN)
such that

TN (y, y1) < TN (y,G(x1)) + εTM (x, x1)

≤ eN (G(x) ∩Bβ(ỹ), G(x1)) + εTM (x, x1)

≤ (µ+ ε)TM (x, x1).

(3.15)

It then follows that

max{‖ȳ−y1‖, ‖ỹ−y1‖} ≤ b+‖y−y1‖ = b+TN (y, y1) < (µ+ε)(κr+ε)+b < β. (3.16)

We proceed our proof with the approach of induction. To this end, we construct
sequences of points xk ∈ Bα(x̄) ∩ Bα(x̃) and yk ∈ Bβ(ȳ) ∩ Bβ(ỹ), with x0 = x and
y0 = y such that, for k = 0, 1, 2, . . .,

xk+1 ∈ F−1(yk) ∩ (xk + coneM) and yk+1 ∈ G(xk+1) ∩ (yk + coneN) (3.17)

with

TM (xk, xk+1) ≤ (κ(µ+ ε) + ε)kTM (x0, x1) and TN (yk, yk+1) ≤ (µ+ ε)TM (xk, xk+1).
(3.18)

By (3.15), we see that x1 and y1 satisfy (3.17) and (3.18) for k = 0. Suppose that
for some n ≥ 1 we have generated x1, x2, . . . , xn and y1, y2, . . . , yn satisfying (3.17)
and (3.18) and we are going to show that there exist xn+1 ∈ Bα(x̄) ∩ Bα(x̃) and
yn+1 ∈ Bβ(x̄)∩Bβ(x̃) such that the induction formulation can proceed. If xn = xn−1,
we set xn+1 = xn and yn+1 = yn. Then xn−1 ∈ Coin(F,G) and yn ∈ Coin(F−1, G−1).
Note that xk+1 ∈ xk + coneM and yk+1 ∈ yk + coneN for all k = 0, 1, . . . , n− 1 and
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coneM, coneN are convex sets, one has xn ∈ x0+coneM and yn ∈ y0+coneN . Hence,
it follows from (3.13) and (3.18) that

TM (x0,Coin(F,G)) ≤ TM (x0, xn−1) ≤
n−1∑
i=1

TM (xi−1, xi)

≤ TM (x0, x1)

1− (κ(µ+ ε) + ε)
≤ κT−N (y, F (x)) + ε

1− (κ(µ+ ε) + ε)

(3.19)

and

TM (y0,Coin(F−1, G−1)) ≤ TN (y0, yn) ≤ (µ+ ε)

n∑
i=1

TM (xi−1, xi)

≤ (µ+ ε)(κT−N (y, F (x)) + ε)

1− (κ(µ+ ε) + ε)
.

Letting ε→ 0, we conclude that (3.10) and (3.11) holds.
Next we assume that xn 6= xn−1. Since xn ∈ F−1(yn−1) ∩ Bα(x̄) ∩ Bα(x̃) and
yn ∈ yn−1 + coneN , it follows from (3.12), (3.13) and (3.18) that

T−N (yn, F (xn)) ≤ TN (yn−1, yn) ≤ (µ+ ε)TM (xn−1, xn)

≤ (µ+ ε)TM (x0, x1) < (µ+ ε)(κr + ε) < δ.

Hence, according to (3.7) there exists xn+1 ∈ F−1(yn) ∩ (xn + coneM) such that

TM (xn, xn+1) ≤ TM (xn, F
−1(yn)) + εTM (xn−1, xn)

≤ κT−N (yn, F (xn)) + εTM (xn−1, xn)

≤ κTN (yn−1, yn) + εTM (xn−1, xn).

Then, by invoking the induction hypothesis (3.18), we have

TN (yn−1, yn) ≤ (µ+ ε)TM (xn−1, xn).

And therefore,

TM (xn, xn+1) ≤ (κ(µ+ ε) + ε)TM (xn−1, xn) ≤ (κ(µ+ ε) + ε)nTM (x0, x1).

By repeating the arguments above, if xn+1 = xn, we obtain the validity of (3.10) and
(3.11) and then set yn+1 = yn. If xn+1 6= xn, note that yn ∈ G(xn) ∩Bβ(ỹ), then by
(3.8) there exists yn+1 ∈ G(xn+1) ∩ (yn + coneN) such that

TN (yn, yn+1) ≤ eN (G(xn)∩Bβ(ỹ), G(xn+1))+εTM (xn, xn+1) ≤ (µ+ε)TM (xn, xn+1).

Note that x0 ∈ Ba(x̄) ∩ Ba(x̃) and y0 ∈ Bb(ȳ) ∩ Bb(ỹ), next we are going to show
that xn+1 ∈ Bα(x̄) ∩ Bα(x̃) and yn+1 ∈ Bβ(ȳ) ∩ Bβ(ỹ). Since xn ∈ x0 + coneM and
yn ∈ y0 + coneN , one has that xn+1 ∈ x0 + coneM and yn+1 ∈ y0 + coneM . Utilizing
(3.17) and (3.18), we have

TM (x0, xn+1) ≤
n∑
j=0

TM (xj , xj+1) ≤
n∑
j=0

(κ(µx + ε) + ε)jTM (x0, x1)

≤ TM (x0, x1)

1− (κ(µ+ ε) + ε)
,
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and therefore, through (3.12) and (3.13),

max{‖x̄− xn+1‖, ‖x̃− xn+1‖} ≤ max{‖x̄− x0‖, ‖x̃− x0‖}+ ‖x0 − xn+1‖

≤ a+ TM (x0, xn+1) <
κr + ε

1− (κ(µ+ ε) + ε)
+ a < α.

Furthermore, by (3.18),

TN (y0, yn+1) ≤
n∑
j=0

TN (yj , yj+1) ≤
n∑
j=0

(µ+ ε)TM (xj , xj+1) ≤ (µ+ ε)TM (x0, x1)

1− (κ(µ+ ε) + ε)
.

Hence, by (3.12) and (3.13),

max{‖ȳ − yn+1‖, ‖ỹ − yn+1‖} ≤ max{‖ȳ − y0‖, ‖ỹ − y0‖}+ ‖y0 − yn+1‖

≤ b+ TM (y0, yn+1) <
(µ+ ε)(κr + ε)

1− (κ(µ+ ε) + ε)
+ b < β.

This completes the induction step, which guarantees that (3.17) and (3.18) hold for
all k.
We have already shown that if xk+1 = xk for some k, then (3.10) and (3.11) hold
true. Suppose now that xk+1 6= xk for all k. Note that xk+1 ∈ xk + coneM and
yk+1 ∈ yk+coneN , one has TM (xk, xk+1) = ‖xk−xk+1‖, TN (yk, yk+1) = ‖yk−yk+1‖,
where xk ∈ x0 + coneM and yk ∈ y0 + coneN for all k (thanks to assumption of
coneM, coneN being convex). By virtue of the inequalities for xk and yk in (3.18),
we see that for any natural m and n,

‖xn − xn+m‖ ≤
n+m−1∑
k=n

‖xk − xk+1‖ =

n+m−1∑
k=n

TM (xk, xk+1)

≤
n+m−1∑
k=n

(κ(µ+ ε) + ε)kTM (x0, x1) ≤ (κ(µ+ ε) + ε)n

1− (κ(µ+ ε) + ε)
TM (x0, x1)

and

‖yn − yn+m‖ ≤
n+m−1∑
k=n

‖yk − yk+1‖ =

n+m−1∑
k=n

TN (yk, yk+1)

≤
n+m−1∑
k=n

(µ+ ε)TM (xk, xk+1) ≤ (µ+ ε)(κ(µ+ ε) + ε)n

1− (κ(µ+ ε) + ε)
TM (x0, x1).

The above inequalities ensure that both {xk} and {yk} are Cauchy sequences. Note
that

(xk, yk) ∈ ((Bα(x̄) ∩Bα(x̃))× (Bβ(ȳ) ∩Bβ(ỹ)) ∩ ((x0 + coneM)× (y0 + coneN)),

(xk, yk−1) ∈ gph(F ), (xk, yk) ∈ gph(G) and coneM, coneN are closed, then according
to assumption (i), we may conclude that for the case of

gph(F ) ∩ ((Bα(x̄) ∩Bα(x̃))× (Bβ(ȳ) ∩Bβ(ỹ))
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being complete and gph(G)((Bα(x̄) ∩ Bα(x̃)) × (Bβ(ȳ) ∩ Bβ(ỹ)) being closed, there
exists (x̂, ŷ) ∈ gph(F ) such that (xk, yk−1)→ (x̂, ŷ), and then

(x̂, ŷ) ∈ gph(G) ∩ ((x0 + coneM)× (y0 + coneN));

while for the other case we could obtain similar results. This shows that

x̂ ∈ Coin(F,G) ∩ (x0 + coneM) and ŷ ∈ Coin(F−1, G−1) ∩ (y0 + coneN).

Utilizing (3.13) and (3.18), we finally obtain that

TM (x0,Coin(F,G)) ≤ TM (x0, x̂) = ‖x0 − x̂‖ = lim
k→∞

‖x0 − xk‖

≤
∞∑
k=0

‖xk − xk+1‖ =

∞∑
k=0

TM (xk, xk+1)

≤ TM (x0, x1)

1− (κ(µ+ ε) + ε)
≤ κTN (y, F (x)) + ε

1− (κ(µ+ ε) + ε)

and

TN (y0,Coin(F−1, G−1)) ≤ TN (y0, ŷ) ≤
∞∑
k=0

TN (yk, yk+1)

≤ (µ+ ε)(κTN (y, F (x)) + ε)

1− (κ(µ+ ε) + ε)
.

Taking the limit of ε → 0, we obtain the validity of inequalities (3.10) and (3.11).
The proof is complete.

It is worth to note that if there exists x such that the right side of (3.10) does
not equal infinity, then Coin(F,G) 6= ∅. In [10, Theorem 3.1], the authors derive a
uniform estimate for the distance to the set of coincidence points of two set-valued
mappings F andG under the assumptions that F is local covering andG is local Aubin
continuous in metric spaces. In Theorem 3.1, our assumption is placed on directional
metric regularity and directional Aubin continuity in normed vector spaces, which
leads to the estimate of “directional distance” to the set of coincidence points, see
(3.10) and (3.11). Therefore, our results is the development of the results from [10].

Example 3.2. Consider X = Y = R, M = {1}, N = {1}, and let

F (x) :=

{
{x}, if x ≥ 0,
∅, if x < 0

and G(x) :=

{
{x2}, if x ≥ 0,
∅, if x < 0.

First, we claim that F is directionally metrically regular around (0, 0) with respect
to M and −N for constant 1. Indeed, it suffices to show that

TM (x, F−1(y)) ≤ T−N (y, F (x)) ∀(x, y) ∈ R2. (3.20)

Since F (x) = ∅ for x < 0, we have T−N (y, F (x)) = ∞ for any y ∈ R, which implies
that (3.20) holds; When x ≥ 0 and y < 0, it is clear that y 6∈ F (x) − cone(−N)
which indicates that T−N (y, F (x)) =∞ and hence (3.20) holds; In the case of x ≥ 0
and y ≥ 0, we have TM (x, F−1(y)) = TM (x, y) = T−N (y, x) = T−N (y, F (x)) which
also guaranties the validity of (3.20). It’s then easy to observe that G is directionally
Aubin continuous around (0, 0) with respect to M and N for constant 1

2 . Also it is
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clear that F and G satisfy all other conditions in Theorem 3.1 and we can check that
Coin(F,G) = {0}. However, F is not metrically regular around (0, 0) and G is not
Aubin continuous around (0, 0).

When the assumption of directional metric regularity and directional Aubin con-
tinuity in Theorem 3.1 is generalized to the global case, we obtain the following
coincidence point theorem of two set-valued mappings, the proof of which follows
from the lines in Theorem 3.1 but needs a modification.

Theorem 3.3. Let X,Y be normed vector spaces, M ⊂ SX , N ⊂ SY be nonempty
sets such that coneM and coneN be closed and convex and κ, µ be positive constants
such that κµ < 1. Consider any two set-valued mappings F : X ⇒ Y and G : X ⇒ Y
such that the following conditions hold:

(i) either one of the sets gph(F ) and gph(G) is complete while the other is closed;
(ii) F is globally directionally metrically regular with respect to M and −N with

constant κ;
(iii) G is globally directionally Aubin continuous with respect to M and N with

constant µ.
Then for any x ∈ X,

TM (x,Coin(F,G)) ≤ κ

1− κµ
inf

y∈G(x)
T−N (y, F (x)), (3.21)

and for any y ∈ G(x),

TN (y,Coin(F−1, G−1)) ≤ κµ

1− κµ
T−N (y, F (x)). (3.22)

Proof. By the assumptions on F and G, we have (2.4) holds and

eN (G(x′), G(x)) ≤ µTM (x′, x) ∀x, x′ ∈ X. (3.23)

Pick any ε > 0 such that κ(µ + ε) + ε < 1. Fix any x ∈ X and pick some y ∈ G(x)
with T−N (y, F (x)) < ∞. If there is not such y, then the right side of (3.21) and
(3.22) is ∞ and the proof is trivial. Otherwise, it follows from (2.4) that there exists
x1 ∈ F−1(y) with x1 ∈ x+ coneM such that

TM (x, x1) < TM (x, F−1(y)) + ε ≤ κT−N (y, F (x)) + ε.

If x1 = x, then x ∈ Coin(F,G) and y ∈ Coin(F−1, G−1). Hence (3.21) and (3.22)
hold automatically. Let x1 6= x0, then 0 < TX(x, x1) <∞. It follows from (3.23) that
there exists y1 ∈ G(x1) ∩ (y + coneN) such that

TN (y, y1) < TN (y,G(x1)) + εTM (x, x1) ≤ eN (G(x), G(x1)) + εTM (x, x1)

≤ (µ+ ε)TM (x, x1). (3.24)

Note that y ∈ F (x1) ∩ (y1 − coneN), then inequalities (2.4) and (3.24) imply that,
there exists x2 ∈ F−1(y1) with x2 ∈ x1 + coneM such that

TM (x1, x2) < TM (x1, F
−1(y1)) + εTM (x, x1) ≤ κT−N (y1, F (x1)) + εTM (x, x1)

≤ κT−N (y1, y) + εTM (x, x1) = κTN (y, y1) + εTM (x, x1)

≤ (κ(µ+ ε) + ε)TM (x, x1).
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Employing the approach of induction similar to that in Theorem 3.1, we can construct
Cauchy sequences (xk, yk) ∈ X × Y with x0 = x and y0 = y, which converge to some

(x̂, ŷ) ∈ gph(F ) ∩ gph(G) ∩ ((x0 + coneM)× (y0 + coneN)).

The rest of the proof follows similarly and we omit it. The proof is completed.

Remark 3.4. It is worth to mention that Theorem 3.3 is the development of [3,
Theorem 2] which focuses on the covering property in metric space. When M = SX ,
N = SY Theorem 3.3 is a supplement of [3, Theorem 2] in normed vector space.
From the the proof of the above theorem, we have Coin(F,G) 6= ∅, provided that
there exists x ∈ X and y ∈ G(x) such that (y − coneN) ∩ F (x) 6= ∅. When M = SX
and N = SY , our result in Theorem 3.3 covers [1, Theorem 6].

The following result extended the global Lyusternik-Graves Theorem to the case
with directions.

Corollary 3.5. Let X,Y be normed vector spaces, M ⊂ SX , N ⊂ SY be nonempty
sets such that coneM and coneN be closed and convex and κ, µ be positive constants
such that κµ < 1. Consider any two set-valued mappings F : X ⇒ Y and G : X ⇒ Y
such that condition (i) and (iii) in Theorem 3.3 hold and F is globally directionally
metrically regular with respect to M and N with constant κ. Then F +G is globally
directionally metrically regular with respect to M and N with constant κ

1−κµ .

Proof. We only have to show that

TM (x, (F +G)−1(z)) ≤ κ

1− κµ
TN (z, (F +G)(x)) ∀(x, z) ∈ X × Y. (3.25)

Fix any (x, z) ∈ X × Y . If TN (z, (F +G)(x)) =∞, then (3.25) holds automatically.
We assume next that TN (z, (F +G)(x)) <∞ which implies that

(F +G)(x) ∩ (z + coneN) 6= ∅.
Then, for any ε > 0, there exist u1 ∈ F (x) and u2 ∈ G(x) with u1 + u2 ∈ z + coneN ,
such that

TN (z, (F +G)(x)) + ε > TN (z, u1 + u2) = TN (z − u2, u1)

≥ TN (z − u2, F (x)) ≥ inf
w∈z−G(x)

TN (w,F (x)).

By the assumption, it is easy to see that z − G(·) is globally directionally Aubin
continuous with respect to M and −N with constant µ. Note that

(F +G)−1(z) = Coin(F, z −G(·))
(in fact x ∈ (F +G)−1(z)⇔ z ∈ (F +G)(x)⇔ F (x)∩ (z−G(x)) 6= ∅), now applying
Theorem 3.3 to F and z −G(·) (by −N instead of N), we get

TM (x, (F +G)−1(z)) ≤ κ

1− κµ
inf

w∈z−G(x)
TN (w,F (x)) < TN (z, (F +G)(x)) + ε.

Letting ε→ 0, we obtain that (3.25) holds. The proof is complete.
As an application, we consider the following partial-parametrized version of the

variational system:
0 ∈ f(p, x) + F (x) (3.26)
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where f : P × X → Y is a single-valued mapping while F : X ⇒ Y is a set-
valued mapping between arbitrary Banach spaces. The solution mapping S : P ⇒ X
associated to (3.26) is given by

S(p) := {x ∈ X : 0 ∈ f(p, x) + F (x)}.

The following result provides a sufficient condition for directional Aubin continuity
of the solution mapping S.

Theorem 3.6. Let P,X and Y be Banach spaces, L ⊂ SP ,M ⊂ SX and N ⊂ SY be
nonempty sets such that coneL, coneM and coneN be closed and convex and κ, µ, λ
be positive constants such that κµ < 1. Consider the parametric generalized equation
(3.26) and a pair (p̄, x̄) ∈ P ×X and ȳ := −f(p̄, x̄) with x̄ ∈ S(p̄). Suppose that the
following conditions are satisfied:

(i) f is continuous around (p̄, x̄) and is directionally Lipschitz continuous around
(x̄, ȳ) with respect to L,M and N with constants λ and µ, i.e., there exists a > 0,
such that

TN (f(p, x), f(p′, x′)) ≤ λTL(p, p′) + µTM (x, x′) ∀(p, x), (p′, x′) ∈ Ba(p̄)×Ba(x̄),
(3.27)

(ii) gph(F ) is locally closed around (x̄, ȳ) and F is directionally metrically regular
around (x̄, ȳ) with respect to M and −N with constants κ,

Then S is directionally Aubin continuous around (p̄, x̄) with respect to L and M
with constant κλ

1−κµ .

Proof. According to assumption (ii), there exist positive constants α, β and δ such
that gph(F ) ∩ (Bα(x̄)×Bβ(ȳ)) is closed and (3.7) holds. Let a, b and r be such that
2λa < r and satisfies (3.9) and (3.27) simultaneously. By condition (i), making a
smaller if necessary, we may assume that gph(f(p, ·)) is closed for all p ∈ Ba(p̄) and

‖f(p, x)− f(p, x̄)‖ < b and ‖f(p̄, x̄)− f(p, x)‖ ≤ b ∀(p, x) ∈ Ba(p̄)×Ba(x̄). (3.28)

Then it suffices to show that

eM (S(p) ∩Ba(x̄), S(p′)) ≤ κλ

1− κµ
TL(p, p′) ∀p, p′ ∈ Ba(p̄). (3.29)

Pick any p, p′ ∈ Ba(p̄) and x ∈ S(p) ∩ Ba(x̄). If there is no such x or TL(p′, p) =∞,
then (3.29) holds automatically.
Otherwise, we have TL(p, p′) <∞ and −f(p, x) ∈ F (x). Then p′ ∈ p+ coneL.
It follows from (3.27) that

T−N (−f(p′, x),−f(p, x)) = TN (f(p, x), f(p′, x)) ≤ λTL(p, p′),

which implies that−f(p, x) ∈ −f(p′, x)− coneN . Note that −f(p, x) ∈ F (x), then

T−N (−f(p′, x), F (x)) ≤ T−N (−f(p′, x),−f(p, x)) ≤ λTL(p, p′) ≤ 2λa < r.

The above inequality together with (3.28) show that

−f(p′, x) ∈ Bb(ȳ) ∩Bb(−f(p′, x̄)) ∩ V (x),
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where V (x) is defined as in Theorem 3.1. Now we can apply Theorem 3.1 for F
and G = −f(p′, ·) with (x̄, ȳ) and (x̃, ỹ) = (x̄,−f(p′, x̄)). It is easy to see that
Coin(F,G) = S(p′). Thus, it follows from (3.10) that

TM (x, S(p′)) ≤ κ

1− κµ
T−N ((−f(p′, x)) ∩ V (x), F (x))

=
κ

1− κµ
T−N (−f(p′, x), F (x))

≤ κ

1− κµ
T−N (−f(p′, x),−f(p, x)) ≤ κλ

1− κµ
TL(p, p′).

Since x is arbitrarily chosen, we conclude that (3.29) is true. The proof is complete.
When L = SP ,M = SX and N = SY , the above Theorem goes back to [2,

Theorem 5.1 (ii)]. The next example illustrates that, different from the usual Lipschitz
continuity, directionally Lipschitz continuous does not imply the continuity of f , even
at (p̄, x̄).

Example 3.7. Let L = {−1, 1},M = {(1, 0)}, N = {1} and f : R × R2 → R be
defined as

f(p, (x, y)) :=

{
x, if y = 0,
1, if y 6= 0.

Then, f is not continuous at (0, (0, 0)). In fact, for any p ∈ R,

f

(
p,

(
1

k
,

1

k

))
= 1 9 0 = f(p, (0, 0)),

when k →∞. Next we show that

TN (f(p, (x, y)), f(q, (u, v))) ≤ TM ((x, y), (u, v)) ∀p, q ∈ R and (x, y), (u, v) ∈ R2.
(3.30)

Pick any p, q ∈ R and (x, y), (u, v) ∈ R2. If (u, v) 6∈ (x, y)+coneM = (x, y)+R+×{0},
one has TM ((x, y), (u, v)) =∞ and then (3.30) holds automatically. Next we assume
that (u, v) ∈ (x, y)+R+×{0}, i.e. x ≤ u and v = y. If v = y = 0, then f(p, (x, y)) = x,
f(q, (u, v)) = u and

TN (f(p, (x, y)), f(q, (u, v))) = u− x = TM ((x, y), (u, v)).

If v = y 6= 0, we have f(p, (x, y)) = f(q, (u, v)) = 1, and then

TN (f(p, (x, y)), f(q, (u, v))) = 0 ≤ u− x = TM ((x, y), (u, v)).

Therefore, we conclude that (3.30) holds, i.e. f is globally Lipschitz continuous with
respect to {−1, 1}, {(1, 0)} and {1}.

As an application of Theorem 3.3, next we provide a sufficient condition for global
directional Aubin continuity of the solution mapping S.

Theorem 3.8. Let P,X and Y be Banach spaces, L ⊂ SP ,M ⊂ SX and N ⊂ SY be
nonempty sets such that coneL, coneM and coneN be closed and convex and κ, µ, λ
be positive constants such that κµ < 1. Consider the parametric generalized equation
(3.26). Suppose that the following conditions are satisfied:
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(i) for any p ∈ P , gph(f(p, ·)) is closed and f is globally directionally Lipschitz
continuous with respect to L,M and N with constants λ and µ, i.e.,

TN (f(p, x), f(p′, x′)) ≤ λTL(p, p′) + µTM (x, x′) ∀(p, x), (p′, x′) ∈ P ×X,

(ii) gph(F ) is closed and F is globally directionally metrically regular with respect
to M and −N with constants κ,

Then S is globally directionally Aubin continuous with respect to L and M with
constant κλ

1−κµ .

Proof. It suffices to show that

eM (S(p), S(p′)) ≤ κλ

1− κµ
TL(p, p′) ∀p, p′ ∈ dom(S). (3.31)

Pick any p, p′ ∈ P . If S(p) = ∅ or TL(p′, p) = ∞, then (3.31) holds automatically.
Otherwise, we assume that TL(p, p′) < ∞ and pick any x ∈ S(p), then we have
−f(p, x) ∈ F (x). It follows from assumption (i) that

T−N (−f(p′, x),−f(p, x)) = TN (f(p, x), f(p′, x)) ≤ λTL(p, p′) <∞,

which implies that−f(p, x) ∈ −f(p′, x)− coneN . Then

T−N ((−f(p′, x)), F (x)) ≤ T−N (−f(p′, x),−f(p, x)) ≤ TL(p, p′). (3.32)

According to the assumptions, we can apply Theorem 3.3 for F and G = −f(p′, ·). It
is easy to see that Coin(F,G) = S(p′). Thus, from (3.21) and (3.32), one has

TM (x, S(p′)) ≤ κ

1− κµ
T−N ((−f(p′, x)), F (x)) ≤ κλ

1− κµ
TL(p, p′).

Since x is arbitrarily chosen, we conclude that (3.31) holds. The proof is complete.
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