
Fixed Point Theory, 22(2021), No. 1, 315-326

DOI: 10.24193/fpt-ro.2021.1.22

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

ON THE SU-YAO THEOREM

LECH PASICKI

AGH University of Science and Technology,

Faculty of Applied Mathematics,

Al. Mickiewicza 30, 30-059 Kraków, Poland
E-mail: pasicki@agh.edu.pl

Abstract. Su and Yao [Fixed Point Theory Appl. 2015:120 (2015)] have proved a fixed point

theorem for mappings in metric spaces satisfying a general contraction condition. In their paper
numerous examples of important consequences of this theorem are given. Our main aim is to present

an extension of the Su-Yao theorem to the case of dislocated metric spaces. The proof is short, the

result is stronger also for metric spaces, and the theorem itself is a natural and elegant extension of
the celebrated Banach fixed point theorem.
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1. Introduction

The celebrated fixed point theorem of Banach was generalized in many ways.
The authors were interested in more advanced conditions presented in the inequality
and/or they were interested in relaxing the assumptions concerning the space itself.
The amount of papers devoted to the item is enormous. First of all let us note [15]
with theorems for partial metric spaces, and [1] where the results for ordered metric
spaces are presented. In both papers the ”inequality” conditions are much advanced.
Our paper is not so much ambitious as we develop more traditional ideas initiated
by Boyd and Wong [2] and extended by Su and Yao [16].Instead of metric space we
consider dislocated metric space from [3]. We apologize that our list of references is
short and that the main ideas of those papers are not presented here. Nevertheless,
we hope that the citations are satisfactory also for the most demanding reader.

2. Preliminaries

Su and Yao have proved a theorem [16, Theorem 2.1] which can be formulated as
follows:

Theorem 2.1. Let (X, d) be a complete metric space, and let T : X → X be a
mapping such that

ψ(d(Tx, Ty)) ≤ ϕ(d(x, y)), x, y ∈ X,
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where ϕ,ψ : [0,∞)→ [0,∞) are mappings satisfying conditions:

ψ(a) ≤ ϕ(b) implies a ≤ b, a, b ≥ 0, (1a)

an, bn → α and ψ(an) ≤ ϕ(bn), n ∈ N, imply α = 0. (1b)

Then T has a unique fixed point x, and Tnx0 → x, x0 ∈ X.

Our aim is to relax the assumptions of the above theorem and to prove shortly the
respective version for the case of dislocated metric spaces (see Theorem 3.3). Some
more advanced (or sophisticated) results are also obtained. In the final part of our
paper Theorem 3.3 is extended to the case of dq-spaces (see Theorem 4.2).

At first, let us recall some basic notions.
A mapping p : X ×X → [0,∞) is a dq-metric (or dislocated quasi-metric) [17], if

the following conditions are satisfied:

p(x, y) = p(y, x) = 0 yields x = y, x, y ∈ X, (2a)

p(x, z) ≤ p(x, y) + p(y, z), x, y, z ∈ X. (2b)

Then, (X, p) is a dq-metric space (its topology is generated by balls B(x, r) = {y ∈
X : p(x, y) < r}).

A dq-metric space (X, p) is 0-complete (see [12, Corollary 1.5]) if for each se-
quence (xn)n∈N in X, such that limm,n→∞p(xn, xm) = 0, there exists an x for which
limn→∞p(xn, x) = limn→∞p(x, xn) = 0 (with (2b) yields p(x, x) = 0).

A mapping p : X×X → [0,∞) is called a d-metric (or dislocated metric) [3], if the
following conditions are satisfied:

p(x, y) = 0 yields x = y, x, y ∈ X, (3a)

p(x, y) = p(y, x), x, y ∈ X, (3b)

p(x, z) ≤ p(x, y) + p(y, z), x, y, z ∈ X. (3c)

Then, (X, p) is a d-metric space (its topology is generated by balls).
Clearly, each d-metric is a dq-metric, and each d-metric space is a dq-metric space.
A d-metric space (X, p) is 0-complete [9, Definition 2.3], if for each sequence

(xn)n∈N in X, such that limm,n→∞p(xn, xm) = 0, there exists an x ∈ X for which
limn→∞p(xn, x) = 0 (with (3c) yields p(x, x) = 0).

A mapping p : X×X → [0,∞) is a partial metric [6, Definition 3.1], if the following
conditions are satisfied:

x = y iff p(x, x) = p(x, y) = p(y, y), x, y ∈ X, (4a)

p(x, x) ≤ p(x, y), x, y ∈ X, (4b)

p(x, y) = p(y, x), x, y ∈ X, (4c)

p(x, z) ≤ p(x, y) + p(y, z)− p(y, y), x, y, z ∈ X. (4d)

Then, (X, p) is a partial metric space (its topology is generated by “balls” B(x, r) =
{y ∈ X : p(x, y) < p(x, x)+r}). From (4b) it follows that p(x, y) = 0 implies p(x, x) =
p(y, y) = 0 and x = y (see (4a)). Consequently, each partial metric is a d-metric (see
(3a)).
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Clearly, each metric is a partial metric, and each metric space is a partial metric
space and a d-space. The convergence of sequences in partial metric spaces is discussed
in details e.g. in [7].

A partial-metric space (X, p) is 0-complete (cp. [13, Definition 2.1]), if for each
sequence (xn)n∈N in X, such that limm,n→∞p(xn, xm) = 0, there exists an x ∈ X for
which limn→∞p(xn, x) = p(x, x) = 0.

The next definition is a formal extension of [11, Definition 2.10] to include the cases
of dq-metric spaces and partial metric space.

Definition 2.2. A self mapping f on a set X equipped with a dq-metric p is 0-
continuous at x, if from limn→∞p(xn, x) = limn→∞p(x, xn) = 0 it follows that
limn→∞p(fxn, fx) = limn→∞p(fx, fxn) = 0; we say that f is 0-continuous if it
is 0-continuous at each x ∈ X.

3. New results for d-metric and partial metric

We write ψ � ϕ if the following conditions are satisfied

ϕ,ψ : (0,∞)→ [0,∞) are mappings, (5a)

α ≥ β yields ψ(α) > ϕ(β), α, β > 0, (5b)

for each α > 0 there exists an ε > 0 such that

ψ(s) > ϕ(t), s, t ∈ (α, α+ ε).
(5c)

In view of (5b), it is sufficient to consider α < s < t < α+ ε in (5c).
Su and Yao assumed that ϕ,ψ are self mappings on [0,∞). From (1b) for an =

bn = α > 0, n ∈ N, we get ψ(α) > ϕ(α), α > 0. Clearly, (1a) is equivalent to
α > β ≥ 0 implies ψ(α) > ϕ(β). Therefore, (1a) and (1b) yield (5b). If (5c) is not
satisfied, then for some α > 0 and all n ∈ N there exist an, bn ∈ (α, α + 1/n) such
that ψ(an) ≤ ϕ(bn). Consequently, an, bn → α holds, and (1b) cannot be satisfied.
Therefore, (1b) yields (5c). Now, it is clear, that our system of conditions (5) is less
restrictive than the one of Su and Yao (see also Remark 3.5).

Proposition 3.1. If ψ � ϕ, (an)n∈N is a nonnegative sequence, and

an+1 > 0 yields ψ(an+1) ≤ ϕ(an), n ∈ N (6)

holds, then (an)n∈N is nonincreasing and an → 0.

Proof. If an = 0, then an+1 > 0 contradicts (6). Consequently, we obtain ak = 0,
k ≥ n. Assume an > 0, n ∈ N. Then, from (6), (5b) it follows that (an)n∈N decreases
to some α. Suppose α > 0. Then, an < α+ε for large n, and (6) contradicts (5c). �

Lemma 3.2. Let (X, p) be a d-metric (partial metric) space, and let (xn)n∈N be a
sequence of points of X such that for some ψ � ϕ, each α > 0, and appropriately
large m,n ∈ N the following conditions are satisfied

p(xn+2, xn+1) > 0 yields ψ(p(xn+2, xn+1)) ≤ ϕ(p(xn+1, xn)), (7a)

p(xn+1, xm+1) > α yields ψ(p(xn+1, xm+1)) ≤ ϕ(p(xn, xm)). (7b)

Then limm,n→∞p(xn, xm) = 0, and if (X, p) is 0-complete, then there exists an x such
that limn→∞p(xn, x) = p(x, x) = 0.
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Proof. From Proposition (3.1) when applied to an = p(xn+1, xn) for n > n0, it follows
that limn→∞p(xn+1, xn) = 0. Suppose limm,n→∞p(xn, xm) = 0 is false. Then there
exist α > 0 and an infinite set K ⊂ N, such that for all k ∈ K there exist n ∈ N for
which α < p(xk+n+1, xk+1) holds. Let n = n(k) be the smallest such number. We
have (see (7b))

ψ(p(xk+n+1, xk+1)) ≤ ϕ(p(xk+n, xk)),

and (see (5b))

α < p(xk+n+1, xk+1) < p(xk+n, xk) ≤
p(xk+n, xk+1) + p(xk+1, xk) ≤ α+ p(xk+1, xk)→ α.

Consequently, we get limk∈Kp(xk+n, xk) = α, and

α < p(xk+n+1, xk+1) < p(xk+n, xk) < α+ ε

for large k. Now, (7b) contradicts (5c).
Therefore, limm,n→∞p(xn, xm) = 0, and if (X, p) is 0-complete, then there exists an
x such that limn→∞p(xn, x) = p(x, x) = 0. �

Now, we are ready to prove our main result. Also the contraction condition is more
general than the one used by Su and Yao.

Theorem 3.3. Assume that f is a self mapping on a d-metric (partial metric) space
(X, p), ψ � ϕ, and the following condition is satisfied

p(fy, fx) > 0 yields ψ(p(fy, fx)) ≤ ϕ(p(y, x)), x, y ∈ X. (8)

Then f has at most one fixed point, and fx = x yields

limn→∞p(f
nx0, x) = p(fx, x) = 0, x0 ∈ X.

If (X, p) is 0-complete, then f has a fixed point.

Proof. Suppose x, y are two fixed points of f . Then we have (see (8))

ψ(p(y, x)) = ψ(p(fy, fx)) ≤ ϕ(p(y, x))

which contradicts (5b). Therefore, x is unique.
Lemma 3.2 applies to xn = fnx0, n ∈ N. Consequently, if (X, p) is 0-complete,

then there exists a point x such that limn→∞p(xn, x) = 0. Now, it is sufficient to
prove that p(fx, x) = 0. We have

p(fx, x) ≤ p(fx, xn+1) + p(xn+1, x) = p(fx, fxn) + p(xn+1, x).

If p(fx, fxn) > 0 holds, then we get ψ(p(fx, fxn)) ≤ ϕ(p(x, xn)) (see (8)), and
p(fx, fxn) < p(x, xn) (see (5b)). Now, p(fx, x) ≤ p(x, xn) + p(xn+1, x) → 0 means
that p(fx, x) = 0, and x is a fixed point. �

Let us consider ϕ,ψ : (0,∞) → [0,∞) such that ψ = id, ϕ(α) < α, α > 0, and
for each α > 0 ϕ(·) ≤ α on some interval (α, α + ε). Clearly, (5b) is satisfied. Let
α > 0 be arbitrary. Then, ψ(α, α + ε) = (α, α + ε), and for some small ε > 0 we get
ϕ(α, α+ ε) ⊂ [0, α], i.e. (5c) holds.

Corollary 3.4. Theorem 3.3 is an extension of [10, Theorem 3.1 (6)] which in turn
is a generalization of the Boyd-Wong theorem [2].
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Remark 3.5. Let us consider ψ(α) = α, α ≥ 0, and ϕ(α) = α2 for 0 ≤ α < 1,
ϕ(1) = 1/2, and ϕ(α) = 1 for α > 1. It can be seen that (1b) is not satisfied (consider
an = bn

2 < 1, bn → 1), while (5b), (5c) hold. Therefore, [10, Theorem 3.1 (6)] cannot
be derived from the Su-Yao theorem.

Proposition 3.6. Let (xn)n∈N, (yn)n∈N be sequences of points in a d-metric (partial
metric) space (X, p) such that

limn→∞p(xn, yn) = limn→∞p(xn+1, xn) = 0.

In addition, assume that for an infinite set K ⊂ N, and n = n(k) ∈ N, k ∈ K, we
have limk∈Kp(xk+n, yk) = α. Then for any fixed t ∈ N, and all i, j = 0,±1, . . . ,±t
the following conditions are satisfied

limm→∞p(xm+i, ym+j) = 0, (9a)

limk∈Kp(xk+n+i, yk+j) = α. (9b)

Proof. Clearly, limn→∞p(xm+i, xm+j) = 0 holds (see (3c)). Now,

p(xm+j , ym+j)− p(xm+j , xm+i) ≤ p(xm+i, ym+j) ≤ p(xm+i, xm+j) + p(xm+j , ym+j)

yields (9a). In turn, (9a) and

p(xk+n, yk)− p(xk+n, xk+n+i)− p(yk+j , xk)− p(xk, yk) ≤ p(xk+n+i, yk+j)

≤ p(xk+n+i, xk+n) + p(xk+n, yk) + p(yk, xk) + p(xk, yk+j)

yield (9b). �

Let us recall the notion of a cyclic mapping. The definition was formalized by Rus
[14], while the idea itself is due to [5]. We adopt the notations from [10, Definition
2.5], because they are convenient and the case of one set (t = 1) is included.

For a t ∈ N we put t + + = 1, and j + + = j + 1, for j ∈ {1, . . . , t − 1}. Then
f : X → X is cyclic if X = X1 ∪ · · · ∪Xt, and f(Xj) ⊂ Xj++, j = 1, . . . , t.

For a self mapping f on a d-metric (partial metric) space (X, p) we put

mf (y, x) = max{p(y, x), p(fy, y), p(fx, x)}, x, y ∈ X.

Theorem 3.7. Assume that f is a cyclic self mapping on a d-metric (partial metric)
space (X, p), ψ � ϕ, and the following condition is satisfied

p(fy, fx) > 0 yields ψ(p(fy, fx)) ≤ ϕ(mf (y, x)),

x ∈ Xj, y ∈ Xj++, j = 1, . . . , t.
(10)

Then f has at most one fixed point, and fx = x yields

limn→∞p(f
nx0, x) = p(fx, x) = 0, x0 ∈ X.

If (X, p) (or some Xj) is 0-complete, then for each x0 ∈ X there exists an x ∈ X
such that limn→∞p(f

nx0, x) = p(x, x) = 0; if f is 0-continuous at such an x, then
fx = x.
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Proof. Let x be a fixed point of f , and suppose p(fx, x) > 0. Then (see (10))

ψ(p(x, x)) = ψ(p(fx, fx)) ≤ ϕ(mf (x, x)) = ϕ(p(x, x))

contradicts (5b). Therefore, we have p(fx, x) = 0. Now, if x, y are fixed points of f ,
then mf (y, x) = p(y, x), and as in the proof of Theorem 3.3 we get x = y.

We put xn = fnx0, n ∈ N. Then, (10), (5b) imply

p(xn+2, xn+1) > 0 yields ψ(p(xn+2, xn+1)) ≤ ϕ(mf (xn+1, xn))

= ϕ(max{p(xn+1, xn), p(xn+2, xn+1)}) = ϕ(p(xn+1, xn)).

Now, in view of Proposition 3.1 we get an = p(xn+1, xn)→ 0.
Suppose that for an infinite subset K of N and each k ∈ K there exist n ∈ N for

which 0 < α < p(x(n+1)t+k+2, xk+1) holds. Let n = n(k) be the smallest such number.
In view of (9a), for m replaced by nt+ k + 2, we have

α < p(x(n+1)t+k+2, xk+1) ≤ p(x(n+1)t+k+2, xnt+k+2) + p(xnt+k+2, xk+1)

≤ p(x(n+1)t+k+2, xnt+k+2) + α→ α.

Thus, limk∈Kp(x(n+1)t+k+2, xk+1) = limk∈Kp(xnt+k+2, xk+1) = α holds. Now,
for yk = xk+1 (9b) yields limk∈Kp(x(n+1)t+k+1, xk) = α, and therefore, we have
mf (x(n+1)t+k+1, xk) = p(x(n+1)t+k+1, xk) for large k. In turn, from (10) it follows
that

ψ(p(x(n+1)t+k+2, xk+1) ≤ ϕ(p(x(n+1)t+k+1, xk)),

which contradicts (5b) or (5c) for large k. Thus, limk,n→∞ p(xnt+k+2, xk+1) = 0
holds, and therefore, limm,n→∞p(xn, xm) = 0 (see (9b)).

If (X, p) (or some Xj) is 0-complete, then for each x0 ∈ X there exists an x such
that limn→∞p(xn, x) = p(x, x) = 0. If f is 0-continuous at such an x, then

p(fx, x) ≤ p(fx, xn+1) + p(xn+1, x)

and limn→∞p(xn, x) = 0 yield p(fx, x) = 0.
Now, assume p(fy, y) = 0, limm,n→∞p(xn, xm) = 0, and suppose p(y, xn) > α > 0,

n ∈ N. Then, from (10) we get

ψ(p(y, xn+1)) = ψ(p(fy, xn+1)) ≤ ϕ(mf (y, xn)) =

ϕ(max{p(y, xn), p(fy, y), p(xn+1, xn)}) = ϕ(p(y, xn))

for large n. Therefore, we have an = p(y, xn)→ 0 (see Proposition 3.1), a contradic-
tion. Consequently, there exists a subsequence of (p(y, xn))n∈N, which is convergent
to 0. This fact, (3c), and limm,n→∞p(xn, xm) = 0 yield limn→∞p(y, xn) = 0, and
p(y, fnx0)→ 0 for all x0 ∈ X. �

Theorem 3.3 has the following “cyclic” extension. The proof of Theorem 3.7
for mf , (10) replaced by p, (11), respectively, becomes a proof of Theorem 3.8
(“ϕ(max{. . . }) =” should be then omitted).

Theorem 3.8. Assume that f is a cyclic self mapping on a d-metric (partial metric)
space (X, p), ψ � ϕ, and the following condition is satisfied

p(fy, fx) > 0 yields ψ(p(fy, fx)) ≤ ϕ(p(y, x)),

x ∈ Xj, y ∈ Xj++, j = 1, . . . , t.
(11)
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Then f has at most one fixed point, and fx = x yields

limn→∞p(f
nx0, x) = p(fx, x) = 0, x0 ∈ X.

If (X, p) (or some Xj) is 0-complete, then f has a fixed point.

For a selfmapping f on a d-metric (partial metric) space (X, p) we put

cf (y, x) = max{mf (y, x), [p(fy, x) + p(fx, y)]/2}
= max{p(y, x), p(fy, y), p(fx, x), [p(fy, x) + p(fx, y)]/2}, x, y ∈ X.

Theorem 3.9. Assume that f is a cyclic self mapping on a partial metric space
(X, p), ψ � ϕ, and the following condition is satisfied

p(fy, fx) > 0 yields ψ(p(fy, fx)) ≤ ϕ(cf (y, x)),

x ∈ Xj, y ∈ Xj++, j = 1, . . . , t.
(12)

Then f has at most one fixed point, and fx = x yields

limn→∞p(f
nx0, x) = p(fx, x) = 0, x0 ∈ X.

If (X, p) (or some Xj) is 0-complete, then for each x0 ∈ X there exists an x ∈ X
such that limn→∞p(f

nx0, x) = p(x, x) = 0; if f is 0-continuous at such an x, then
fx = x.

Proof. If x, y are fixed points of f , then cf (y, x) = p(y, x) (see (4b)) and, as in the
initial part of the proof of Theorem 3.3, we get p(y, x) = 0. Now, for xn = fnx0,
n ∈ N, we have (see (4d))

[p(xn+2, xn) + p(xn+1, xn+1)]/2

≤ [p(xn+2, xn+1) + p(xn+1, xn)− p(xn+1, xn+1) + p(xn+1, xn+1)]/2

= [p(xn+2, xn+1) + p(xn+1, xn)]/2 ≤ max{p(xn+2, xn+1), p(xn+1, xn)}.

Therefore, the following holds

cf (xn+1, xn) = max{p(xn+1, xn), p(xn+2, xn+1), p(xn+1, xn), [p(xn+2, xn)

+ p(xn+1, xn+1)]/2}
= max{p(xn+1, xn), p(xn+2, xn+1)},

and from (12), (5b) it follows that

p(xn+2, xn+1) > 0 yields ψ(p(xn+2, xn+1))

≤ ϕ(max{p(xn+1, xn), p(xn+2, xn+1)}) = ϕ(p(xn+1, xn)).

Now, in view of Proposition 3.1 we get an = p(xn+1, xn)→ 0.
In what follows we apply the triangle inequality (3c) instead of (4d).
Suppose that for an infinite subset K of N and each k ∈ K there exist n ∈ N for

which 0 < α < p(x(n+1)t+k+2, xk+1) holds. Let n = n(k) be the smallest such number.
Then in view of (9a), for m replaced by nt+ k + 2, we obtain

α < p(x(n+1)t+k+2, xk+1) ≤ p(x(n+1)t+k+2, xnt+k+2) + p(xnt+k+2, xk+1)

≤ p(x(n+1)t+k+2, xnt+k+2) + α→ α,
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and limk∈Kp(x(n+1)t+k+2, xk+1) = limk∈Kp(xnt+k+2, xk+1) = α. As regards

cf (x(n+1)t+k+1, xk) = max{p(x(n+1)t+k+1, xk), p(x(n+1)t+k+2, x(n+1)t+k+1),

p(xk+1, xk), [p(x(n+1)t+k+2, xk) + p(xk+1, x(n+1)t+k+1)]/2},

from (9b) for yk = xk+1 we get limk∈Kcf (x(n+1)t+k+1, xk) = α. Now, (12) yields

ψ(p(x(n+1)t+k+2, xk+1)) ≤ ϕ(cf (x(n+1)t+k+1, xk)),

which contradicts (5b) or (5c) for large k. Thus, limk,n→∞ p(xnt+k+2, xk+1) = 0
holds, and therefore, limm,n→∞p(xn, xm) = 0 (see (9b)).

If (X, p) (or some Xj) is 0-complete, then for each x0 ∈ X there exists an x such
that limn→∞p(xn, x) = p(x, x) = 0. If f is 0-continuous at such an x, then

p(fx, x) ≤ p(fx, xn+1) + p(xn+1, x)

and limn→∞p(xn, x) = 0 yield p(fx, x) = 0.
Now, assume p(fy, y) = 0, limm,n→∞p(xn, xm) = 0, and suppose p(y, xn) > α > 0,

n ∈ N. Then, (12) implies

ψ(p(y, xn+1)) = ψ(p(fy, xn+1)) ≤ ϕ(cf (y, xn))

= ϕ(max{p(y, xn), p(fy, y), p(xn+1, xn), [p(fy, xn) + p(xn+1, y)]/2})
= ϕ(max{p(y, xn), [p(y, xn) + p(xn+1, y)]/2})

for large n. In view of (5b) the following inequality holds for large n

p(y, xn+1) < max{p(y, xn), [p(y, xn) + p(y, xn+1)]/2} = p(y, xn).

Therefore, we have an = p(y, xn) → 0 (see Proposition 3.1), a contradiction. Con-
sequently, there exists a subsequence of (p(y, xn))n∈N, which is convergent to 0.
This fact, (3c), and limm,n→∞p(xn, xm) = 0 prove that limn→∞p(y, xn) = 0, and
p(y, fnx0)→ 0 for all x0 ∈ X. �

From Theorem 3.7 for t = 1 we obtain

Theorem 3.10. Assume that f is a self mapping on a d-metric (partial metric space)
(X, p), ψ � ϕ, and the following condition is satisfied

p(fy, fx) > 0 yields ψ(p(fy, fx)) ≤ ϕ(mf (y, x)), x, y ∈ X.

Then f has at most one fixed point, and fx = x yields

limn→∞p(f
nx0, x) = p(fx, x) = 0, x0 ∈ X.

If (X, p) is 0-complete, then for each x0 ∈ X there exists an x such that

limn→∞p(f
nx0, x) = p(x, x) = 0;

if f is 0-continuous at such an x, then fx = x.

Now, [10, Theorem 3.1 (7)] is a consequence of Theorem 3.10 for ϕ,ψ preceding
Corollary 3.4.

In turn, Theorem 3.9 for t = 1 yields
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Theorem 3.11. Assume that f is a self mapping on a partial metric space (X, p),
ψ � ϕ, and the following condition is satisfied

p(fy, fx) > 0 yields ψ(p(fy, fx)) ≤ ϕ(cf (y, x)), x, y ∈ X.
Then f has at most one fixed point, and fx = x yields

limn→∞p(f
nx0, x) = p(fx, x) = 0, x0 ∈ X.

If (X, p) is 0-complete, then for each x0 ∈ X there exists an x such that

limn→∞p(f
nx0, x) = p(x, x) = 0;

if f is 0-continuous at such an x, then fx = x.

Theorems 3.3, 3.10, and also Theorems 3.8, 3.7 (for the related m,n) are far con-
sequences of the following result.

Theorem 3.12. Assume that f is a self mapping on a 0-complete d-metric (partial
metric) space (X, p), ψ � ϕ, and the system of conditions (7) holds for xn = fnx0,
n ∈ N, each α > 0, and appropriately large m,n ∈ N. Then there exists a point x
such that limn→∞p(xn, x) = p(x, x) = 0; if f is 0-continuous at x, then p(fx, x) = 0.

Proof. From Lemma 3.2 it follows that limn→∞p(xn, x) = p(x, x) = 0 for some x ∈ X.
Now,

p(fx, x) ≤ p(fx, xn+1) + p(xn+1, x) = p(fx, fxn) + p(xn+1, x)

yields p(fx, x) = 0, as f is 0-continuous at x. �

4. Addendum: new results for dq-metric, and final remarks

Lemma 3.2 has the following “dq-metric” version.

Lemma 4.1. Let (X, p) be a dq-metric space, and let (xn)n∈N be a sequence of points
of X such that for some ψ � ϕ, each α > 0, and appropriately large m,n ∈ N the
following conditions are satisfied

p(xn+1, xn+2) > 0 yields ψ(p(xn+1, xn+2)) ≤ ϕ(p(xn, xn+1)), (13a)

p(xn+2, xn+1) > 0 yields ψ(p(xn+2, xn+1)) ≤ ϕ(p(xn+1, xn)), (13b)

p(xn+1, xm+1) > α yields ψ(p(xn+1, xm+1)) ≤ ϕ(p(xn, xm)) (13c)

Then limm,n→∞p(xn, xm) = 0, and if (X, p) is 0-complete, then there exists an x such
that limn→∞p(xn, x) = limn→∞p(x, xn) = p(x, x) = 0.

Proof. The reasoning from the proof of Lemma 3.2 for (13b), (13c) (i.e. (7)) yields
limn≥m→∞ p(xn, xm) = 0; its symmetric version for (13a), (13c), an = p(xn, xn+1)
and α < p(xk+1, xk+n+1) proves that limm≥n→∞ p(xn, xm) = 0. Consequently,
limm,n→∞p(xn, xm) = 0 holds. �

Theorem 3.3 has the following “dq-metric” extension.

Theorem 4.2. Assume that f is a self mapping on a dq-metric space (X, p), ψ � ϕ,
and (8) is satisfied. Then f has at most one fixed point, and fx = x yields

limn→∞p(f
nx0, x) = p(fx, x) = 0 = p(x, fx) = limn→∞p(x, f

nx0), x0 ∈ X.
If (X, p) is 0-complete, then f has a fixed point.
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Proof. Clearly, f has at most one fixed point (see the proof of Theorem 3.3). We
apply Lemma 4.1 to xn = fnx0, n ∈ N, and for x such that

limn→∞p(xn, x) = limn→∞p(x, xn) = 0

we obtain p(fx, x) = 0 as in the proof of Theorem 3.3, and p(x, fx) = 0 in a symmetric
way. �

Also Theorem 3.12 has a “dq-metric” extension.

Theorem 4.3. Assume that f is a self mapping on a 0-complete dq-metric space
(X, p), ψ � ϕ, and the the system of conditions (13) holds for xn = fnx0, n ∈ N,
each α > 0, and appropriately large m,n ∈ N. Then there exists a point x such that

limn→∞p(xn, x) = limn→∞p(x, xn) = p(x, x) = 0;

if f is 0-continuous at x, then p(fx, x) = p(x, fx) = 0.

Proof. We apply Lemma 4.1. The final part of our theorem can be obtained as in the
proof of Theorem 3.12 (also use the symmetric reasoning). �

Remark 4.4. The proofs of our theorems work also for the f orbitally 0-complete
spaces (the respective sequences consist of points of any orbit of f). Therefore, all
theorems of the present paper stay valid if we replace “0-complete” by “f orbitally
0-complete”.

Remark 4.5. If g is a self mapping on X, and f = gs has a unique fixed point,
then g has a unique fixed point, and moreover, limn→∞p(f

nx0, x) = 0 yields
limn→∞p(g

nx0, x) = 0 (see [8, Lemma 29]). Consequently, if f = gs satisfies the
assumptions of the respective theorem presented in this paper (see also Remark 4.4),
then its conclusion concerns g. Let us note that Theorems 3.12, 4.3 do not ensure f
to have a unique fixed point.

Remark 4.6. The final Remark from [4]: “. . . , it is a reasonable conjecture that
every fixed point theorem for a single map defined on a metric space is extendable
to the corresponding fixed point theorem on a d-metric space”. The idea of Jungck
and Rhoades is to remove the assumption p(x, x) = 0 from the proofs. Proving new
theorems at once for d-metric spaces seems to be more efficient.
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