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Abstract. An extension of the Poincaré-Birkhoff fixed point theorem to noninvariant under area-

preserving homeomorphism annuli is considered. Unlike the well-known W.-Y. Ding’s theorem [7],
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1. Introduction

In 1912, H. Poincaré published the unproved theorem [21], which now is known as
“Poincaré’s last geometric theorem” or the Poincaré-Birkhoff fixed point theorem. It
asserts that the area-preserving homeomorphism of the planar circular annulus onto
itself, keeping both boundary components invariant, admits at least two fixed points
if the points of the inner and the outer boundary circles are advanced in opposite
angular directions (twist condition).

The invariance of the boundary components under the homeomorphism mentioned
above is too severe assumption which does not permit the use of this theorem in order
to prove the existence of periodic solutions for nonautonomous ordinary differential
equations (particularly, for planar nonautonomous hamiltonian systems).

In 1925, G. Birkhoff, who published in 1913 the erroneous proof of Poincaré’s
theorem [1] (corrected in [3]), presented the topological generalization of this theo-
rem [2], but in this paper we consider the results concerning only an area-preserving
homeomorphism. Accordingly, the result of H. Jacobowitz [11] should be noted. He
considered an area preserving homeomorphism of a noninvariant annulus with arbi-
trary (not star-shaped) external boundary component and a circular or a degenerate
internal boundary component. By applying Birkhoff’s method [2], he proved the
existence of at least two fixed points for homeomorphism.
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W.-Y. Ding [7] considered the noninvariant annulus with the star-shaped inner
boundary component and an arbitrary simple curve as an outer boundary component.
His proof of the existence of at least two fixed points was based on the theorem of
Jacobowitz.

C. Rebelo doubted the correctness of Jacobowitz’s proof [22] and, as a result, the
validity of Ding’s theorem. The proof of the existence of at least two fixed points for
homeomorphism of the noninvariant annulus, presented in [22], was based directly
on the Poincaré-Birkhoff theorem without invoking Jacobowitz theorem. In addition,
both boundary components of an annulus were assumed to be star-shaped.

Afterwards, the doubts of Rebelo were justified. R. Martins and A.J. Urena con-
structed [18] the twist area-preserving free fixed point homeomorphism of the annulus
with both not star-shaped boundary components. A while later, P. Le Calvez and J.
Wang [15] considered the example of annulus with not star-shaped outer boundary
component and, by applying the Oxtoby-Ulam theorem [19], constructed the twist
area-preserving annulus homeomorphism without fixed points. In fairness it must be
said that numerous applications of Ding’s theorem, to the author’s knowledge, are
related to star-shaped annuli.

Also, it is worth to mention the following results. J. Franks in [9] proved the
existence of two fixed points for symplectic diffeomorphism of noninvariant circular
annulus. The authors of [8] in order to study the periodic solutions of Hamiltonian
systems considered the periodic annulus, i.e. the annulus which is comprised of peri-
odic trajectories. This particular case permitted them to deal with neither invariant
nor star-shaped annulus.

The goal of this paper is to prove the extension of the Poincaré-Birkhoff fixed
point theorem to a noninvariant under the area-preserving homeomorphism annulus
which inner boundary component is not assumed to be star-shaped, unlike Ding’s
and Rebelo’s theorems. Obviously, in view of the counterexamples mentioned above,
removing the star-shaped condition we have to introduce another assumption. We
assume the existence of a set of curves by which we introduce the curvilinear coordi-
nates which permits us to formulate the boundary twist condition and, as a result, to
obtain at least two fixed points.

2. Preliminaries

Let us formulate the modern version of the Poincaré-Birkhoff fixed point theorem.
Denote R+

0 = {x ∈ R : x > 0}. Let (%, θ) be the polar coordinates, Π : R+
0 × R →

R2\{O} is the covering projection, Π(%, θ) = (% cos θ, % sin θ). Then a continuous map

f̃ : R+
0 × R→ R+

0 × R is a lifting of a homeomorphism f : R2 \ {O} → R2 \ {O} if

Π ◦ f̃ = f ◦Π.

We call f̃ a polar lifting of f . A lifting f̃ is not unique but all other polar liftings f̃∗

are expressed as f̃∗(%, θ) = f̃(%, θ) + (0, 2πk), k ∈ Z.
Let A0 = {z ∈ R2 : a ≤ |z| ≤ b, 0 < a < b} be a circle annulus with

C10 = {z ∈ R2 : |z| = a} and C20 = {z ∈ R2 : |z| = b}
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as its inner and outer boundary components, respectively. The following result is the
modern version of the Poincaré-Birkhoff fixed point theorem.
Theorem 2.1. Let f : A0 → A0 be an area preserving homeomorphism which admits

a lifting f̃ : Π−1(A0)→ R+
0 × R of the form

f̃(%, θ) = (h(%, θ), θ + g(%, θ)), (2.1)

where g(%, θ), h(%, θ) are continuous 2π-periodic in θ functions.
Assume that f(C10) = C10, f(C20) = C20 and g(a, θ) · g(b, θ) < 0, ∀θ ∈ R.
Then f has two fixed points in A0.

If g(a, θ) · g(b, θ) < 0 then f is called a twist map.
We say that g(θ, %) and I := h(%, θ)−% are the angle and the radial displacements,

respectively.
There are many various results in the direction of weakening the assumptions of

the Poincaré-Birkhoff theorem (besides mentioned above, see [4], [5], [6], [10], [12],
[13], [14], [16], [17], [20], [23]).

In this paper, we consider area-preserving homeomorphisms and noninvariant un-
der these homeomorphisms topological annuli. A topological annulus A ⊂ R2 is a
homeomorphic image of a circular annulus A0. Let C1, C2 be the inner and the outer,
respectively, boundary components of A. Assume that C1, C2 are simple closed curves.
Denote by Di the open domain bounded by Ci : ∂Di = Ci. D̄i is the closure of Di,
i = 1, 2. In what follows, we suppose that O = (0, 0) ∈ D1.

H. Jacobowitz was the first who obtained, in 1976, a modified version of the
Poincaré-Birkhoff theorem for a topological annulus and an area-preserving home-
omorphism [11].
Theorem 2.2 (Jacobowitz, [11]). Let f : A→ f(A) ⊂ R2\O be an area-preserving

homeomorphism which admits a lifting f̃ : Π−1(A) → R+
0 × R of the form (2.1).

Assume that:
1) the inner boundary component C1 is a circle |z| = R,R ≥ 0, invariant under f

(in the degenerate case the origin is the inner boundary);
2) lim inf%→R g(%, θ) > 0 on Π−1(C1) and g(%, θ) < 0 on Π−1(C2).
Then f has at least two fixed points in A.
It should be noted that the condition 1) of this theorem admits the degenerate inner

boundary component C1 (if R = 0), which is an invariant circle and C2 is a noninvari-
ant simple curve not assumed to be star-shaped. W.-Y. Ding [7] presented the proof
of the existence of at least two fixed points for area preserving twist homeomorphism
without invariance of C1 and C2. In addition, the inner boundary component C1 was
supposed to be star-shaped.
Theorem 2.3 (W.-Y. Ding, [7]). Let f : A→ f(A) ⊂ R2 \O be an area-preserving

homeomorphism which admits a lifting f̃ : Π−1(A) → R+
0 × R of the form (2.1).

Assume that:
1) the inner boundary component C1 is star-shaped around the origin;
2) g(%, θ) > 0 on Π−1(C1) and g(%, θ) < 0 on Π−1(C2);
3) there exists an area-preserving homeomorphism f0 : D̄2 → R2 which satisfies

f0|A = f and O ∈ f0(D1).
Then f has at least two fixed points in A.
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Remark 2.4. By the Oxtoby-Ulam theorem [19] the assumption 3) may be replaced
by the following one: the areas of D1 and f(D1) are equal and O belongs to a domain
bounded by f(C1). Then, according to [19], an area-preserving homeomorphism f0

(condition 3)) exists.
Ding’s proof is based on an extension of f to D1, and the construction of this

extension is based essentially on the starlikeness of C1.
C. Rebelo, doubting the correctness of Jacobowitz’s theorem, proved the analogous

theorem [22] basing her proof directly on the Poincaré-Birkhoff theorem for a circular
annulus. In addition, in [22] C2 was supposed to be a star-shaped curve. Denote

Â = D̄2 \ {O}.
Theorem 2.5 (C. Rebelo, [22], Theorem 1). Assume the outer boundary com-

ponent C2 is strictly star-shaped around the origin O. Let f : Â → f(Â) be an

area-preserving homeomorphism which admits a lifting f̃ : Π−1(Â) → R+
0 × R of

the form (2.1), where g, h are continuous in Â functions which are 2π-periodic in θ.
Assume that

1) g(%, θ) < 0 for any point (%, θ) ∈ Π−1(C2);
2) lim inf%→0 g(%, θ) > 0 uniformly in θ;

3) O ∈ f(Â).

Then f has at least two fixed points (xi, yi) = Π(%i, θi) ∈ Â, i = 1, 2, such that
g(%i, θi) = 0.

Note, that in contrast to Jacobowitz’s theorem, the outer boundary component
C2 is a strictly star-shaped curve around the origin. Next, basing on the above
theorem, C.Rebelo proved [22] the following theorem, assuming, in contrast to the
Ding’s theorem, the starlikeness not only of C1 but as well as the starlikeness of C2.
The rest assumptions of her theorem, namely 2) and 3), coincide with Ding’s ones.
Theorem 2.6 (C. Rebelo, [22], Corollary 2). Let f : A → f(A) ⊂ R2 \ {O} be

an area-preserving homeomorphism which admits a lifting f̃ : Π−1(A) → R+
0 × R of

the form (2.1). Assume that:
1) the inner and the outer boundary components C1, C2 are strictly star-shaped

around the origin;
2) g(%, θ) > 0 on Π−1(C1) and g(%, θ) < 0 on Π−1(C2);
3) there exists an area-preserving homeomorphism f0 : D̄2 → R2 which satisfies

f0|A = f and O ∈ f0(D1).
Then f has at least two fixed points Pi = Π(%i, θi) ∈ A such that g(%i, θi) = 0,

i = 1, 2.
Remark 2.7. It is worth to note that C. Rebelo asserts that g(%i, θi) = 0 for fixed
points Pi = Π(%i, θi). Really, otherwise it may occur that Pi = Π(%i, θi), i = 1, 2, turn
out to be the periodical points of f0 in D1. The latter was not taken into account in
the Ding’s proof of the absence of fixed points for f0 in D1.

In this article, we prove the existence of at least two fixed points for an area-
preserving homeomorphism of a topological annulus which inner boundary component
C1 is an arbitrary (not star-shaped) smooth simple curve and the outer boundary
component C2 is strictly star-shaped around the origin. Thus, we prove an extension
of Rebelo’s Theorem 2.6.
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3. The main result

Denote R+ = {x ∈ R : x ≥ 0}, I = [0, 2π). Let {Γϕ}, ϕ ∈ I, be a set of
smooth simple curves Γϕ: R+ → R2, such that Γϕ is a continuously differentiable
map, limϕ→2π−0 Γϕ = Γ0 uniformly in s ∈ R+, Γϕ(0) = O and

∪ϕ∈[0,2π)Γϕ = R2, Γϕ ∩ Γψ = O, ϕ, ψ ∈ [0, 2π), ϕ 6= ψ.

Thus, O is the unique starting point of the curves Γϕ, ϕ ∈ I. Let s ∈ R+ be a
natural parameter, i.e. s is the length of the arc OΓϕ(s) ⊂ Γϕ(R+), where Γϕ(s) is
the endpoint of the arc OΓϕ(s), for some ϕ ∈ [0, 2π). Assume that

ϕ = Arg

(
dΓϕ(s)

ds
(0)

)
.

We assume that each curve Γϕ, ϕ ∈ I, intersects the inner boundary component
C1 at a unique point.

Next, along with a polar lifting f̃ we introduce one more lifting corresponding to
Γϕ. Consider a continuously differentiable map Γ : R+

0 × R → R2 \ {O} such that
Γ(s, ϕ) is 2π-periodic in ϕ, Γ(s, ϕ) = Γϕ(s) for ϕ ∈ [0, 2π). We may consider R+

0 ×R
and R2 \ {O} as covering and base spaces, respectively, and Γ as a covering map.
Really, for any point z∗ ∈ R2 \ {O} there exists such unique point (s∗, ϕ∗) ∈ R+

0 ×R,
where ϕ∗ ∈ [0, 2π), that z∗ = Γ∗ϕ(s∗) = Γ(s∗, ϕ∗). At first, suppose ϕ∗ 6= 0. Consider
ϕ1, ϕ2 ∈ (0, 2π), ϕ1 < ϕ∗ < ϕ2, |ϕ∗ − ϕi| < ε1 for some sufficiently small ε1 > 0, and
s1, s2, si ∈ R+

0 , s1 < s∗ < s2, |s∗ − si| < ε2 for some sufficiently small ε2 > 0 i = 1, 2.
Then Γ is the homeomorphic map of an open set

Ũ0 = {(s, ϕ) : s1 < s < s2, ϕ1 < ϕ < ϕ2}

onto an open set U = {z : z ∈ R2 \ {O}, z = Γ(s, ϕ), (s, ϕ) ∈ Ũ0}. Besides, for each
k ∈ Z, Γ is the homeomorphic map of an open set

Ũk = {(s, ϕ) : s1 < s < s2, ϕ1 + 2πk < ϕ < ϕ2 + 2πk}

onto U and Γ−1(U) is the disjoint union of open subsets

Ũk = {(s, ϕ) : s1 < s < s2, ϕ1 + 2πk < ϕ < ϕ2 + 2πk}

of R+
0 × R:

Γ−1(U) =

∞⋃
k=−∞

Ũk.

Now, suppose ϕ∗ = 0. Consider ϕi, si, i = 1, 2, such that −2π < ϕ1 < 0, 0 < ϕ2 < 2π,
and assume that |ϕi| < ε1 for some sufficiently small ε1 > 0, and s1, s2 satisfying the
above assumptions. Preserving the preceding notations, consider

Ũ0 = {(s, ϕ) : s1 < s < s2, ϕ1 < ϕ < ϕ2}.

Let us represent Ũ0 as Ũ0 = Ũ−0 ∪ Ũ
+
0 , where

Ũ−0 = {(s, ϕ) : s1 < s < s2, ϕ1 < ϕ < 0}, Ũ+
0 = {(s, ϕ) : s1 < s < s2, 0 ≤ ϕ < ϕ2}.
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Let us construct the following homeomorphism

Γ(s, ϕ) = Γϕ(s), (s, ϕ) ∈ U+
0 ,

Γ(s, ϕ) = Γ(s, ϕ+ 2π) = Γϕ+2π(s), (s, ϕ) ∈ U−0 .
Consider the set U = {z : z ∈ R2 \ {O}, z = Γϕ(s)}. Thus, taking in account the

properties of curves Γϕ, we obtain that Γ is the homeomorphic map of an open set Ũ0

onto an open set U . The concluding reasoning, analogous to the preceding one, implies

that Γ : R+
0 ×R→ R2 \ {O} is the covering map. Then a map f̃Γ : R×R+

0 → R×R+
0

is a lifting of f if

Γ ◦ f̃Γ = f ◦ Γ.

We call f̃Γ a Γ-lifting of f .
Let us introduce the following notations:

C̃i = Π−1(Ci), D̃i = Π−1(Di), C̃iΓ = Γ−1(Ci), D̃iΓ = Γ−1(Di), i = 1, 2,

Ã = Π−1(A), ÃΓ = Γ−1(A).

Suppose that f̃ has the form (1) and f̃Γ admits the following form

f̃Γ(s, ϕ) = (hΓ(s, ϕ), ϕ+ gΓ(s, ϕ)),

where gΓ, hΓ are continuous functions, 2π-periodic in ϕ. Next, consider the ques-

tion of compatibility of liftings f̃ and f̃Γ. For M ∈ A denote M1 = f(M),
M = Π(%, θ) = Γ(s, ϕ), M1 = Π(%1, θ1) = Γ(s1, ϕ1), where second variables (angles)
are defined up to 2πn, n ∈ Z. For θ ∈ [0, 2π) and ϕ ∈ [0, 2π) there exists a one-to-one
correspondence (diffeomorphism) between points (%, θ) and (s, ϕ), which follows, in
this case, from one-to-one correspondences between (x, y) ∈ R2 and (%, θ), on the
one hand, and between (x, y) and (s, ϕ), on the other hand. Thus, for θ ∈ [0, 2π)
and ϕ ∈ [0, 2π), there exists a one-to-one map q : R+

0 × [0, 2π) → R+
0 × [0, 2π),

q(s, ϕ) = (%(s, ϕ), θ(s, ϕ)).
Let us extend q from R+

0 × [0, 2π) to R+
0 × R.

First, assume that %(t, ϕ + 2πn) = %(t, ϕ), θ(t, ϕ + 2πn) = θ(t, ϕ) + 2πn, n ∈ Z.
Next, if ϕ /∈ [0, 2π) then there exists a unique k ∈ Z and a unique ϕ∗ ∈ [0, 2π) such
that ϕ = ϕ∗ + 2πk, and we have

q(s, ϕ) = q(s, ϕ∗+ 2πk) = (%(s, ϕ∗+ 2πk), θ(s, ϕ∗+ 2πk)) = (%(s, ϕ∗), θ(s, ϕ∗) + 2πk).

Note, that if f̃(s, ϕ∗) = (s1, ϕ
∗
1), then

f̃(s, ϕ∗ + 2πk) = (s1, ϕ
∗ + 2πk + gΓ(s, ϕ∗ + 2πk) = (s1, ϕ

∗ + 2πk + gΓ(s, ϕ∗))

= (s1, ϕ
∗
1 + 2πk).

Denote ϕk = ϕ∗ + 2πk, ϕ1k = ϕ∗1 + 2πk. Then

θ(s1, ϕ1k)− θ(s, ϕk) = θ(s1, ϕ
∗
1 + 2πk)− θ(s, ϕ∗ + 2πk) = θ(s1, ϕ

∗
1)− θ(s, ϕ∗).

Hence, θ(s1, ϕ1k)− θ(s, ϕk) = θ(s1, ϕ1m)− θ(s, ϕm) for any k,m ∈ Z.
Thus, the difference θ(s1, ϕ1) − θ(s, ϕ) is correctly defined if ϕ1 = ϕ + gΓ(t, ϕ),

ϕ = ϕk, ϕ1 = ϕ1k, ϕ∗1 = ϕ∗ + gΓ(t, ϕ∗). Using the above notations, consider the
equality

θ1 = θ + g(%, θ) = θ(s, ϕ) + g(%(s, ϕ), θ(s, ϕ)).
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On the other hand

θ1 = θ(s1, ϕ1) = θ(hΓ(s, ϕ), ϕ+ gΓ(s, ϕ)).

Therefore

g(%(s, ϕ), θ(s, ϕ)) = θ(hΓ(s, ϕ), ϕ+ gΓ(s, ϕ))− θ(s, ϕ),

where g(%(s, ϕ), θ(s, ϕ)) is well defined and does not depend on k ∈ Z such that
ϕ = ϕk, ϕ1 = ϕ1k. The main theorem is the following one.
Theorem 3.1. Let f : A→ f(A) be an area-preserving homeomorphism.

Assume that
1) the outer boundary component C2 is a strictly star-shaped curve around the

origin, the inner boundary component C1 is a smooth simple curve;
2) f has the following liftings

f̃(%, θ) = (h(%, θ), θ + g(%, θ), ), f̃Γ(s, ϕ) = (hΓ(s, ϕ), ϕ+ gΓ(s, ϕ)),

where h(%, θ), g(%, θ), hΓ(s, ϕ), gΓ(s, ϕ) are continuous 2π-periodic in θ and ϕ, respec-
tively, functions such that

g(%(s, ϕ), θ(s, ϕ)) < 0 for any (s, ϕ) ∈ C̃2Γ;

gΓ(s, ϕ) > 0 for any (s, ϕ) ∈ C̃1Γ;
3) there exists an area-preserving homeomorphism f0 : D̄2 → R2 such that

f0|A = f, O ∈ f0(D1).

Then f has at least two fixed points in A, (xi, yi) = Γ(si, ϕi) ∈ A, i = 1, 2, such
that g(si, ϕi) = 0.
Proof. The idea of the proof is as follows: we will construct, modifying Ding’s method
[7], an area-preserving map f2 : D̄2 → R2 such that f2|A = f, f2(O) = O, f2 has

no fixed points in D1, and if f̃2 = (h2(%, θ), θ + g2(%, θ)) is a polar lifting of f2 then
lim inf%→0 g2(%, θ) > 0. Then, we apply Rebelo’s Theorem 2.5 to the map f2. Since
f2|A = f and f2 has no fixed points in D1 then f has at least two distinct fixed points
in A. We will construct f2 as a composition of two maps: f2 = f1 ◦G which will be
constructed in the following lemmas.
Lemma 3.2. Under the above assumptions concerning Γ(s, ϕ), C1, C2, there exists
an area-preserving homeomorphism f1 : D̄2 → R2 such that f1|A = f, f1(O) = O.
Proof. In what follows, we will construct the homeomorphism f1. Denote P =
f−1

0 (O) ∈ D1. There exists a curve Γϕ such that P ∈ Γϕ for some ϕ. Consider a

closed arc ÔP ⊂ Γϕ and a sequence of points Pi ∈ ÔP such that Pi = Γ(si, ϕ), where

si−1 < si, i = 1, ..., n, Pn = P, P0 = O. Recall that si is the length of the arc ÔP i.

Let us fix points Oi ∈ P̂i−1Pi, i = 1, ..., n, such that |OiPi−1| = |OiPi| = di, where
di is the length of segments OiPi−1, OiPi. If Oi is not a unique point then we can

take any point satisfying the above condition. Denote by d the distance between ÔP
and C1. For sufficiently large n the points Pi, i = 1, ..., n, can be chosen in such a
way that 2di < d. For each i ∈ {1, ..., n}, let us choose any polar coordinate system
(%i, θi) in R2 with Oi as its pole. Let us introduce a map Si : R2 → R2, i = 1, ..., n,

such that if S̃i is a polar lifting of Si then

S̃i(%i, θi) = (%i, θi + ηi(%i)),
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where ηi ∈ C∞, ηi(%i) = 0 for %i ≥ 1
2 (di + d), ηi(%i) = αi for 0 < %i ≤ di, where

αi > 0 is the angle of rotation of the segment OiPi−1 till its coincidence with OiPi.
Hence, Si(Pi−1) = Pi, Si|A = Id (the identity map). It is obvious that Si is an
area-preserving diffeomorphism. Consider the composition S = Sn ◦ Sn−1 ◦ ... ◦ S1.
Then S|A = Id, S(O) = P , S is an area-preserving diffeomorphism. Let us define a
map f1 = f0 ◦ S. Then f1 is an area-preserving homeomorphism,

f1|A = f, f1(O) = f0 ◦ S(O) = f0(P ) = O.

Thus, Lemma 3.2 is proved.

Before proceeding to the next Lemma 3.3, denote by f̃1Γ a Γ-lifting of restriction

f1|D̄2\ {O}. Let us represent f̃1Γ as

f̃1Γ(s, ϕ) = (h1Γ(s, ϕ), ϕ+ g1Γ(s, ϕ),

where g1Γ, h1Γ are continuous 2π-periodic in ϕ functions. Hence f1|A = f then
h1Γ(s, ϕ) and g1Γ may be chosen in such a way that

h1Γ(s, ϕ) = hΓ(s, ϕ), g1Γ(s, ϕ) = gΓ(s, ϕ) (3.1)

for (s, ϕ) ∈ ÃΓ, i.e. f̃1Γ|ÃΓ
= f̃Γ. According to the assumption 2) of the Theorem,

gΓ(s, ϕ) > 0 for any (s, ϕ) ∈ C̃1Γ. Then g1Γ(s, ϕ) > 0 for any (s, ϕ) ∈ C̃1Γ. The
periodicity of g1Γ(s, ϕ) in ϕ implies that there exists a neighborhood U of C1 and a
constant a > 0 such that

g1Γ(s, ϕ) ≥ a > 0

for any (s, ϕ) ∈ Γ−1(U).
Theorem 2.6 is valid not only for the standard area measure dxdy. It will remain

valid for any appropriate measure (see [11], p.46-47, [3], p.31). Therefore, in what

follows we assume that f1 is the homeomorphism preserving the measure dxdy
JΓ

. With

this assumption we construct a homeomorphism satisfying the twist condition 2) of
Theorem 2.6.

Denote Pϕ = Γϕ ∩ C1. Note that, according to the assumption, Pϕ is a unique
point for each Γϕ. Suppose, that Pϕ = Γ(sϕ, ϕ) for some sϕ and ϕ ∈ [0, 2π).

Consider a function λ(s, ϕ) = s
sϕ

, where s ∈ R+, ϕ ∈ [0, 2π). Using λ we get a set

of curves Cµ ⊂ D̄1, µ ∈ [0, 1] such that Γ−1(Cµ) = {(s, ϕ) : λ(s, ϕ) = µ}. Note, that
λ−1([0, 1)) = D1 and each Γϕ has a unique point with each Cµ. Really, if Cµ, for some
µ ∈ (0, 1], has two common points P1ϕ 6= P2ϕ with some Γϕ such that P1ϕ = Γ(s1, ϕ),
P2ϕ = Γ(s2, ϕ), s1 6= s2, then s1 = µsϕ = s2 and we get a contradiction.

Let us choose ε > 0 such small that λ−1((1− ε, 1)) ⊂ U . For µ ∈ [0, 1] denote

C̃µΓ = Γ−1(Cµ),

β(µ) = max{s : (s, ϕ) ∈ C̃µΓ},
γ(µ) = max{|g1Γ(s, ϕ)| : (s, ϕ) ∈ C̃µΓ}.

Lemma 3.3. There exists an area-preserving homeomorphism G : R2 \ {O} →
R2 \ {O} having a Γ-lifting G̃Γ : R× R+ → R× R+ presented as

G̃Γ(s, ϕ) = (hGΓ(s, ϕ), ϕ+ gGΓ(s, ϕ)),
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where gGΓ(s, ϕ), hRΓ(s, ϕ) are continuous functions, 2π-periodic in ϕ, and

gGΓ(s, ϕ) = 0, hGΓ(s, ϕ) = s for (s, ϕ) ∈ Γ−1(R2 \D1),

gGΓ(s, ϕ) ≥ 0 for (s, ϕ) ∈ Γ−1(R× R+),

gGΓ(s, ϕ) ≥ γ(µ) + a for (s, ϕ) ∈ C̃µΓ, µ ∈ (0, 1− ε]

Proof. We construct a hamiltonian system with respect to (s, ϕ) and for G̃Γ we take
a time shift map along the trajectories of this hamiltonian system. Following Ding’s
idea [7], let us consider a function F ∈ C∞(0,+∞) such that F (u) = 0 for u ≥ 1,

F (u) > 0 for u ∈ (1− ε, 1), F (u) ≥ β(u)(γ(u)+a)
u for u ∈ (0, 1− ε]. Define the following

function (Hamiltonian)

H(s, ϕ) =

∫ λ(s,ϕ)

0

F (u)du,

and consider the Hamiltonian system

ṡ = −∂H
∂ϕ

, ϕ̇ =
∂H

∂s
,

where ϕ̇ = dϕ
dt , ṡ = ds

dt . Taking into account the form of H(s, ϕ) we obtain

ṡ = F (λ(s, ϕ)) · s
s2
ϕ

· ∂sϕ
∂ϕ

, ϕ̇ = F (λ(s, ϕ)) · 1

sϕ
. (3.2)

It is not difficult to show that λ(s, ϕ) is a first integral of this system. Really, H(s, ϕ)
is a first integral and F is nonnegative. Moreover, the set of stationary points of (3.2)

is λ−1([1,∞)), and C̃Γµ are the trajectories of (3.2). Denote by (s̄(t, s, ϕ), ϕ̄(t, s, ϕ)) a

solution of (3.2) such that s̄(0, s, ϕ) = s, ϕ̄(0, s, ϕ) = ϕ for any (s, ϕ) ∈ D̃1Γ. Consider

a time (t = 1) shift mapping G̃Γ along the trajectories of the system

G̃Γ(s, ϕ) = (s̄(1, s, ϕ), ϕ̄(1, s, ϕ)).

Since the system (3.2) is hamiltonian then G̃Γ is area-preserving homeomorphism.

Moreover, denote, for brevity, by G̃Γ such map that G̃Γ(s, ϕ) = (s, ϕ) for (s, ϕ) ∈
R+ × R \ ¯̃

D1. Represent G̃Γ as

G̃Γ(t, ϕ) = (hGΓ(s, ϕ), ϕ+ gGΓ(s, ϕ)),

where gGΓ(s, ϕ), hGΓ(s, ϕ) are 2π-periodic in ϕ continuous functions.

The second equation of (3.2) implies that gGΓ(s, ϕ) > 0 for any (s, ϕ) ∈ C̃µΓ.
Let s̄(t) = s̄(t, s, ϕ), ϕ̄(t) = ϕ̄(t, s, ϕ) be the solution of (3.2) corresponding to the

trajectory C̃Γµ : λ(s̄(t), ϕ̄(t)) = µ. Then s̄(t)
sϕ̄(t)

= µ and from (3.2) we obtain

˙̄ϕ(t) = F (µ) · µ

s̄(t)
≥ µβ(µ)(γ(µ) + a)

s̄(t)µ
≥ γ(µ) + a.

Integrating on [0, 1], we obtain gGΓ(s, ϕ) = ϕ̄(1) − ϕ ≥ γ(µ) + a for (s, ϕ) ∈ C̃µΓ,
µ ∈ (0, 1 − ε]. Taking in account that F (u) = 0 for u ≥ 1, we get gGΓ(s, ϕ)) = 0,
hGΓ(s, ϕ)) = s for (s, ϕ) ∈ Γ−1(R2 \D1). Thus, Lemma 3.3 is proved.
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Let us return to the proof of Theorem 3.1. Below, we follow the Ding’s arguments
[7] modifying them. Denote by f2 the composition: f2 = f1 ◦G. Hence, the Γ−lifting

f̃2Γ of f2 is the composition: f̃2Γ = f̃1Γ ◦ G̃Γ. We represent f̃2Γ as

f̃2Γ(s, ϕ) = (h2Γ(s, ϕ), ϕ+ g2Γ(s, ϕ)),

where h2Γ, g2Γ are continuous and 2π−periodic in the second variable functions. The
above notations imply that

h2Γ(s, ϕ) = h1Γ(hGΓ(s, ϕ), ϕ+ gGΓ(s, ϕ)),

g2Γ(s, ϕ) = gGΓ(s, ϕ) + g1Γ(hGΓ(s, ϕ), ϕ+ gGΓ(s, ϕ))

From (3.1) and the assumptions of Lemma 3.3 it follows that

h2Γ(s, ϕ) = hΓ(s, ϕ), g2Γ(s, ϕ) = gΓ(s, ϕ), for (s, ϕ) ∈ ÃΓ.

Now, consider (s, ϕ) ∈ Γ−1(D1 \ {O}). For (s, ϕ) ∈ Γ−1(λ−1((1 − ε, 1))) ⊂ Γ−1(U)
we have

g2Γ(s, ϕ) ≥ g1Γ(hGΓ(s, ϕ), ϕ+ g2Γ(s, ϕ)) ≥ a > 0.

For (s, ϕ) ∈ Γ−1(λ−1((0, 1 − ε))) we have (s, ϕ) ∈ C̃µΓ, where µ ∈ (0, 1 − ε), and
therefore, taking into account the assumptions of Lemma 3.3, we have

g2Γ(s, ϕ) ≥ γ(µ) + a+ g1Γ(hGΓ(s, ϕ), ϕ+ gGΓ(s, φ)) ≥ a > 0.

Therefore, we have g2Γ(s, ϕ) ≥ a > 0 for (s, ϕ) ∈ Γ−1(D1 \ {O}). Thus, f2 has no
fixed points in D1 \ {O}.

Next, we prove that gΓ(s, ϕ) > 0 if and only if g(%, θ) > 0, for sufficiently small
s and %. Consider any Γϕ, ϕ ∈ [0, 2π) and a point P = Γ(s, ϕ) = Π(%, θ) ∈ Γϕ,

θ ∈ [0, 2π). Since ϕ = Arg(
dΓϕ(s)
ds (0)) then θ = θ(s) → ϕ with s → 0. Thus,

θ(s) = ϕ+δ(s), where δ(s)→ 0 with s→ 0. If ϕ′ > ϕ and θ′(s)→ ϕ′, θ′(s) = ϕ+δ′(s),
where δ′(s)→ 0 with s→ 0, then θ′(s)− θ(s) = ϕ′ − ϕ+ δ′(s)− δ(s). Therefore, for
sufficiently small s we have θ′(s)− θ(s) > 0 if and only if ϕ′ − ϕ > 0. Thus, we have
proved that gΓ(s, ϕ) > 0 if and only if g(%, θ) > 0. Moreover, if s > 0 is so small that
‖δ′(s)− δ(s)‖ < a

2 , then ‖θ′(s)− θ(s)‖ > a
2 > 0.

Thus, we have proved that if a polar lifting f̃2 of f2 is defined as

f̃2 = (h2(%, θ), ϕ+ g2(%, θ))

then lim inf%→0 g2(%, θ) > 0. Applying Rebelo’s Theorem 2.5 to f2, we finish the proof
of Theorem 3.1.
Remark 3.4. The map f̃2Γ preserves the standard area measure dsdϕ. Note that
dxdy = JΓdsdϕ, where JΓ is the jacobian of the map Γ. In order to obtain the
preserving of dxdy measure, let us consider the homeomorphism Φ : R+×R→ R+×R
such that Φ(s, ϕ) = (s1, ϕ1), where

ϕ1 = ϕ, s1 =

∫ s

0

JΓ(s, ϕ)ds.

Hence JΓ = JΦ, where JΦ is the jacobian of Φ, then the homeomorphism

f̃∗2Γ = Φ ◦ f̃2Γ ◦ Φ−1
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preserves the measure ds1dϕ1 = JΦdsdϕ = JΓdsdϕ = dxdy. Moreover, if P̃ is a fixed

point of f̃∗2Γ then Φ−1(P̃ ) is a fixed point of f̃2Γ: f̃2Γ(Φ−1(P̃ )) = Φ−1(P̃ ).
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[4] P.H. Carter, An iprovement of the Poincaré-Birkhoff fixed point theorem, Trans. Amer. Math.

Soc., 269(1982), 285-299.
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solutions of asymptotically linear planar Hamiltonian systems, J. Differ. Equ., 183(2002), 342-
367.

[18] R. Martins, A.J. Urena, The star-shaped conditionon on Ding’s version of the Poincaré-Birkhoff
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