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1. Introduction

One of the main problems in Fixed Point Theory is the relation between the Fixed
Point Property (FPP) and reflexivity, the question if FPP implies reflexivity was open
until 2008, when P. K. Lin [14] proved that there exists a non reflexive Banach space
with the FPP. For this, Lin used a renorming ‖·‖L of the space `1 such that (`1, ‖·‖L)
has the FPP.

After that, many works have appeared on the relation between renormings and the
Fixed Point Property. T. Domı́nguez-Benavides [4] in 2009 proved that every reflexive
Banach space can be renormed to enjoy the FPP, and there is a great diversity of
papers that provide examples of non reflexive Banach spaces through the renorming
technique as [3], [9], [10], [11] and [15]. Nevertheless, the structure of the set of
nonexpansive mappings and norms with or without the FPP has not been widely
studied, and there are only a few contributions in that direction, such as [5], [6], [7],
and [8] in which a generic approach was used to study the family of norms, [12] and
[13] in which rays of norms without the FPP was studied, and [1] and [2] in which
invariant families of nonexpansive mappings was studied.

What really happens is that under renorming, the collection of nonexpansive map-
pings changes. For example, the right shift operator R defined over the positive face
F of the unit ball of (`1, ‖ · ‖1) to itself, does not have any fixed point. This implies
that under the norm ‖ · ‖L the operator R is not nonexpansive, because with respect
to ‖ · ‖L its domain is still convex closed and bounded, and it is fixed point free.
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The structure of nonexpansive mappings that are invariant under renormings was
studied in [2] from the geometric point of view. It was proved that for two equivalent
norms ‖ · ‖1 and ‖ · ‖2, and a convex set C with at least two points, there is a
nonexpansive mapping T : C → C which is ‖ · ‖1 nonexpansive, but is not ‖ · ‖2
nonexpansive, and vice versa. This is a type of separation result for nonexpansive
mappings with respect to two equivalent norms. Another result proved in [1] provides
a characterization of the intersection of nonexpansive mappings T : C → C over all
equivalent norms, the so called S′(C), which corresponds to a subfamily of certain
affine mappings.

In this work we prove that in order to get S′(C) it is not enough to consider a
finite set of renormings of the space X: in the intersection of families of nonexpansive
mappings with respect to a finite number of renormings, we always have mappings
which do not belong to S′(C). This result is proved by giving a topology on the set
of Lipschitzian mappings, the so called Lip topology, and by using Baire’s Category
Theorem.

2. The Banach space BLip(C,X)

Let (X, d) and (C, φ) be two metric spaces. It is well known that a function
T : (C, φ)→ (X, d) is said to be Lipschitz if there exists 0 ≤ r <∞ such that

d(Tx, Ty) ≤ rφ(x, y)

for each x, y ∈ Y . So we define:

BLip(C,X) = {T : (C, φ)→ (X, d) |T is Lipschitz and sup
x,y∈C

d(Tx, Ty) <∞}

as the family of bounded Lipschitzian mappings.
If (X, d) is a normed space (X, ‖ · ‖) and C is a subset of X, then for each T ∈

BLip(C,X) we denote by K(T, ‖ ·‖) its Lipschitz constant with respect to ‖ ·‖, which
is defined by

K(T, ‖ · ‖) = sup

{
‖Tx− Ty‖
‖x− y‖

∣∣∣∣ x, y ∈ C, x 6= y

}
and we define ‖T‖∞ = sup

x∈C
‖Tx‖, hence

BLip(C,X) = {T : C → X |K(T, ‖ · ‖) <∞, ‖T‖∞ <∞}.

Let C(C,X) be the collection of all continuous functions from C to X. If X is a
Banach space, then it is a known result that C(C,X) is a Banach space with the norm
‖ · ‖∞, and although BLip(C,X) is a vector subspace of C(C,X), it is not necessarily
a Banach subspace.

There exist a wide variety of norms that endow BLip(C,X) with a Banach space
structure, the ones used most frequently are max-norm and 1-norm, defined by

‖T‖ = max{‖T‖∞,K(T, ‖ · ‖)}

and

‖T‖ = ‖T‖+K(T, ‖ · ‖)
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for each T ∈ BLip(C,X). In this paper we use the 1-norm, however all results hold
for any equivalent norm due to their topological nature. The proof of the next lemma
as well as a detailed exposition of Lipschitz algebras can be found in [16].

Lemma 2.1. Let (X, ‖ · ‖) be a Banach space and C ⊂ X, C 6= ∅. Then
(BLip(C,X), ‖ · ‖) is a Banach space with ‖T‖ := ‖T‖∞ + K(T, ‖ · ‖) for each
T ∈ BLip(C,X).

Remark 2.2. Assuming that Tn → T with respect to ‖·‖, we obtain that ‖Tn−T‖ →
0, so ‖Tn−T‖∞ → 0, therefore ‖Tn‖∞ → ‖T‖∞. Applying the continuity of the norm
‖ · ‖ we deduce that K(T, ‖ · ‖) = lim

n
K(Tn, ‖ · ‖).

Remark 2.3. Note that Lemma 2.1 has weaker forms as follows:

1) If C and X are arbitrary metric spaces such that X is complete and C is not
necessary a subset of X, then BLip(C,X) is a complete metric space for the
analogously metric induced in that case.

2) If X is a Banach space and C is a metric space, which is not necessary a
subset of X, then BLip(C,X) is a Banach space.

The proof of previous observations are similar as the proof of Lemma 2.1.

Remark 2.4. In some sense, the Banach space (BLip(C,X), ‖ · ‖) is a generalization
of some Sobolev spaces, for example:

(W1,∞(0, 1), ‖ · ‖1,∞) = (BLip((0, 1),R), | · |).
In this direction, let us consider C open and convex subset of X. Then the family of
Fréchet differentiable functions T : C → X with bounded image and derivative is, by
the generalized mean value Theorem, a subspace of BLip(C,X). Another example is
given by replacing Fréchet by Gâteaux in the previous example.

Let (X, ‖·‖) be a normed space and C ⊂ X with C 6= ∅. Then we define N(X) as the
collection of equivalent norms over X. For each norm ‖ · ‖1 ∈ N(X) we denote by X1

the normed space (X, ‖·‖1) and by ‖·‖1,∞ the infinity norm in BLip(C,X) associated
to ‖ · ‖1. In this context, the normed space BLip(C,X1) is considered endowed with
the norm ‖T‖1 = ‖T‖1,∞ + K(T, ‖ · ‖1). With this notation the following lemma
shows a relation between the topologies in BLip(C,X1) and BLip(C,X2).

Lemma 2.5. Let (X, ‖·‖1) and (X, ‖·‖2) be Banach spaces and C a nonempty subset
of X. Then the following are equivalent:

1) ‖ · ‖1 and ‖ · ‖2 are equivalent norms.
2) The sets BLip(C,X1) and BLip(C,X2) are equal, and the Banach spaces

BLip(C,X1) and BLip(C,X2) are isomorphic.

Proof. We show that 1) implies 2). Let ‖ · ‖1, ‖ · ‖2 ∈ N(X). Then for T : C → X we
have:

sup
x∈C
‖Tx‖1 <∞ if and only if sup

x∈C
‖Tx‖2 <∞

and

T is ‖ · ‖1-Lipschitz if and only if T is ‖ · ‖2-Lipschitz.
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Thus BLip(C,X1) and BLip(C,X2) are equal.
Let l and u be constants such that

l‖x‖2 ≤ ‖x‖1 ≤ u‖x‖2
for all x ∈ X.

We consider the identity operator I : (BLip(C,X1), ‖ · ‖1)→ (BLip(C,X2), ‖ · ‖2).
Note that taking m = max{l−1, ul } we have

‖I(T )‖2 = ‖T‖2,∞ +K(T, ‖ · ‖2)

≤ l−1‖T‖1,∞ +
u

l
K(T, ‖ · ‖1)

≤ m(‖T‖1,∞ +K(T, ‖ · ‖1))

= m‖T‖1.
Then I is a bounded operator. Therefore BLip(C,X1) and BLip(C,X2) are isomor-
phic.

Now we prove the reciprocal. We assume that BLip(C,X1) equals BLip(C,X2)
and that they are isomorphic Banach spaces, that is, the identity function I :
(BLip(C,X1), ‖ · ‖1)→ (BLip(C,X2), ‖ · ‖2) is a bounded operator.

For each x ∈ X we define fx : C → X, as fx(y) = x for all y ∈ C. It is clear that

K(fx, ‖ · ‖1) = K(fx, ‖ · ‖2) = 0 for every x ∈ X.
Then

‖fx‖1 = ‖fx‖1,∞ = ‖x‖1
and

‖fx‖2 = ‖fx‖2,∞ = ‖x‖2
for each x ∈ X. So,

1

‖I−1‖
‖fx‖1 ≤ ‖fx‖2 ≤ ‖I‖‖fx‖1,

thus
1

‖I−1‖
‖x‖1 ≤ ‖x‖2 ≤ ‖I‖‖x‖1 for all x ∈ X,

which concludes the proof. �

Remark 2.6. In a natural way, the previous theorem has a weaker form in which the
Banach space condition is changed by normed space. To do this, it is enough consider
a normed space isomorphism as a linear bounded operator with bounded inverse.

Remark 2.7. Regardless the norm in the normed space X, the topological vector
space BLip(C,X) is unique under equivalent norms. Then the closedness of a set and
the limit of a sequence are defined without ambiguity, on the understanding that all
norms considered are equivalent.

Given a normed space (X, ‖ · ‖) and nonempty C ⊂ X. We define τLip as the
topology in BLip(C,X) induced by ‖ · ‖, and τ∞ the topology in BLip(C,X) as a
subspace of C(C,X).
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Remark 2.8. By Remark 2.2 it follows that τ∞ ⊂ τLip. Thus every τ∞-closed set is
τLip-closed.

3. Families of nonexpansive mappings in BLip(C,X)

The aim of this section is to study some properties inherited by BLip(C,X) to
some families of nonexpansive mappings as subsets of BLip(C,X).

Lemma 3.1. Let (X, ‖ · ‖) be a normed space, and C a nonempty and closed subset
of X. Then

1) If C is bounded, then the family of isometries T : C → X is τLip-closed.
2) If C is convex, then the family of affine Lipschitz mappings T : C → X with

bounded image is convex and τLip-closed.

In particular

3) If C is a convex subset of X, then the family of functions T : C → X such

that there exists a bounded linear operator S : span(C)→ X with S|C = T is
convex and τLip-closed.

If we consider the case T : C → C, then the families in 1), 2) and 3) are closed under
composition.

Proof. In all of the three cases, the only non trivial fact is the τLip-closedness, and
this follows from Remark 2.8 and the τ∞-closedness. �

Let (X, ‖ · ‖) be a normed space and C a nonempty subset of X. Then for each
norm ‖ · ‖ over X we define

NE(C, ‖ · ‖) = {T : C → C |K(T, ‖ · ‖) ≤ 1},

and we call

BLip(C) = BLip(C,C).

It is clear that for each ‖ · ‖ ∈ N(X) we have that NE(C, ‖ · ‖) ⊂ BLip(C).

Lemma 3.2. If C is a nonempty, convex, and closed subset of a normed space X,
then for each ‖ · ‖ ∈ N(X) both NE(C, ‖ · ‖) and BLip(C) are convex, closed under
compositions, and τLip-closed in BLip(C,X).

Additionally, if C is bounded and ‖ · ‖1 ∈ N(X) is a fixed norm, then NE(C, ‖ · ‖)
is a bounded subset of (BLip(C,X), ‖ · ‖1).

Proof. The convexity and closure under compositions of NE(C, ‖ · ‖) and BLip(C)
follow directly from the convexity of C.

The proof of the τLip-closedness of NE(C, ‖·‖) and BLip(C) in BLip(C,X) follows
from Remark 2.2 and the closedness of C.

If additionally C is bounded in X, then given ‖·‖1 ∈ N(X), there exists a constant
M ≥ 0 such that

sup
x∈C
‖x‖1 = M,
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and there are constants 0 < l ≤ u with l‖x‖1 ≤ ‖x‖ ≤ u‖x‖1 for each x ∈ X. Hence
for each T ∈ NE(C, ‖ · ‖) we have

‖T‖1 = ‖T‖1,∞ +K(T, ‖ · ‖1)

≤M +
u

l
K(T, ‖ · ‖)

≤M +
u

l
.

Thus NE(C, ‖ · ‖) is bounded in (BLip(C,X), ‖ · ‖1). �

We also would like to say something about the question: what happens with the
family of nonexpansive mappings with another equivalent norm?

In this sense, the first approximation is to characterize the set:

S ′(C) =
⋂

‖·‖∈N(X)

NE(C, ‖ · ‖),

when C is a convex, closed, and bounded set in X.
Let X be a normed space and C a nonempty convex subset of X. Then for each

x ∈ C we define fx : C → C by fx(y) = x, and we denote by I : C → C the identity
map. Thus we define

S(C) = conv({fx |x ∈ C} ∪ {I}).

Remark 3.3. From Lemma 3.2, it follows that S ′(C) is convex, closed under com-
position, and τLip-closed.

It is straightforward that the set S(C) is convex, closed under compositions, and
each of its elements is a nonexpansive mapping with respect to any norm. Therefore

S(C) ⊂ S′(C), thus by Remark 3.3, we have that S(C)
τLip ⊂ S ′(C).

In order to describe the set S(C), we will give the following technical lemma.

Lemma 3.4. Let X be a normed space and C a nonempty convex subset of X. Then

S(C)
τLip

= L, where L is the subset of BLip(C,X) with elements T of the form:

A) T = x + λI for some 0 ≤ λ ≤ 1 and x a limit point of elements

mn∑
k=1

λn,kxn,k

with xn,k ∈ C,
mn∑
k=1

λn,k ≤ 1, 0 ≤ λn,k ≤ 1 and lim
n

mn∑
k=1

λn,k = 1− λ.

Proof. First we prove that S(C)
τLip ⊂ L. Let ‖ · ‖ ∈ N(X) and T a limit point of

S(C). Then there exists a sequence (Sn) in S(C) such that (Sn) ‖ · ‖-converges to T .
Thus for each n ∈ N, we have that

Sn =

mn∑
k=1

λk,nxk,n + λ0,nI,
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for some xk,n ∈ C, and λk,n ≥ 0 with
mn∑
k=0

λk,n = 1. Hence we define

xn =

mn∑
k=1

λk,nxk,n

and

λn = λ0,n.

Then Sn = xn + λnI, and
mn∑
k=1

λk,n = 1− λn.

For each n ∈ N, we have that 0 ≤ λn ≤ 1. Then without loss of generality we may
assume, passing by a subsequence if necessary, that (λn) converges to some λ ∈ [0, 1],

therefore

(
mn∑
k=1

λk,n

)
converges to 1− λ.

We fix y ∈ C. By Remark 2.2, the ‖ · ‖-convergence implies the ‖ · ‖∞-converge.
Then

Ty = lim
n

(xn + λnIy)

= lim
n

(xn + λny)

= lim
n

(xn + λy),

hence lim
n
xn exists. Thus we call x = lim

n
xn.

We note that x does not depend on y, then we conclude that T = x+ λI, that is,

T ∈ L. Therefore S(C)
τLip ⊂ L.

Now we prove that L ⊂ S(C)
τLip

, for this we take T ∈ L, given that T satisfies

A), then T = x+ λI and x = lim
n

mn∑
k=1

λn,kxn,k.

For each n ∈ N we define λn = 1 −
mn∑
k=1

λn,k and Sn =

mn∑
k=1

λn,kxn,k + λnI, we note

that Sn ∈ S(C) for each n ∈ N, thus T ∈ S(C)
τLip

and S(C)
τLip

= L. �

Theorem 3.5. Let X be a normed space and C a non empty closed convex subset of
X. Then S(C) is convex closed under compositions and τLip-closed.

Proof. By Remark 3.3, it is sufficient to prove that S(C) is τLip-closed.

Let T ∈ S(C)
τLip

. Then by Lemma 3.4, we have that T = x+ λI, then it is enough
to prove that there exists y ∈ C such that x = (1− λ)y.

We have that x = lim
n

mn∑
k=1

λn,kxn,k, then for each n ∈ N we call δn =

mn∑
k=1

λn,k. We note

that

lim
n

mn∑
k=1

λn,k = 1− λ
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and for each n ∈ N
mn∑
k=1

λn,k
δn

= 1.

Therefore for each n ∈ N, we have that

mn∑
k=1

λn,k
δn

xn,k ∈ C.

Hence by the closedness of C

x

1− λ
= lim

n

mn∑
k=1

λn,k
δn

xn,k ∈ C,

Thus

T = x+ λI = (1− λ)
x

1− λ
+ λI ∈ S(C).

�

Given T : C → C, as usual, Fix(T ) will denote the set of its fixed points. Then we
define

BLipf (C,X) = {T ∈ BLip(C,X) : Fix(T ) 6= ∅}
Thus in a natural way we define NEf (C, ‖ · ‖) = NE(C, ‖ · ‖) ∩ BLipf (C,X), and
BLipf (C) = BLip(C) ∩BLipf (C,X).

Theorem 3.6. Let (X, ‖ · ‖) be a normed space and C a complete convex subset of
X. Then NEf (C, ‖ · ‖) is τLip-dense in NE(C, ‖ · ‖).

Proof. Let ε > 0, T ∈ NE(C, ‖ ·‖), and y ∈ C. If fy : C → C is the constant function
with value y, then for each 0 < λ < 1 we define

Sλ = λT + (1− λ)fy.

By the convexity of C we have that Sλ : C → C. It is not hard to prove that
K(Sλ, ‖ · ‖) ≤ λ. Thus for each 0 < λ < 1 by the Banach’s Fixed Point Theorem we
have that Fix(Sλ) 6= ∅. Hence for each 0 < λ < 1 we have

‖T − Sλ‖ = ‖T − λT − (1− λ)fy‖
= (1− λ)‖T − fy‖

So, if λ→ 1, then ‖T−Sλ‖ → 0, Hence NEf (C, ‖·‖) is τLip-dense in NE(C, ‖·‖). �

Given a normed space (X, ‖ · ‖), C ⊂ X with C 6= ∅, and T : C → C. Then an
approximate fixed point sequence (a.f.p.s.) for T is a sequence (xn) in C such that

lim
n∈N
‖Txn − xn‖ = 0.

We define

BLipaf (C,X) = {T ∈ BLip(C,X) |T has an a.f.p.s.},
NEaf (C, ‖ · ‖) = NE(C, ‖ · ‖) ∩BLipaf (C,X),

and

BLipaf (C) = BLip(C) ∩BLipaf (C,X).
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Theorem 3.7. Let (X, ‖ · ‖) be a normed space and C a nonemepty subset of X.
Then BLipf (C,X) is τLip-dense in BLipaf (C,X), i.e.

BLipf (C,X)
τLip

= BLipaf (C,X).

Proof. To show that BLipf (C,X)
τLip ⊂ BLipaf (C,X), let (Tn) be a sequence in

BLipf (C,X) that converges to some T ∈ BLip(C,X). Without loss of generality we
may assume that ‖T − Tn‖ < 1

n for each n ∈ N. Then there exists a sequence (xn) in
C such that for each n ∈ N we have Tnxn = xn. We claim that lim

n∈N
‖Txn − xn‖ = 0,

in fact,

‖Txn − xn‖ = ‖Txn − Tnxn‖
≤ ‖T − Tn‖∞

≤ ‖T − Tn‖ <
1

n
,

Thus T ∈ BLipaf (C,X).
Now we prove the reverse inclusion. Let T ∈ BLipaf (C,X) and ε > 0. Then there

exists x ∈ C such that ‖Tx − x‖ < ε. We call w = x − Tx and fw : C → X the
function fw(y) = w. If S = T + fw, then

‖T − S‖ = ‖fw‖
= ‖w‖+K(fw, ‖ · ‖)
< ε,

and Sx = Tx+ fw(x) = Tx+ x− Tx = x. Hence S ∈ BLipf (C,X). �

Corollary 3.8. Let (X, ‖ · ‖) be a normed space and C a nonempty closed subset of
X. Then BLipaf (C) is τLip-closed.

In the following theorem we study the interior of the family of nonexpansive map-
pings with respect to the interior of its domain of definition.

Theorem 3.9. Let C be a nonempty subset of a normed space (X, ‖ · ‖) and consider
the following statements:

1) C has empty interior in (X, ‖ · ‖).
2) NE(C, ‖ · ‖) has empty τLip-interior in BLip(C,X)
3) BLip(C) has empty τLip-interior in BLip(C,X).
4) NEf (C, ‖ · ‖) has empty τLip-interior in BLip(C,X).
5) NEf (C, ‖ · ‖) has empty τLip-interior in BLipf (C,X).
6) BLipf (C) has empty τLip-interior in BLip(C,X)
7) BLipf (C) has empty τLip-interior in BLipf (C,X).
8) For each ε > 0 and T ∈ BLipaf (C), there exists S ∈ BLipf (C,X)\BLipf (C)

such that ‖T − S‖ < ε.
9) For each ε>0 and T ∈NE(C, ‖·‖), there exists S∈BLipf (C,X)\NEf (C, ‖·‖)

such that ‖T − S‖ < ε.

Then we have:

a) 1) to 3) are equivalent.
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b) If C is complete and it has at least two points, then 1) to 8) are equivalent.
c) If C is a complete convex set with at least two points, then 1) to 9) are

equivalent.

Proof. Proof of Statement a).
First we prove that 2) implies 1) by contraposition. Let x ∈ C be an interior point.

Then there exists ε > 0 such that B(x, ε) ⊂ C. We define fx : C → C by fx(y) = x,
and δ = min{ε, 1}. Thus for each T ∈ B(fx, δ) we have

‖T − fx‖ = ‖T − fx‖∞ +K(T − fx, ‖ · ‖) < δ.

We note that

i) T : C → B(x, ε) ⊂ C, since ‖T − fx‖∞ < ε, and
ii) K(T, ‖ · ‖) ≤ K(T − fx, ‖ · ‖) < 1, since for each y, z ∈ C

‖Ty − Tz‖ = ‖Ty − x− Tz + x‖
= ‖(T − fx)y − (T − fx)z‖
≤ K(T − fx, ‖ · ‖)‖x− y‖,

From i) and ii) it follows that T ∈ NE(C, ‖ · ‖). Then NE(C, ‖ · ‖) has nonempty
τLip-interior.

Now we prove that 1) implies 2). Let ε > 0, T ∈ NE(C, ‖ · ‖), and x ∈ C. Then
there exists w ∈ X \C such that 0 < ‖w− Tx‖ < ε. We call w′ = w− Tx and define
the function fw′ : C → X by fw′(y) = w′. It is clear that K(fw′ , ‖ · ‖) = 0. Thus
S = T + fw′ implies

‖T − S‖ = ‖fw′‖
= ‖w′‖+K(fw′ , ‖ · ‖)
= ‖w − Tx‖ < ε.

We note that

Sx = Tx+ fw′x

= Tx+ (w − Tx)

= w /∈ C

Then S /∈ NE(C, ‖ · ‖). Hence NE(C, ‖ · ‖) has empty interior in BLip(C,X).
It is clear that 3) implies 2), and 1) implies 3) can be proved by a similar way as

1) implies 2).
Proof of statement b):
Now we suppose that C is a complete metric space with at least two elements. We

are going to prove the rest of biconditionals.
By a contrapositive argument it follows that 5) implies 4), and 7) implies 6). In

order to prove 4) implies 1) we proceed by a similar argument of 2) implies 1). Let
ε > 0 and fx ∈ NEf (C, ‖ · ‖) as in the proof of 2) implies 1). Then from ii) it follows
that for each T ∈ B(fx, ε) we have that K(T, ‖ · ‖) < 1. Then by Banach’s Fixed
Point Theorem Fix(T ) 6= ∅, we have that T ∈ NEf (C, ‖ · ‖) for each T ∈ B(fx, ε).
Hence NEf (C, ‖ · ‖) has non empty interior in BLip(C, ‖ · ‖).
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Now we prove 1) implies 5). Let ε > 0 and T ∈ NEf (C, ‖ · ‖). Then there exists
x ∈ C such that Tx = x. By hypothesis there exists y ∈ C whit y 6= x, then there
exists w ∈ X \ C such that ‖w − Tx‖ < min{ ε2 ,

ε
2‖x − y‖}. We call w′ = w − Tx,

thus, by a retract technique, there exist R : C → [0, w′] with Rx = 0, Ry = w′, and
K(R, ‖ · ‖) < ε

2 . We define S = T +R. Since

‖T − S‖ = ‖R‖
= ‖w′‖+K(R, ‖ · ‖)

<
ε

2
+
ε

2
= ε,

and Sx = Tx + Rx = x + 0 = x, then T ∈ BLipf (C,X). Thus NEf (C, ‖ · ‖) has
empty interior in BLipf (C,X).

The proof of 6) implies 1) is similar as the proof of 4) implies 1), and the proof of
1) implies 7) is similar as the proof of 1) implies 5).

Now we will prove the equivalence between 1) and 8). First we prove 1) implies
8). We suppose that C has empty interior, and T ∈ BLipaf (C) ⊂ BLipaf (C,X). By
Theorem 3.7, there exists S1 ∈ BLipf (C,X) such that

‖T − S1‖ <
ε

2

Since, by 1) implies 7), we have that BLipf (C) has empty τLip-interior in
BLipf (C,X), then there exists S2 ∈ BLipf (C,X) \BLipf (C) with

‖S2 − S1‖ <
ε

2

Hence ‖T − S2‖ < ε.
Now we prove 8) implies 1), and we proceed by a contrapositive argument. Since C

has nonempty interior, then, by 7) implies 1), we have that BLipf (C) has nonemtpy
τLip-interior in BLipf (C,X). Then there exist ε > 0 and T ∈ BLipf (C) ⊂
BLipaf (C) such that for each S with ‖T − S‖ < ε we have that S ∈ BLipf (C).

Proof of statement c):
Now we suppose that C is a complete convex set and prove 1) implies 9). We note

that by Theorem 3.6, NEf (C, ‖ · ‖) is dense in NE(C, ‖ · ‖), and by 1) implies 5), we
have that NEf (C, ‖ · ‖) has empty interior in BLipf (C,X). Let T ∈ NE(C, ‖ · ‖) and
ε > 0. Then there exists S1 ∈ NEf (C, ‖ · ‖) such that

‖T − S1‖ <
ε

2
,

and there exists S2 ∈ BLipf (C,X) \NEf (C, ‖ · ‖) with

‖S2 − S1‖ <
ε

2

Hence ‖T − S2‖ < ε.
In order to prove 9) implies 1), we proceed by a contrapositive argument. We

suppose C has nonempty interior. Then by 5) implies 1), it follows that there exist
ε > 0 and T ∈ NEf (C, ‖ · ‖) ⊂ NE(C, ‖ · ‖) such that for each S ∈ BLipf (C,X) with
‖T − S‖ < ε we have that S ∈ NEf (C, ‖ · ‖). �
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4. BLip(C,X) in the framework of fixed point theory

Theorem 4.1. Let (X, ‖·‖) be a normed space and C a nonempty subset of X. Then
NE(C, ‖ · ‖) has nonempty τLip-interior in BLip(C).

Proof. Let x ∈ C and fx ∈ NE(C, ‖ · ‖) the constant function with value x. Then for
each T ∈ B(fx, 1) ∩BLip(C) we have that

K(T, ‖ · ‖) = K(fx − T, ‖ · ‖) < 1,

that is, NE(C, ‖ · ‖) has nonempty τLip-interior in BLip(C). �

Remark 4.2. From the proof of the previous theorem it follows that for each ‖ · ‖ ∈
N(X), the constant functions are τLip-interior points of NE(C, ‖·‖) in the topological
space BLip(C).

Theorem 4.3. Let (X, ‖ · ‖) be a normed space and C be a closed subset of X with
at least two elements. Then:

1) For each r ≥ 0 the family {T ∈ BLip(C,X) |K(T, ‖ · ‖) = r} is τLip-closed
with empty interior in BLip(C,X).

If additionally C is convex then

2) For each r ≥ 0 the family {T ∈ BLip(C) |K(T, ‖ · ‖) = r} is τLip-closed with
empty interior in BLip(C).

3) For each 0 ≤ r ≤ 1 the family {T ∈ NE(C, ‖·‖)|K(T, ‖·‖) = r} is τLip-closed
with empty interior in NE(C, ‖ · ‖).

If additionally C is bounded then

4) The family {T ∈ NE(C, ‖·‖) |K(T, ‖·‖) = 1} is a boundary set of NE(C, ‖·‖)
in BLip(C,X).

Proof. In all of three first cases the respective sets are closed by Remark 2.2 and
Lemma 3.2, thus we only need to prove the emptiness of interiors.

First we prove 1). We suppose r = 0 and T ∈ BLip(C,X) with K(T, ‖ · ‖) = 0.
Then T is a constant function. Let ε > 0. By a retract technique, there exists
S ∈ BLip(C,X) such that K(S, ‖ · ‖) > 0, and ‖S‖ = ‖S‖∞ + K(S, ‖ · ‖) < ε. We
call R = S + T , then K(R, ‖ · ‖) = K(S, ‖ · ‖) and ‖R− T‖ = ‖S‖ < ε.

We assume r > 0 and T ∈ BLip(C,X) with K(T, ‖ · ‖) = r. Let ε > 0. By the
continuity of the scalar product, we can find 0 < δ < 1 such that ‖T − δT‖ < ε.
Hence K(δT, ‖ · ‖) = δr < r.

Now we prove 2). Let T ∈ BLip(C) with K(T, ‖ · ‖) = r and ε > 0. If r = 0, then
by a retract argument, we can prove that there exists a non constant S ∈ BLip(C).
Then by the continuity of the scalar product, there exists λ ∈ (0, 1) such that R =
λT + (1− λ)S satisfies ‖T −R‖ < ε. It follows that K(R, ‖ · ‖) > 0.

For r > 0. Let y ∈ C and fy the constant function y with domain C. Again by the
continuity of the scalar product, there exists λ ∈ (0, 1) such that R = λfy + (1− λ)T
satisfies ‖T −R‖ < ε. It is not hard to prove that K(R, ‖ · ‖) = λr < r.

The proof of 3) is analogous to the proof of 2).
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Now we prove 4). Let 0 < ε < 1 and T ∈ NE(C, ‖ · ‖) with K(T, ‖ · ‖) = 1. Then
there exist x, y ∈ C such that

(1− ε)‖x− y‖ < ‖Tx− Ty‖ ≤ ‖x− y‖.
We define

w = ε‖x− y‖ Tx− Ty
‖Tx− Ty‖

,

since it is collinear with Tx− Ty, we have

‖Tx− Ty + w‖ = ‖Tx− Ty‖+ ‖w‖
= ‖Tx− Ty‖+ ε‖x− y‖
> ‖x− y‖.

By a retract technique, we may construct S′ : C → [0,−w], such that for each
λ ∈ [0, 1]

S′(λx+ (1− λ)y) = −(1− λ)w

and K(S′, ‖ · ‖) = ε. We define S = T + S′ and we note that

‖Sx− Sy‖ = ‖Tx+ S′x− Ty − S′y‖
= ‖Tx− Ty + w‖
> ‖x− y‖

Thus S /∈ NE(C, ‖ · ‖), and

‖T − S‖ = ‖S′‖
= ‖w‖+ ε

= ε‖x− y‖+ ε

≤ ε(diam(C) + 1)

On other hand. By the proof of 3), it follows that for each ε > 0 there exists
S ∈ NE(C, ‖ · ‖) such that K(S, ‖ · ‖) < 1 and ‖T − S‖ < ε. �

Corollary 4.4. Let (X, ‖·‖) be a Banach space and C a nonempty closed and convex
subset of X. Then the family of T ∈ NE(C, ‖ · ‖) such that T is an isometry or is a
fixed point free mapping is a meager set in NE(C, ‖ · ‖).

Proof. If T is an isometry or is a fixed point free map, then K(T, ‖ · ‖) = 1. Thus by
Theorem 4.3 we obtain the conclusion. �

Remark 4.5. In the previous corollary the Banach space condition cannot be
avoided. In order to show this, let C be the unitary ball in c00 with respect to
‖ · ‖1. If for each (xn) ∈ C we call

#(xn) = min{m ∈ N |xm 6=
1

2m
}

and for each m ∈ N
Pm(xn) = (x1, . . . , xm, 0, . . . ),

with
P0(xn) = (0, 0, . . . ),
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then we define

T (xn) = P#(xn)−1(xn) +
1

2
R(I − P#(xn)−1)(xn) +

1

2#(xn)
e#(xn)

where R is the right shift operator and ek is the kth-basic element of c00.
It can be shown that T : C → C and K(T, ‖ · ‖1) = 1

2 . But T is a fixed point free
mapping.

Remark 4.6. In general, given a Banach space X and a convex closed bounded
C ⊂ X, the problem of finding a fixed point free nonexpansive operator defined from
C to itself is a too hard problem. Thus the previous corollary in some way justifies
this difficulty. If we study the literature, we note that in some essential way, the fixed
point free nonexpansive mappings defined from a convex closed and bounded set to
itself are like the right shift operator R in (`1, ‖ · ‖1) where

R(xn) = (0, x1, x2, · · · )
and

‖(xn)‖ =

∞∑
n=1

|xn|.

Thus the previous corollary reinforces that feeling.

Theorem 4.7. Let (X, ‖ · ‖) be a normed space and C a nontrivial convex and closed
subset of X. Then

1) The family {T ∈ BLip(C,X) |T is affine} is τLip-closed with empty interior
in BLip(C,X).

2) The family {T ∈ BLip(C) |T is affine} is τLip-closed with empty interior in
BLip(C).

3) The family {T ∈ NE(C, ‖ · ‖) |T is affine} is τLip-closed with empty interior
in NE(C, ‖ · ‖).

Proof. By Lemmas 3.1, and 3.2, in all three cases the families are closed. We only
make the proof of 3), since all others are similar. Let T ∈ NE(C, ‖ · ‖) be an affine
mapping. Then by Corollary 19 of [2] there exists a non affine mapping S ∈ NE(C, ‖·
‖). Then for all λ ∈ (0, 1) the operator λT + (1 − λ)S is non affine. Thus by the
continuity of the scalar product, the proof is over. �

Remark 4.8. It is curious that when asking for examples of mappings defined on
normed spaces, the natural ones are linear, affine, and in the remaining of the cases
isometries. Nevertheless Corollary 4.4 and Theorem 4.7 tell us the opposite, that is,
almost every one of the examples are non affine and non isometries, thus we can ask:

What are the operators that we can construct?,
What are the operators that we can describe?

If in some way we have an answer to some of the previous questions, then

In the set of constructible or describable operators,
How big is the family of affine mappings or isometries?

Finally we have the following
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Theorem 4.9. Let X be a Banach space and C a nonempty closed and convex subset
of X such that for each x, y ∈ C there exists z ∈ C with z 6= λx + (1 − λ)y for all
λ ∈ F. Then for ‖ · ‖1, · · · , ‖ · ‖n ∈ N(X) there exists

T ∈ (NE(C, ‖ · ‖1) ∩ · · · ∩NE(C, ‖ · ‖n)) \ S ′(C).

Moreover, T can be chosen in a such way it is not affine.

Proof. By Theorem 4.1 and Remark 4.2, for all k = 1, · · · , n, the sets NE(C, ‖ · ‖k)
has, as interior points in BLip(C), the constant functions. Thus

C =

n⋂
k=1

NE(C, ‖ · ‖k)

has nonempty interior in BLip(C). Since X is a Banach space, then by Lemmas
2.1 and 3.2, and Baire’s Category Theorem follows that C is of second category in
BLip(C). Nevertheless by Theorem 4.7 the family A of affine mappings T ∈ BLip(C)
is of first category in BLip(C). Then C \ A is of second category in BLip(C). Hence
there exists T ∈ C \ A. By Theorem 5 and Corollary 8 of [2] follows that S ′(C) ⊂ A
which concludes the proof. �

Last theorem states that, under these assumptions, it is not enough finite intersec-
tions in order to get the set S′(C).

Remark 4.10. If C lies inside a one dimensional affine subspace of X, then by
Remarks 22 and 24, and Corollary 23 of [2], it follows that the previous theorem is
not true, since NE(C, ‖ · ‖1) = · · · = NE(C, ‖ · ‖n) = S ′(C).
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