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1. Introduction

In our main section we present a variety of coincidence results of Leray–Schauder
type for general classes of maps. The ideas presented are elementary and are based
on homotopy methods and on an Urysohn type lemma. Also in this paper we present
generalized Furi–Pera type fixed point theorems. Our final section presents a very
elementary approach to establishing Leray–Schauder nonlinear alternatives. The re-
sults presented in section 2 extend all previously known results in the literature (see
[1, 4–9] and the references therein).

2. Main results

In this section we obtain a variety of Leray–Schauder type alternatives for certain
classes of maps. First we consider the classes A and B. Let E be a topological
space and U an open subset of E.

Definition 2.1. We say F ∈ B(U,E) if F : U → 2E and F ∈ B(U,E); here 2E

denotes the family of nonempty subsets of E and U denotes the closure of U in E.
We say F ∈ B(E,E) if F : E → 2E and F ∈ B(E,E).

Definition 2.2. We say F ∈ MA(U,E) if F : U → 2E and F ∈ A(U,E). We say
F ∈MA(E,E) if F : E → 2E and F ∈ A(E,E).

In our next five results we fix a Φ ∈ B(E,E). Our first result is a nonlinear
alternative motivated in part by [6, 9].
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Theorem 2.3. Let E be a topological space, U an open subset of E, G : E → 2E,
F : U → 2E, G ∈MA(E,E) and F ∈MA(U,E). In addition assume there exists a map H : U × [0, 1]→ 2E with Φ(x) ∩Ht(x) = ∅

for x ∈ ∂U and t ∈ [0, 1), H1 = F, H0 = G; here Ht(x) = H(x, t)
and ∂U denotes the boundary of U in E

(2.1)

Ω = {x ∈ U : Φ(x) ∩H(x, t) 6= ∅ for some t ∈ [0, 1]} is nonempty (2.2)

and there exists a completely regular (respectively normal) subset X of E with{
Ω ∩X compact (respectively closed) if X
is completely regular (respectively normal)

(2.3){
Φ(x) ∩G(x) = ∅ for x ∈ X \ (U ∩X X) (here

U ∩X X = U ∩X ∩X denotes the closure of U ∩X in X)
(2.4){

for any map J ∈MA(X,X) there exists x ∈ X
with J(x) ∩ Φ(x) 6= ∅ (2.5)

and 
for any continuous map µ : X → [0, 1] with
µ(∂X (U ∩X)) = 0 and µ(Ω ∩X) = 1 the map

Jµ ∈MA(X,X) where Jµ(x) =

{
H(x, µ(x)), x ∈ U ∩X ∩X
G(x), x ∈ X \ (U ∩X ∩X)

and ∂X (U ∩X) denotes the boundary of U ∩X in X.

(2.6)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Proof. Suppose Φ(x) ∩ F (x) = ∅ for x ∈ ∂U (otherwise we are finished). Let Ω be as
in (2.2) and note Ω 6= ∅. Next notice Ω ∩X and ∂X (U ∩X) are disjoint. To see this
first note

∂X (U ∩X) = (U ∩X ∩X) \ (U ∩X)) ⊆ (U ∩X)) \ (U ∩X)

= (U ∩X)) \U ∪ (U ∩X) \X = (U ∩X) \U
⊆ U \U = ∂U,

so ∂X (U ∩X) ⊆ ∂U ∩X and also note

(Ω ∩X) ∩ ∂X (U ∩X) ⊆ (Ω ∩X) ∩ (∂U ∩X).

This together with Ω ∩ ∂U = ∅ (see (2.1)) guarantees that Ω ∩ X and ∂X (U ∩ X)
are disjoint. Now from (2.3) there exists a continuous map µ : X → [0, 1] with
µ(Ω ∩X) = 1 and µ(∂X (U ∩X)) = 0. Define a map J : X → 2X (see (2.6)) by

J(x) =

{
H(x, µ(x)), x ∈ U ∩X ∩X
G(x), x ∈ X \ (U ∩X ∩X).

Now (2.5) and (2.6) guarantee that there exists x ∈ X with Φ(x) ∩ J(x) 6= ∅. Note
(2.4) implies x ∈ U ∩X ∩X so Φ(x) ∩Hµ(x)(x) 6= ∅. As a result x ∈ Ω so µ(x) = 1.
Thus Φ(x) ∩H1(x) 6= ∅ i.e. Φ(x) ∩ F (x) 6= ∅. �

If (2.5) holds with X = E then we have a special case of Theorem 2.3.
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Corollary 2.4. Let E be a completely regular (respectively normal) topological space,
U an open subset of E, G : E → 2E, F : U → 2E, G ∈ MA(E,E) and F ∈
MA(U,E). In addition suppose (2.1) and (2.2) hold, and also assume{

Ω compact (respectively closed) if E
is completely regular (respectively normal)

(2.7)

Φ(x) ∩G(x) = ∅ for x ∈ E \U (2.8){
for any map J ∈MA(E,E) there exists x ∈ E
with J(x) ∩ Φ(x) 6= ∅ (2.9)

and 
for any continuous map µ : E → [0, 1] with
µ(∂ U) = 0 and µ(Ω) = 1 the map

Jµ ∈MA(E,E) where Jµ(x) =

{
H(x, µ(x)), x ∈ U
G(x), x ∈ E \U.

(2.10)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Example 2.5. Let E be a Banach space, U an open subset of E and 0 ∈ U .
In Theorem 2.3 we let G = 0 (the zero map) and Φ = i (the identity map).
We say H ∈ MA(U,E) if H : U → C(E) (here C(E) denotes the family of

nonempty convex subsets of E), graphH is closed, H maps compact sets into rela-
tively compact sets and the following condition is satisfied:{

M ⊆ U, M = co ({0} ∪H(M)) and M = C with
C ⊆M countable implies M is compact.

In Theorem 2.3 for F we assume F ∈MA(U,E) and in addition suppose the following
two conditions hold (these are needed to guarantee (2.1) and (2.6)):{

M ⊆ U, M ⊆ co ({0} ∪ F (M)) and M = C with
C ⊆M countable implies M is compact

(2.11)

and

x /∈ λF (x) for all x ∈ ∂U and λ ∈ (0, 1). (2.12)

Let H(x, λ) = λF (x). Clearly (2.1) (see (2.12)) and (2.2) hold (note 0 ∈ U and
0 ∈ Ω). Next let

X = co ({0} ∪ F (U)).

Note Ω is closed (see [9]) and (2.3) and (2.4) (note 0 ∈ U) are immediate. Now [9 pp
601] (note (2.11) is needed for this) guarantees that (2.6) holds i.e. Jµ ∈ MA(X,X)
where

Jµ(x) =

{
µ(x)F (x), x ∈ U ∩X ∩X
0, x ∈ X \ (U ∩X ∩X).

Also (2.5) holds (this is the set valued analogue of Mönch’s fixed point theorem due
to O’Regan and Precup [9]). Now Theorem 2.3 guarantees that there exists x ∈ U
with x ∈ F (x).

Next we consider in addition a class D.
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Definition 2.6. We say F ∈ D(U,E) if F : U → 2E and F ∈ D(U,E). We say
F ∈ D(E,E) if F : E → 2E and F ∈ D(E,E).

Definition 2.7. We say F ∈ A(U,E) if F : U → 2E , F ∈ A(U,E) and there exists
a selection Ψ ∈ D(U,E) of F . We say F ∈ A(E,E) if F : E → 2E , F ∈ A(E,E)
and there exists a selection Ψ ∈ D(E,E) of F .

Theorem 2.8. Let E be a topological space, U an open subset of E, G : E → 2E,
F : U → 2E, G ∈ A(E,E) and F ∈ A(U,E). For any selection Ψ ∈ D(U,E) of F
and any selection Λ ∈ D(E,E) of G assume{

there exists a map H : U × [0, 1]→ 2E with Φ(x) ∩Ht(x) = ∅
for x ∈ ∂U and t ∈ [0, 1), H1 = Ψ, H0 = Λ; here Ht(x) = H(x, t)

(2.13)

Ω = {x ∈ U : Φ(x) ∩H(x, t) 6= ∅ for some t ∈ [0, 1]} is nonempty (2.14)

and there exists a completely regular (respectively normal) subset X of E with (2.3)
holding and

Φ(x) ∩ Λ(x) = ∅ for x ∈ X \ (U ∩X ∩X) (2.15){
for any map J ∈ D(X,X) there exists x ∈ X
with J(x) ∩ Φ(x) 6= ∅ (2.16)

and 
for any continuous map µ : X → [0, 1] with
µ(∂X (U ∩X)) = 0 and µ(Ω ∩X) = 1 the map

Jµ ∈ D(X,X) where Jµ(x) =

{
H(x, µ(x)), x ∈ U ∩X ∩X
Λ(x), x ∈ X \ (U ∩X ∩X).

(2.17)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Proof. Suppose Φ(x) ∩ F (x) = ∅ for x ∈ ∂U . Let Ψ ∈ D(U,E) be any selection of F
and Λ ∈ D(E,E) be any selection of G. Note Φ(x)∩Ψ(x) = ∅ for x ∈ ∂U . Let Ω be as
in (2.14) and note Ω 6= ∅. Also Ω∩X and ∂X (U ∩X) are disjoint. Then there exists
a continuous map µ : X → [0, 1] with µ(Ω∩X) = 1 and µ(∂X (U ∩X)) = 0. Define
a map Jµ : X → 2X as in (2.17). Now there exists x ∈ X with Φ(x) ∩ Jµ(x) 6= ∅.
Note (2.15) guarantee that x ∈ U ∩X ∩X so Φ(x)∩Hµ(x)(x) 6= ∅. As a result x ∈ Ω
so µ(x) = 1. Thus Φ(x) ∩H1(x) 6= ∅ i.e. Φ(x) ∩Ψ(x) 6= ∅. Thus Φ(x) ∩ F (x) 6= ∅. �

In fact if we slightly change Ω in (2.2) (or (2.14)) in Theorem 2.3 (or Theorem 2.8)
(see [1]) then we can obtain similar type results.

Theorem 2.9. Let E be a topological space, U an open subset of E, G : E → 2E,
F : U → 2E, G ∈ MA(E,E) and F ∈ MA(U,E). Assume there exists a completely
regular (respectively normal) subset X of E with there exists a map H : (U ∩X ∩X)× [0, 1]→ 2E with

Φ(x) ∩Ht(x) = ∅ for x ∈ ∂X (U ∩X) and t ∈ [0, 1),
H1 = F, H0 = G; here Ht(x) = H(x, t)

(2.18)

Ω = {x ∈ U ∩X ∩X : Φ(x)∩H(x, t) 6= ∅ for some t ∈ [0, 1]} is nonempty (2.19)
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Ω is compact (respectively closed) if X
is completely regular (respectively normal)

(2.20)
for any continuous map µ : X → [0, 1] with
µ(∂X (U ∩X)) = 0 and µ(Ω) = 1 the map

Jµ ∈MA(X,X) where Jµ(x) =

{
H(x, µ(x)), x ∈ U ∩X ∩X
G(x), x ∈ X \ (U ∩X ∩X)

(2.21)

and also suppose (2.4) and (2.5) hold. Then there exists x ∈ U (in fact x ∈ U ∩X∩X)
with Φ(x) ∩ F (x) 6= ∅.

Remark 2.10. One could replace (2.18) with{
there exists a map H : U × [0, 1]→ 2E with Φ(x) ∩Ht(x) = ∅
for x ∈ ∂U and t ∈ [0, 1), H1 = F, H0 = G

or {
there exists a map H : (U ∩X ∩X)× [0, 1]→ 2E with Φ(x) ∩Ht(x) = ∅
for x ∈ ∂U ∩X and t ∈ [0, 1), H1 = F, H0 = G.

This is immediate since ∂X (U ∩X) ⊆ ∂U and ∂X (U ∩X) ⊆ ∂U ∩X (see Theorem
2.3).

Proof. Suppose Φ(x) ∩ F (x) = ∅ for x ∈ ∂X (U ∩X) (otherwise we are finished). Let
Ω be as in (2.19) and note Ω and ∂X (U ∩X) are disjoint (see (2.18) and the above
assumption). Then there exists a continuous map µ : X → [0, 1] with µ(Ω) = 1 and
µ(∂X (U ∩X)) = 0. Define a map Jµ : X → 2X as in (2.21). Now there exists x ∈ X
with Φ(x) ∩ Jµ(x) 6= ∅. Note x ∈ U ∩X ∩X so x ∈ Ω and µ(x) = 1. �

A similar argument establishes the following result.

Theorem 2.11. Let E be a topological space, U an open subset of E, G : E → 2E,
F : U → 2E, G ∈ A(E,E) and F ∈ A(U,E). For any selection Ψ ∈ D(U,E)
of F and any selection Λ ∈ D(E,E) of G assume there exists a completely regular
(respectively normal) subset X of E with there exists a map H : (U ∩X ∩X)× [0, 1]→ 2E with

Φ(x) ∩Ht(x) = ∅ for x ∈ ∂X (U ∩X) and t ∈ [0, 1),
H1 = Ψ, H0 = Λ; here Ht(x) = H(x, t)

(2.22)

Ω = {x ∈ U ∩X ∩X : Φ(x)∩H(x, t) 6= ∅ for some t ∈ [0, 1]} is nonempty (2.23)

and also suppose (2.15), (2.16) and (2.20) hold. In addition suppose
for any continuous map µ : X → [0, 1] with
µ(∂X (U ∩X)) = 0 and µ(Ω) = 1 the map

Jµ ∈ D(X,X) where Jµ(x) =

{
H(x, µ(x)), x ∈ U ∩X ∩X
Λ(x), x ∈ X \ (U ∩X ∩X).

(2.24)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Next we present a nonlinear alternative which is motivated in part by maps con-
sidered in [2, 8] (we consider the case when E is a topological vector space but the
case when E is a topological space is noted in a remark).
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Theorem 2.12. Let E be a topological vector space, U an open subset of E, G :
E → 2E, F : U → 2E, G ∈ A(E,E) and F ∈ A(U,E). Suppose there exists a set
K ⊆ E with F (U) ⊆ K and G(E) ⊆ K and assume

F ∈ A(U ∩ L(K) ∩ L(K), L(K)) and G ∈ A(E,L(K)) (2.25)

where L(K) is the linear span of K (i.e. the smallest linear subspace of E that

contains K). For any selection Ψ ∈ D(U ∩ L(K)∩L(K), L(K)) of F and any selection
Λ ∈ D(E,L(K)) of G assume

there exists a map H : (U ∩ L(K) ∩ L(K))× [0, 1]→ 2L(K) with
Φ(x) ∩Ht(x) = ∅ for x ∈ ∂L(K) (U ∩ L(K)) and t ∈ [0, 1),
H1 = Ψ, H0 = Λ; here Ht(x) = H(x, t) and ∂L(K) (U ∩ L(K))
denotes the boundary of U ∩ L(K) in L(K)

(2.26)

{
Ω = {x ∈ U ∩ L(K) ∩ L(K) : Φ(x) ∩H(x, t) 6= ∅ for some t ∈ [0, 1]}
is nonempty and compact

(2.27)

Φ(x) ∩ Λ(x) = ∅ for x ∈ L(K) \ (U ∩ L(K) ∩ L(K)) (2.28){
for any map J ∈ D(L(K), L(K)) there exists x ∈ L(K)
with J(x) ∩ Φ(x) 6= ∅ (2.29)

and 
for any continuous map µ : L(K)→ [0, 1] with
µ(∂L(K) (U ∩ L(K))) = 0 and µ(Ω) = 1 the map
Jµ ∈ D(L(K), L(K)) where

Jµ(x) =

{
H(x, µ(x)), x ∈ U ∩ L(K) ∩ L(K)

Λ(x), x ∈ L(K) \ (U ∩ L(K) ∩ L(K)).

(2.30)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Remark 2.13. Note topological vector spaces are automatically completely regular.
If L(K) is normal then one can replace (2.27) with: Ω is nonempty and closed.

Proof. Note U ∩ L(K) is an open subset of L(K) and U ∩ L(K) L(K) = U ∩ L(K) ∩
L(K); here U ∩ L(K) L(K) denotes the closure of U ∩ L(K) in L(K). Suppose

Φ(x) ∩ F (x) 6= ∅ for x ∈ ∂L(K) (U ∩ L(K)). Let Ψ ∈ D(U ∩ L(K) ∩ L(K), L(K))
be any selection of F and Λ ∈ D(E,L(K)) be any selection of G. Note Ω and
∂L(K) (U ∩L(K)) are disjoint (see (2.26) and the above assumption). Then there ex-
ists a continuous map µ : L(K)→ [0, 1] with µ(Ω) = 1 and µ(∂L(K) (U ∩L(K)) = 0.

Define a map Jµ : L(K) → 2L(K) as in (2.30). Now there exists x ∈ L(K) with

Φ(x) ∩ Jµ(x) 6= ∅. Note x ∈ U ∩ L(K) ∩ L(K) (see (2.28)) so x ∈ Ω and µ(x) = 1. �

Remark 2.14. One could replace (2.26) with{
there exists a map H : U × [0, 1]→ 2L(K) with Φ(x) ∩Ht(x) = ∅
for x ∈ ∂U and t ∈ [0, 1), H1 = Ψ, H0 = Λ

or {
there exists a map H : (U ∩ L(K) ∩ L(K))× [0, 1]→ 2L(K) with
Φ(x) ∩Ht(x) = ∅ for x ∈ ∂U ∩ L(K) and t ∈ [0, 1), H1 = Ψ, H0 = Λ.
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This is immediate since ∂L(K) (U ∩L(K)) ⊆ ∂U and ∂L(K) (U ∩L(K)) ⊆ ∂U ∩L(K);
as before note

∂L(K) (U ∩ L(K)) = (U ∩ L(K) ∩ L(K)) \ (U ∩ L(K)) ⊆ (U ∩ L(K)) \ (U ∩ L(K))

= (U ∩ L(K)) \U ∪ (U ∩ L(K)) \L(K) = (U ∩ L(K)) \U
⊆ U \U = ∂U.

Remark 2.15. There is an obvious analogue of Theorem 2.12 when E is a topological
space: Let U be an open subset of E, G : E → 2E , F : U → 2E , G ∈ A(E,E) and
F ∈ A(U,E). Suppose there exists a set X ⊆ E with F (U) ⊆ X and G(E) ⊆ X and

assume F ∈ A(U ∩X) ∩X,X) and G ∈ A(E,X). For any selection Ψ ∈ D(U ∩X ∩
X,X) of F and any selection Λ ∈ D(E,X) of G assume (2.15), (2.16), (2.22), (2.23),
(2.20) and (2.24) hold. Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Before we discuss Theorem 2.12 we first recall the DKT maps from the literature
[2]. Let Z and W be subsets of Hausdorff topological vector spaces Y1 and Y2 and
F a multifunction. We say F ∈ DKT (Z,W ) if W is convex and there exists a map
S : Z → W with co (S(x)) ⊆ F (x) for x ∈ Z, S(x) 6= ∅ for each x ∈ Z and the fibres
S−1(w) = {z : w ∈ S(z)} are open (in Z) for each w ∈W .

Example 2.16. Let E be a Hausdorff locally convex linear topological space, U an
open subset of E with 0 ∈ U , G = 0 and Φ = i.

We say H ∈ A(U,E) if H : U → 2E and H ∈ DKT (U,E) is a compact map. Let
D(U,E) denote the class of single valued continuous compact maps.

In Theorem 2.12 for F assume F : U → 2E and F ∈ DKT (U,E) is a compact
map. Let K be a compact set with F (U) ⊆ K and note L(K) is paracompact (see
for example [3])[Also L(K) is normal (recall paracompact spaces are normal)]. Now
suppose

x /∈ λF (x) for all x ∈ ∂L(K)(U ∩ L(K)) and λ ∈ (0, 1). (2.31)

Remark 2.17. We could replace x ∈ ∂L(K)(U ∩ L(K)) with x ∈ ∂U in (2.31) since
∂L(K) (U ∩ L(K)) ⊆ ∂U .

Now if we show F ∈ DKT (U ∩ L(K) ∩ L(K), L(K)) then [2] guarantees that
(recall closed subsets of paracompact spaces are paracompact) there exists a selection

Ψ ∈ D(U ∩ L(K) ∩ L(K), L(K)) of F so F ∈ A(U ∩ L(K) ∩ L(K), L(K)). Since
F ∈ DKT (U,E) then there exists a map θ : U → E with co (θ(x)) ⊆ F (x) for x ∈ U ,
θ(x) 6= ∅ for each x ∈ U and θ−1(y) = {z ∈ U : y ∈ θ(z)} is open (in U) for each

y ∈ E. Let θ? denote the restriction of θ to U ∩ L(K)∩L(K). Note co (θ?(x)) ⊆ F (x)

for x ∈ U ∩ L(K) ∩ L(K) and θ?(x) 6= ∅ for each x ∈ U ∩ L(K) ∩ L(K). If y ∈ L(K)

then (note U ∩ L(K) ∩ L(K) ∩ U = U ∩ L(K) ∩ L(K) since U ∩ L(K) ⊆ U),

(θ?)−1(y) = {z ∈ U ∩ L(K) ∩ L(K) : y ∈ θ?(z)}
= {z ∈ U ∩ L(K) ∩ L(K) : y ∈ θ(z)}
= U ∩ L(K) ∩ L(K) ∩ {z ∈ U : y ∈ θ(z)}
= U ∩ L(K) ∩ L(K) ∩ θ−1(y)
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which is open in U ∩ L(K) ∩ L(K). Thus F ∈ DKT (U ∩ L(K) ∩ L(K), L(K)).

Let Λ = 0 and let f : U ∩ L(K) ∩ L(K) → L(K) be any continuous compact
selection of F . Now let H(x, t) = t f(x). Clearly (2.26) (use (2.31)), (2.27) (note
0 ∈ U), (2.28) (note Λ = 0 and 0 ∈ U), (2.29) (Schauder-Tychonoff fixed point
theorem) and (2.30) hold. Theorem 2.12 guarantees that there exists x ∈ U with
x ∈ F (x) (for another approach we refer the reader to [8]).

Next we present a Furi–Pera type result (see [4, 7] and the references therein).

Theorem 2.18. Let E be a topological vector space, Q a closed subset of E, C a
closed convex subset of E with Q ⊆ C, F ∈ MA(Q,C) and Φ ∈ MA(Q,C). In
addition assume:

there exists a retraction r : E → Q (2.32)

Ω = {x ∈ E : x ∈ F r(x)} is nonempty and compact (2.33)

and {
the topology induced on C is metrizable;
let d? denote the metric.

(2.34)

For i ∈ {1, 2, ...} let Ui = {x ∈ C : d?(x,Q) < 1
i }. Suppose for each i ∈ {1, 2, ...},

F r ∈MA(Ui, C) and Φ r ∈MA(Ui, E) (2.35) either (A1). there exists x ∈ Ui with x ∈ F r(x),
or (A2). there exists x ∈ ∂Ui and λ ∈ (0, 1) with
x ∈ λF r(x) + (1− λ) Φ r(x), hold

(2.36)

{x ∈ E : x ∈ λF r(x) + (1− λ) Φ r(x) for some λ ∈ [0, 1]} is compact (2.37)
if {(xj , λj}∞j=1 is a sequence in ∂Ui × [0, 1] converging
to (x, λ) with x ∈ ∂Q and xj ∈ λj F r (xj) + (1− λj) Φ r (xj),
then x ∈ λF r (x) + (1− λ) Φ r (x) = λF (x) + (1− λ) Φ (x)

(2.38)

and 
if {(xj , λj}∞j=1 is a sequence in Q× [0, 1] converging
to (x, λ) with x ∈ λF (x) + (1− λ) Φ (x) and 0 ≤ λ < 1,
then {λj F (xj) + (1− λj) Φ (xj)} ⊆ Q for j sufficiently large.

(2.39)

Then F has a fixed point in Q.

Proof. Let Ω be as in (2.33) and note Ω ⊆ C (recall F : Q → 2C). We claim
Ω ∩ Q 6= ∅. To do this we argue by contradiction. Suppose that Ω ∩ Q = ∅. Then
since Ω is compact and Q is closed there exists δ > 0 with

dist(Ω, Q) = inf{d?(x, y) : x ∈ Ω, y ∈ Q} > δ.

Choose m ∈ {1, 2, ...} with 1 < δm and let (as in the statement of the theorem)

Ui =

{
x ∈ C : d?(x,Q) <

1

i

}
for i ∈ {m,m+ 1, ...}.



GENERALIZED LERAY–SCHAUDER NONLINEAR ALTERNATIVES 307

Fix i ∈ {m,m + 1, ...}. Since dist(Ω, Q) > δ we see that Ω ∩ Ui = ∅ (note

Ui = Ui d
? = {x ∈ C : d?(x,Q) ≤ 1

i } and ∂Ui = {x ∈ C : d?(x,Q) = 1
i }). Now

(2.36) guarantees that there exists λi ∈ (0, 1) and yi ∈ ∂Ui with

yi ∈ λi F r(yi) + (1− λi) Φ r(yi).

Since yi ∈ ∂Ui we have

{λi F r(yi) + (1− λi) Φ r(yi)} 6⊆ Q for i ∈ {m,m+ 1, ...}. (2.40)

Let

K = {x ∈ E : x ∈ λF r(x) + (1− λ) Φ r(x) for some λ ∈ [0, 1]}.
Now K 6= ∅ is compact (see (2.33) and (2.37)) and K ⊆ C since F : Q → 2C ,
Φ : Q→ 2C and C is convex. This together with

d?(yj , Q) =
1

j
and |λj | ≤ 1 for j ∈ {m,m+ 1, ...}

implies that we may assume without loss of generality that λj → λ? and yj → y? ∈
∂Q. Now (2.38) implies y? ∈ λ? F r(y?) + (1− λ?) Φ r(y?) i.e.

y? ∈ λ? F (y?) + (1− λ?) Φ (y?)

since r(y?) = y?. If λ? = 1 then y? ∈ F (y?) which contradicts Ω ∩ Q = ∅. Thus
0 ≤ λ? < 1. Now (2.39) with xj = r(yj) and x = y? = r(y?) implies

{λj F r(yj) + (1− λj) Φ r(yj)} ⊆ Q for j sufficiently large.

This contradicts (2.40).
Thus Ω ∩Q 6= ∅ so there exists x ∈ Q with x ∈ F r(x) = F (x). �

Remark 2.19. Suppose in Theorem 2.18 we change (2.32) to:

there exists a retraction r : E → Q with r(z) ∈ ∂Q for z ∈ E \Q. (2.41)

Then the result in Theorem 2.18 again holds provided (2.39) is changed to (note
xj = r(yj) ∈ ∂ Q in the above proof)

if {(xj , λj}∞j=1 is a sequence in ∂ Q× [0, 1] converging
to (x, λ) with x ∈ λF (x) + (1− λ) Φ (x) and 0 ≤ λ < 1,
then {λj F (xj) + (1− λj) Φ (xj)} ⊆ Q for j sufficiently large.

A similar argument establishes the following result.

Theorem 2.20. Let E be a topological vector space, Q a closed subset of E, C a
closed convex subset of E with Q ⊆ C, F ∈ A(Q,C) and Φ ∈ A(Q,C). In addition
assume (2.32), (2.34) and{

for any selection Ψ ∈ D(Q,C) of F assume Ψ r ∈ D(E,C),
Ψ r has a fixed point in C and Ω = {x ∈ E : x ∈ Ψ r(x)} is compact

(2.42)

hold. For i ∈ {1, 2, ...} let Ui = {x ∈ C : d?(x,Q) < 1
i }. Suppose for each i ∈

{1, 2, ...} and for any selection Ψ ∈ D(Q,C) of F and any selection φ ∈ D(Q,C) of
Φ we have the following:

Ψ r ∈ D(Ui, C) and φ r ∈ D(Ui, C) (2.43)
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or (A2). there exists x ∈ ∂Ui and λ ∈ (0, 1) with
x ∈ λΨ r(x) + (1− λ)φ r(x), hold

(2.44)

{x ∈ E : x ∈ λΨ r(x) + (1− λ)φ r(x) for some λ ∈ [0, 1]} is compact (2.45)
if {(xj , λj}∞j=1 is a sequence in ∂Ui × [0, 1] converging
to (x, λ) with x ∈ ∂Q and xj ∈ λj Ψ r (xj) + (1− λj)φ r (xj),
then x ∈ λΨ r (x) + (1− λ)φ r (x) = λΨ (x) + (1− λ)φ (x)

(2.46)

and 
if {(xj , λj}∞j=1 is a sequence in Q× [0, 1] converging
to (x, λ) with x ∈ λΨ (x) + (1− λ)φ (x) and 0 ≤ λ < 1,
then {λj Ψ (xj) + (1− λj)φ (xj)} ⊆ Q for j sufficiently large.

(2.47)

Then F has a fixed point in Q.

Remark 2.21. Suppose in Theorem 2.20 we change (2.32) to (2.41). Then the result
in Theorem 2.20 again holds provided (2.47) is changed to

if {(xj , λj}∞j=1 is a sequence in ∂ Q× [0, 1] converging
to (x, λ) with x ∈ λΨ (x) + (1− λ)φ (x) and 0 ≤ λ < 1,
then {λj Ψ (xj) + (1− λj)φ (xj)} ⊆ Q for j sufficiently large.

We conclude this section by presenting another nonlinear alternative if we slightly
change Ω in (2.2) (or (2.14)) and (2.19) (or (2.23)) in Theorem 2.3 (or Theorem 2.8)

and Theorem 2.9 (or Theorem 2.11) (note U ∩X X = U ∩X ∩ X ⊆ X ∩ U ∩ X =
X ∩ U ⊆ U).

Theorem 2.22. Let E be a topological space, U an open subset of E, G : E → 2E,
F : U → 2E, G ∈ MA(E,E) and F ∈ MA(U,E). Assume there exists a completely
regular (respectively normal) subset X of E with there exists a map H : (X ∩ U)× [0, 1]→ 2E with

Φ(x) ∩Ht(x) = ∅ for x ∈ ∂X (X ∩ U) and t ∈ [0, 1),
H1 = F, H0 = G; here Ht(x) = H(x, t)

(2.48)

Ω = {x ∈ X ∩ U : Φ(x) ∩H(x, t) 6= ∅ for some t ∈ [0, 1]} is nonempty (2.49){
Ω is compact (respectively closed) if X
is completely regular (respectively normal)

(2.50)

Φ(x) ∩G(x) = ∅ for x ∈ X \ (X ∩ U) (2.51)
for any continuous map µ : X → [0, 1] with
µ(∂X (X ∩ U)) = 0 and µ(Ω) = 1 the map

Jµ ∈MA(X,X) where Jµ(x) =

{
H(x, µ(x)), x ∈ X ∩ U
G(x), x ∈ X \ (X ∩ U)

(2.52)

and also suppose (2.5) holds. Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Proof. Suppose Φ(x) ∩ F (x) = ∅ for x ∈ ∂X (X ∩ U) (otherwise we are finished). Let
Ω be as in (2.49) and note Ω and ∂X (X ∩ U) are disjoint (see (2.48) and the above
assumption). Then there exists a continuous map µ : X → [0, 1] with µ(Ω) = 1 and
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µ(∂X (X ∩ U)) = 0. Define a map Jµ : X → 2X as in (2.52). Now (2.5) guarantees

there exists x ∈ X with Φ(x)∩ Jµ(x) 6= ∅. Note x ∈ X ∩U so x ∈ Ω and µ(x) = 1. �

Remark 2.23. In (2.48) (and also (2.52)) we could replace ∂X (X ∩ U) with
∂X (intX (X ∩ U)) (note also that intX (X ∩ U) = X ∩ intX (U)).

A similar argument establishes the following result.

Theorem 2.24. Let E be a topological space, U an open subset of E, G : E → 2E,
F : U → 2E, G ∈ A(E,E) and F ∈ A(U,E). For any selection Ψ ∈ D(U,E)
of F and any selection Λ ∈ D(E,E) of G assume there exists a completely regular
(respectively normal) subset X of E with there exists a map H : (X ∩ U)× [0, 1]→ 2E with

Φ(x) ∩Ht(x) = ∅ for x ∈ ∂X (X ∩ U) and t ∈ [0, 1),
H1 = Ψ, H0 = Λ; here Ht(x) = H(x, t)

(2.53)

Ω = {x ∈ X ∩ U : Φ(x) ∩H(x, t) 6= ∅ for some t ∈ [0, 1]} is nonempty (2.54){
Ω is compact (respectively closed) if X
is completely regular (respectively normal)

(2.55)

Φ(x) ∩ Λ(x) = ∅ for x ∈ X \ (X ∩ U) (2.56)

and also suppose (2.16) holds. In addition suppose
for any continuous map µ : X → [0, 1] with
µ(∂X (X ∩ U)) = 0 and µ(Ω) = 1 the map

Jµ ∈ D(X,X) where Jµ(x) =

{
H(x, µ(x)), x ∈ X ∩ U
Λ(x), x ∈ X \ (X ∩ U).

(2.57)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

3. Elementary approach

In this section we present an elementary approach to establishing Leray–Schauder
nonlinear alternatives. In our first result we fix Φ ∈ B(E,E).

Theorem 3.1. Let E be a topological space, U an open subset of E, Φ ∈ B(E,E)
and F ∈ A(U,E). Suppose the following conditions are satisfied:

there exists a retraction r : E → U with r(w) ∈ ∂U if w ∈ E \U (3.1)

for any selection Ψ ∈ D(U,E) of F assume Ψ r ∈ D(E,E) (3.2)

for any map J ∈ D(E,E) there exists x ∈ E with Φ(x) ∩ J(x) 6= ∅ (3.3)

and  for any selection Ψ ∈ D(U,E) of F there
is no x ∈ E \U and y ∈ ∂U with y = r(x)
and Ψ(y) ∩ Φ(x) 6= ∅.

(3.4)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Proof. Let Ψ ∈ D(U,E) be any selection of F and let G = Ψ r. Now (3.2) and
(3.3) guarantee that there exists x ∈ E with Φ(x) ∩Ψ r(x) 6= ∅. If x ∈ E \U then if
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y = r(x), note y ∈ ∂U and Φ(x) ∩Ψ(y) 6= ∅, and this contradicts (3.4). Thus x ∈ U
so ∅ 6= Φ(x) ∩Ψ r(x) = Φ(x) ∩Ψ (x) ⊆ Φ(x) ∩ F (x). �

Remark 3.2. We could replace (3.2) and (3.3) with: for any selection Ψ ∈ D(U,E)
of F there exists x ∈ E with Φ(x) ∩Ψ r(x) 6= ∅.

Remark 3.3. Let E be a locally convex Hausdorff topological vector space, U an
open convex subset of E, 0 ∈ U and Φ = i (the identity map). Let

r(x) =
x

max{1, µ(x)}
for x ∈ E

where µ is the Minkowski functional on U (i.e. µ(x) = inf{α > 0 : x ∈ αU}). Note
(3.1) holds. Now assume

x /∈ λFx for x ∈ ∂U and λ ∈ (0, 1). (3.5)

We now show (3.4) is true. To see this let Ψ ∈ D(U,E) be any selection of F and
suppose there exists x ∈ E \U and y ∈ ∂U with y = r(x) and Φ(x) ∩ Ψ(y) 6= ∅ (i.e.
x ∈ Ψ(y) i.e. x ∈ Ψ r(x)). Now

y = r(x) =
x

µ(x)
with µ(x) > 1 since x ∈ E \U,

so
x

µ(x)
∈ 1

µ(x)
Ψ(y) i.e. y ∈ λΨ(y) with 0 < λ =

1

µ(x)
< 1,

and this contradicts (3.5). Then (3.4) holds.

Theorem 3.4. Let E be a Hausdorff topological space, U an open subset of E,
Φ ∈ B(U,E), F ∈ A(U,E) and suppose (3.1) holds. In addition assume the following:

for any selection Ψ ∈ D(U,E) of F assume rΨ ∈ D(U,U) (3.6)

for any map J ∈ D(U,U) there exists x ∈ U with Φ(x) ∩ J(x) 6= ∅ (3.7)

and {
for any selection Ψ ∈ D(U,E) of F there is no z ∈ E \U
and x ∈ U with z ∈ Ψ(x) and r(z) ∈ Φ(x).

(3.8)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Proof. Let Ψ ∈ D(U,E) be any selection of F and let G = rΨ. There exists a x ∈ U
with rΨ(x) ∩ Φ(x) 6= ∅. Let w ∈ rΨ(y) ∩ Φ(x). Then w = r(z) for some z ∈ Ψ(x)
and note w ∈ Φ(x). If z ∈ E \U then we have a contradiction with (3.8). Thus z ∈ U
so w = r(z) = z and as a result w ∈ Ψ(x) and z ∈ Φ(x) i.e. z ∈ Ψ(x) ∩ Φ(x). �

Remark 3.5. Let E be a locally convex Hausdorff topological vector space, U an
open convex subset of E, 0 ∈ U and Φ = i. Let

r(x) =
x

max{1, µ(x)}
for x ∈ E

and suppose (3.5) holds. Then (3.8) holds. To see this let Ψ ∈ D(U,E) be any
selection of F and suppose there exists z ∈ E \U and x ∈ U with z ∈ Ψ(x) and
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r(z) ∈ Φ(x) (i.e. r(z) = x). Now

x = r(z) =
z

µ(z)
with µ(z) > 1 since z ∈ E \U,

so x ∈ λΨ(x) with 0 < λ = 1
µ(z) < 1. Note x = r(z) ∈ ∂U since z ∈ E \U . This

contradicts (3.5), so (3.8) holds.

Remark 3.6. There are obvious analogues of Theorem’s 3.1 and 3.4 for MA maps.
For example the analogue of Theorem 3.1 is: Suppose Φ ∈ B(E,E), F ∈MA(U,E)
with (3.1) and the following holding:

there exists x ∈ E with Φ(x) ∩ F r(x) 6= ∅
and

there is no x ∈ E \U and y ∈ ∂U with y = r(x) and F (y) ∩ Φ(x) 6= ∅.
Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Recall F ∈ A(U,E) if F : U → 2E , F ∈ A(U,E) and there exists a selection
Ψ ∈ D(U,E) of F . However in some situations we have a map F : U → 2E ,
F ∈ A(U,E) but we do not know if there exists a selection Ψ ∈ D(U,E) of F . For
example let F : U → 2E with F ∈ DKT (U,E) a compact map (here A(U,E) denotes
the class of compact DKT maps from U to 2E). Suppose D(U,E) denotes the class
of single valued continuous compact maps. If U is paracompact then we know [2]
that there exists a selection Ψ ∈ D(U,E) of F . However if U is not necessarily
paracompact it is also possible to obtain a result of Theorem 3.1 or 3.4 type as we
will now indicate.

Theorem 3.7. Let E be a topological space, U an open subset of E, F : U → 2E

and there exists a set K ⊆ E with F (U) ⊆ K. Also assume Φ ∈ B(K,K) and
F ∈ A(U ∩K ∩K,K). Suppose the following conditions are satisfied:{

there exists a retraction r : K → U ∩K ∩K with
r(w) ∈ ∂K (U ∩K) if w ∈ K \ (U ∩K)

(3.9)

for any selection Ψ ∈ D(U ∩K ∩K,K) of F assume Ψ r ∈ D(K,K) (3.10)

for any map J ∈ D(K,K) there exists x ∈ K with Φ(x) ∩ J(x) 6= ∅ (3.11)

and  for any selection Ψ ∈ D(U ∩K ∩K,K) of F there is no
x ∈ K \ (U ∩K ∩K) and y ∈ ∂K (U ∩K) with y = r(x)
and Ψ(y) ∩ Φ(x) 6= ∅.

(3.12)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Proof. The proof is as in Theorem 3.1 with U replaced by U ∩K and E by K (note

U ∩K is an open subset of K and U ∩K K = U ∩K ∩K. �

Remark 3.8. Returning to our example before Theorem 3.7 let F : U → 2E with
F ∈ DKT (U,E) a compact map; here E is a locally convex Hausdorff topological
vector space, U an open convex subset of E, 0 ∈ U and Φ = i. Now let C be a
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compact set with F (U) ⊆ C and note K = L(C) is paracompact (see [3]); here L(C)
is the linear span of C. Note (see Example 2.16) that F ∈ DKT (U ∩K ∩K,K) so
[2] guarantees that there exists a selection Ψ ∈ D(U ∩K ∩K,K) of F . Note (3.10)
and (3.11) (Schauder–Tychonoff fixed point theorem) hold.

Theorem 3.9. Let E be a topological space, U an open subset of E, F : U → 2E

and there exists a set K ⊆ E with F (U) ⊆ K. Also assume Φ ∈ B(U ∩K ∩K,K),
F ∈ A(U ∩K ∩K,K) and (3.9) holds. Suppose the following conditions are satisfied:{

for any selection Ψ ∈ D(U ∩K ∩K,K) of F
assume rΨ ∈ D(U ∩K ∩K,U ∩K ∩K)

(3.13)

{
for any map J ∈ D(U ∩K ∩K,U ∩K ∩K) there exists
x ∈ U ∩K ∩K with Φ(x) ∩ J(x) 6= ∅ (3.14)

and  for any selection Ψ ∈ D(U ∩K ∩K,K) of F there is
no z ∈ K \ (U ∩K ∩K) and x ∈ U ∩K ∩K with
z ∈ Ψ(x) and r(z) ∈ Φ(x).

(3.15)

Then there exists x ∈ U with Φ(x) ∩ F (x) 6= ∅.

Remark 3.10. The ideas in this section could be applied to other natural situations.
Let E be a Hausdorff topological vector space, Y a topological vector space, and
U an open subset of E. Also let L : domL ⊆ E → Y be a linear (not necessarily
continuous) single valued map; here domL is a vector subspace of E. Finally T :
E → Y will be a linear single valued map with L + T : domL → Y a bijection;
for convenience we say T ∈ HL(E, Y ). We say F ∈ D(U, Y ;L, T ) (respectively
F ∈ B(U, Y ;L, T )) if F : U → 2Y and (L + T )−1 (F + T ) ∈ D(U,E) (respectively
(L + T )−1 (F + T ) ∈ B(U,E)). We say F ∈ A(U, Y ;L, T ) if F : U → 2Y and
(L + T )−1 (F + T ) ∈ A(U,E) and there exists a selection Ψ ∈ D(U, Y ;L, T ) of
F . For example the analogue of Theorem 3.1 is: Suppose Φ ∈ B(E, Y ;L, T ), F ∈
A(U, Y ;L, T ), (3.9) holds and the following conditions are satisfied:

for any selection Ψ ∈ D(U, Y ;L, T ) of F assume (L+ T )−1(Ψ + T ) r ∈ D(E,E)

for any map J ∈ D(E,E) there exists x ∈ E with J(x)∩(L+T )−1(Φ+T )(x) 6= ∅
and  for any selection Ψ ∈ D(U, Y ;L, T ) of F there

is no x ∈ E \U and y ∈ ∂U with y = r(x)
and (L+ T )−1(Ψ + T )(y) ∩ (L+ T )−1(Φ + T )(x) 6= ∅.

Then there exists x ∈ U with (L+T )−1(Φ+T )(x)∩ (L+T )−1(F +T )(x) 6= ∅. To see
this let Ψ ∈ D(U, Y ;L, T ) be any selection of F and let G = (L+T )−1(Ψ+T ) r. Now
there exists a x ∈ E with (L+T )−1(Ψ+T ) r(x)∩(L+T )−1(Φ+T )(x) 6= ∅. If x ∈ E \U
then if y = r(x), note y ∈ ∂U and (L+ T )−1(Φ + T )(x) ∩ (L+ T )−1(Ψ + T )(y) 6= ∅,
a contradiction. Thus x ∈ U so ∅ 6= (L+ T )−1(Φ + T )(x) ∩ (L+ T )−1(Ψ + T ) r(x) =
(L+ T )−1(Φ + T )(x) ∩ (L+ T )−1(Ψ + T ) (x).
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