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1. Introduction

Matthews (1994) introduced the notion of partial metric spaces. Recently, the
authors (see [3, 2, 4, 5, 10]) have studied on this subject and have generalized some
fixed point theorems in the setting of spaces. Huang and Zhang [6] defined the cone
metric spaces. In setting, type metric spaces, the set of real numbers replacing by an
ordered Banach space. After the definition of the concept of cone metric space in fixed
point theory on these spaces has been developing (see [1, 8, 9]). In [10] the authors
studied the operator-valued metric spaces and gave some fixed point theorems on the
spaces.

In this paper, we introduce a new type of partial cone metric spaces with idem-
potent spaces, replacing Banach spaces and give some fixed and common fixed point
theorems for partial valued metric spaces. We first introduce a concept of partial
idempotent-valued metric space. Then the common fixed point results are estab-
lished for this new class of self-maps are weakly compatible and the operators need
not commute with each other.
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2. Preliminaries

In this section, we shall define the partial idempotent valued metric space and give
some properties.

Definition 2.1 A idempotent space is a vector space K over filed R in which a two
fold (K,⊕) satisfies the following conditions:

(i) a⊕ (b⊕ c) = (a⊕ b)⊕ c for a, b, c ∈ K.
(ii) a⊕ a = a, for all a ∈ K.

A idempotent space is commutative if a⊕ b = b⊕ a for a, b ∈ K.

Definition 2.2 Let (K,⊕) be a idempotent space, we shall employ the canonical
order relation ≤⊕ on K defined by

a ≤⊕ b⇔ a⊕ b = b.

We shall also write b ≥⊕ a instead of a ≤⊕ b.

Example 2.3 Let K = R with a⊕ b := max{a, b} or a⊕ b := min{a, b} for a, b ∈ R
is idempotent space.

Example 2.4 Consider matrices having entries in (R,⊕). For conforming matrices
A = (aij), B = (bij) matrix addition together with multiplication by a scalar λ ∈ R
follow the conventional rules

{A+B}ij = aij ⊕ bij , and {λA} = λaij .

is idempotent space.

Definition 2.5 Let (K,≤) be a partially ordered set and P ⊆ K, such that P 6= ∅. An
element a ∈ P is called a maximal (resp. minimal) of P , if there exists no a 6= x ∈ P
such that a < x (resp. x < a). The set of all maximal (resp. minimal) elements of P
is denoted by max(P ) (resp. min(P )). If for any finite subset P , max(P ) and min(P )
always exists and unique then K is called a totally lattice.

Example 2.6 The space R is totally lattice respect to order ≤⊕ which is defined in
Example 2.3.

Example 2.7 Let S = {a}, and X = P (S) = {∅, S} with the inclusion relation ⊆ is
a totally lattice. But if S = {a, b} then X is not totally lattice.

Example 2.8 Let X = R2 where (a, b) ≤ (c, d) if and only if either a < c or a = c
and b ≤ d is totally lattice.

Definition 2.9 Suppose that (K,≤) partial ordered set for a, b ∈ K we define

EMax{a, b} :=

 a b ≤ a
b a < b

0K o.w

and for a1, a2, ....an define:

EMax{a1, a2, ....an} := EMax{EMax{a1, ...an−1}, an}.
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Remark 2.10 It is trivial when K is a totally ordered set we have

EMax{a, b} = max{a, b}.

Definition 2.11 Let (K,≤) be a partial ordered vector space. Let {xn} be a sequence
in K and x ∈ K. If for every 0K < c, there is n0 such that for all n > n0, xn− x < c,
then {xn} is said to be convergent and {xn} converges to x, and x is the limit of
{xn}. We denote this by limn→∞ xn = x or, xn → x as n→∞.

Definition 2.12 Let (K,≤) be a partial order vector space, we say the order relation
on K has positive cone ordering property if vector 0K ≤ a ≤ b and scalar inequalities
0 ≤ r ≤ c imply that the inequalities

0K ≤ ra ≤ rb, rx ≤ cx.
for all 0K ≤ x ∈ K.

Definition 2.13 Let (K,≤) be a partial order vector space. We say K is a normal
space if the order relation on K has positive cone ordering property.

Example 2.14 Let K = R with a⊕ b := max{a, b} for a, b ∈ R. It is trivial that K
is a normal space.

Throughout this paper, (K,⊕) is denotes a commutative idempotent space. Now
with the help of this ≤⊕ one can give the definition of a partial idempotent-valued
metric space.

For later applications, it will be convenient to use the notation

K+ := {a ∈ K : a ≥⊕ 0K}.
Definition 2.15 Let X be a non-empty set. Consider the mapping d : X ×X → K+

satisfies:

(i) d(x, x) ≤⊕ d(x, y) for all x, y ∈ X.
(ii) x = y ⇔ d(x, x) = d(x, y) = d(y, y).

(iii) d(x, y) = d(y, x) for all x, y ∈ X,
(v) d(x, y) ≤⊕ d(x, z)⊕ d(y, z) for all x, y, z ∈ X.

Then d is called a partial idempotent-valued metric on X and (X,K, d) is called a
partial idempotent-valued metric space.

Example 2.16 Let X = [0,∞), K = R with the operations a ⊕max b := max{a, b}.
Define the metric d : X ×X → K+ by

d(a, b) := a⊕ b.
Then X is a partial idempotent-valued metric space.

Example 2.17 Let M be a nonempty set and X = B(M,R+) be the set of bounded
mappings(mappings with order-bounded range). Let K = B(X, (R,⊕max)), with the
point-wise generalized addition (h ⊕ g)(a) = h(a) ⊕ g(a) on X. Define the metric
mapping d := X ×X → K+ by

d(f, g)(a) := max{f(a), g(a)}.
Then (X, d) is a partial idempotent-valued metric space.
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Definition 2.18 Let (X,K, d) be a partial idempotent-valued metric space.

(i) a sequence {xn} ⊆ X converges to x ∈ X if and only if

d(x, x) = lim
n→∞

d(x, xn) = lim
n→∞

d(xn, x);

(ii) a sequence {xn} ⊆ X is called a Cauchy sequence if and only if for n,m ∈ N,
limn,m→∞ d(xn, xm) exists.

iii) the (X, d) is said to be complete if every Cauchy sequence {xn} ⊆ X con-
verges, to a point x ∈ X such that

d(x, x) = lim
n,m→∞

d(xm, xn) = lim
n,m→∞

d(xn, xm).

Definition 2.19 Suppose that (X,K, d) be a partial idempotent-valued metric space.
T : X → X is called a continuous function at x if for any xn → x implies that
Txn → Tx.

Definition 2.20 [7] Let X be a nonempty set and f, g : X → X. The mappings
f, g are said to be weakly compatible if they commute at their coincidence points. A
point y ∈ X is called a point of coincidence of f and g if there exists a point x ∈ X
such that y = fx = gx.

3. Common fixed point theorem in partial idempotent-valued
metric spaces

In this section, we prove some common fixed point theorem for self mapping sat-
isfying type idempotent-valued contractive mapping.

Theorem 3.1 Let (X,A, d) be partial idempotent-valued metric spaces, and let f, g :
X → X be two mappings such that f(X) ⊆ g(X) and one of these subsets of X is
complete. Suppose that there exists such that for all x, y ∈ X;

d(f(x), f(y)) ≤⊕ ψ(EMax{d(g(x), g(y)), d(g(x), f(x)), d(g(y), f(y))}), (3.1)

where ψ : K+ → K+ is a continuous, nondecreasing function such that

lim
n→∞

ψn(a) = 0K

and ψ(a) <⊕ a for a ∈ K+. Then f and g have a unique point of coincidence.
Moreover, if fand g are weakly compatible, then f and g have a unique common fixed
point.

Proof. Let x0 ∈ X be arbitrary and, using condition f(X) ⊆ g(X), construct
a sequence {yn} satisfying yn = f(xn−1) = g(xn), n = 1, 2, · · ·. Suppose that
d(yn, yn+1) >⊕ 0K for each n otherwise the conclusion follows easily. Using (3.1) we
conclude that

d(yn, yn+1) = d(f(xn−1), f(xn))

≤⊕ ψ(Emax{d(g(xn−1), g(xn)), d(g(xn), g(xn+1))})
= ψ(EMax{d(yn−1, yn), d(yn, yn+1)}), (∗).

Now, if EMax{d(yn−1, yn), d(yn, yn+1)} 6= 0 for some n and

EMax{d(yn−1, yn), d(yn, yn+1)} = d(yn, yn+1),
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then from (*) we have

d(yn, yn+1) ≤⊕ ψ(d(yn+1, yn)) <⊕ d(yn+1, yn).

which is a contradiction. Thus for all n > 1

EMax{d(yn−1, yn), d(yn, yn+1)} = d(yn, yn−1) or 0K .

As 0K ≤⊕ d(yn, yn−1) therefore for all n > 1 we have

EMax{d(yn−1, yn), d(yn, yn+1)} ≤⊕ d(yn, yn−1).

Then

d(yn, yn+1) ≤⊕ ψ(d(yn−1, yn)),

and so

d(yn, yn+1) ≤⊕ ψn(d(y1, y2)).

Since ψn(a) is convergent to 0K , this shows that limn→∞ d(yn, yn+1) = 0K . Now, for
n, p ∈ N we have

d(yn+p, yn) ≤⊕ ψn(d(y1, y2))⊕ ψn+1(d(y1, y2))⊕ · · · ⊕ ψn+p−1(d(y1, y2))

≤⊕ ψn(d(y1, y2))⊕ ψn(d(y1, y2))⊕ · · · ⊕ ψn+p−2(d(y1, y2))

·
·
·
≤⊕ ψn(d(y1, y2))⊕ ψn(d(y1, y2))⊕ · · · ⊕ ψn(d(y1, y2))

= ψn(d(y1, y2)). (From part (ii) of Definition 2.1).

Since ψn(a) is convergent to 0K for each a ∈ K+, d(yn+p, yn)→ 0K as n→∞. Put
m = n+ p, m→∞ as n→∞. Therefore

lim
n,m→∞

d(xm, xn) = lim
n→∞

d(yn+p, yn) = 0K .

Then {yn} is a Cauchy sequence in the metric space f(X). Since f(X) (otherwise
g(X)) is complete, then {yn} is convergent to p. Therefore,

lim
n→∞

d(g(xn), p) = lim
n→∞

d(yn, p) = lim
n,m→∞

d(ym, yn) = 0K . (3.2)

Consequently, we can find x in X such that g(x) = p. We claim that f(x) = g(x).
We show that d(g(x), f(x)) = 0K . Assume this is not true. From we obtain

d(f(xn), f(x)) ≤⊕ ψ(EMax{d(g(x), g(xn)), d(g(x), f(x)), d(g(xn), f(xn))})
= ψ(Emax{d(p, g(xn)), d(g(x), f(x)), d(g(xn), g(xn−1))})
= ψ(d(g(x), f(x)). (∗∗)

letting n→∞, from (3.2) it is obvious that d(f(xn), f(x))→ d(g(x), f(x)).
From (∗∗) we have

d(g(x), f(x)) ≤⊕ ψ(d(g(x), f(x)) <⊕ d(g(x), f(x)).

which is a contradiction. Thus d(g(x), f(x)) = 0K . Since

0K ≤⊕ d(f(x), f(x)) ≤⊕ d(g(x), f(x)) = 0K .
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Thus d(f(x), f(x)) = d(g(x), f(x)) = 0K .
Similar to we can show that d(g(x), g(x)) = d(g(x), f(x)) = 0K and so g(x) = f(x).
If f and g are weakly compatible, then

g(p) = gf(x) = fg(x) = f(p),

therefore,

d(f(x), f(p)) = ψ(EMax{d(g(x), g(p)), d(g(x), f(x)), d(g(p), f(p))})
= ψ(d(g(x), g(p))

<⊕ d(g(x), g(p)).

which implies f(p) = f(x) = p.

Example 3.2 Let K = R with ⊕ := min and X = (−1, 0] be endowed with the
partially idempotent-valued metric

d(x, y) = x⊕ y = min{x, y}.
Let f, g : X → X be defined by f(x) = x

2 , g(x) = x and ψ : K+ = (−∞, 0] → K+,

ψ(t) = t
2 , then f and g satisfy the condition (3.1). Without loss of generality, assume

x ≤ y, respect to ordered by the standard on real numbers, therefore min{x, y} = x,
as min{x, x2} = x for x ∈ [−1, 0] we have

1

2
min{min{x, y},min{x, x

2
},min{y, y

2
}} ≤ min{x

2
,
y

2
} =

x

2
.

i.e,
d(f(x), f(y)) ≤⊕ ψ(max{d(g(x), g(y)), d(g(x), f(x)), d(g(y), f(y))}).

Using Theorem 3.1, we deduce that f and g have a common fixed point.

Corollary 3.3 Let (X,A, d) be a partial idempotent-valued metric space and K be a
normal space. Let f, g be two mappings such that f(X) ⊆ g(X). Assume that

d(f(x), f(y)) ≤⊕ r Emax{d(g(x), f(x)), d(g(y), f(y))}, (3.3)

for all x, y, where 0 ≤ r < 1. If f(X) or g(X) is a complete subspace of X, then f
and g have a unique point of coincidence. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point.

Proof. By setting ψ(k) = rk where k ∈ K+, it is a Consequence of Theorem 3.1.

Corollary 3.4 Let X be a partial idempotent-valued metric space and K be a normal
space. Let f, g two mappings such that f(X) ⊆ g(X). Assume that

d(f(x), f(y)) ≤⊕ rd(g(x), g(y)), (3.4)

for all x, y ∈ X, where 0 ≤ r < 1. If f(X) or g(X) be a complete subspace of X, then
and have a unique point of coincidence. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point.

Proof. It is a Consequence of Theorem 3.1.

Corollary 3.5 Let X be complete partially idempotent-valued metric space and f :
X → X is a mapping such that

d(fx, fy) ≤⊕ ψ(EMax{d(x, fx), d(x, y), d(y, fy)}). (3.5)
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for all x, y ∈ X, where ψ : K+ → K+ is a continuous, nondecreasing function such
that

lim
n→∞

ψn(a) = 0K

and ψ(a) <⊕ a for a ∈ K+. Then there exists unique x ∈ X such that x = f(x).

Proof. By setting g = IX , we obtain Corollary 3.5.

Example 3.6 Let X = R+, K = R and d(x, y) = x⊕ y = max{x, y}. Let

f(x) =
x2

1 + x
and ψ : R+ −→ R+, ψ(t) =

t

1 + t
.

The map ψ is continuous and nondecreasing. Then for all x, y ∈ X with x ≥⊕ y we
have

d(f(x), f(y)) = max

{
x2

1 + x
,
y2

1 + y

}
=

x2

1 + x
≤⊕ ψ(max{d(x, f(x)), d(x, y), d(y, f(y))}).

This shows that all conditions of Corollary 3.5 are satisfied and so f has a fixed point
in X.

In the sequel, we give the first results about a common fixed point theorem which
the operators need not commute with each other.

Theorem 3.7 Let (X,A, d) be complete partial idempotent-valued metric spaces, and
let f, g : X → X be two mappings such that f(X) ⊆ g(X) and one of these subsets of
X is complete. Suppose that there exists such that for all x, y ∈ X;

d(f(x), g(y)) ≤⊕ ψ(Emax{d(f(x), y), d(y, g(y)), d(x, y)}), (3.6)

where ψ : K+ → K+ is a continuous, nondecreasing function such that

lim
n→∞

ψn(a) = 0K

and ψ(a) <⊕ a for a ∈ K+. Then f and g have a unique point of coincidence common
fixed point.

Proof. Let x0 ∈ X. Define the sequence xn in a way that x2 = f(x1) and x1 = g(x0)
and inductively

x2k = f(x2k+1), x2k+1 = g(x2k), for k = 0, 1, 2, ....

If there exists a positive integer N such that x2N = x2N+1, then x2N is a fixed point
of f and hence a fixed point of g. Indeed, since x2N = x2N+1 = gx2N , then

gx2N = gx2N+1 = ggx2N .

Also, due to (3.6) we have

d(x2N+2, x2N+1) ≤⊕ ψ(EMax{d(f(x2N+1), x2N+1), d(x2N+1, x2N )})
<⊕ d(x2N+2, x2N+1).
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This implies that d(x2N+2, x2N+1) = 0K which yields that

f(x2N+1) = x2N+2 = x2N+1.

Notice that x2N+1 = x2N is the fixed point of g. As a result, x2N+1 = x2N is the
common fixed point of g and f . A similar conclusion holds if x2N+1 = x2N+2 for
some positive integer N . Therefore, we may assume that xk 6= xk+1 for all k. If k is
odd, due to (3.6), we have

d(xk+2, xk+1) ≤⊕ ψ(EMax{d(xk+1), xk), d(xk+2, xk+1), d(xk), xk+1)}).
= ψ(EMax{d(xk+1, xk), d(xk+2, xk+1)}), (∗).

Now, if

EMax{d(xk+1), xk), d(xk+2, xk+1)} = d(xk+2, xk+1) 6= 0K ,

for some n, then from (*) we have

d(xk+2, xk+1) ≤⊕ ψ(d(xk+2, xk+1)) <⊕ d(xk+2, xk+1).

which is a contradiction. Thus

EMax{d(xk+1, xk), d(xk+2, xk+1)} ≤⊕ d(xk+1, xk).

Therefore, we have

d(xk+1, xk) ≤⊕ ψ(d(xk, xk−1)),

If k is even, analogously, can be obtained the same inequality. And so for k = 1, 2, ...
can observe that

d(xk+1, xk) ≤⊕ ψk(d(x1, x0)).

Now, for n, p ∈ N, we have

d(xn+p, xn) ≤⊕ ψn(d(x1, x0))⊕ ψn+1(d(x1, x0))⊕ · · · ⊕ ψn+p−1(d(x1, x2))

≤⊕ ψn(d(x1, x0))⊕ ψn(d(x1, x0))⊕ · · · ⊕ ψn+p−2(d(x1, x0))

·
·
·
≤⊕ ψn(d(x1, x0))⊕ ψn(d(x1, x2))⊕ · · · ⊕ ψn(d(x1, x2))

= ψn(d(x1, x0)). (From part (ii) of Definition 2.1).

Since ψn(a) is convergent to 0K for each a ∈ K+, {xk} is a Cauchy sequence in the
metric space X. Since X is complete, then {xk} is convergent to x. Therefore,

d(x, x) = lim
k→∞

d(xk, x) = lim
k,m→∞

d(xm, xk) = 0K .

Now, we claim that f(x) = x. Suppose d(x, f(x)) >⊕ 0K . Let {x2k(i)} be a subse-
quence of {x2k} and hence of {xk}. Due to (3.6) we have

d(gx2k(i), f(x)) ≤⊕ ψ(EMax{d(x2k(i), x2k(i)+1), d(f(x), x), d(x2k(i), x)}).
= ψ(d(x, f(x))

<⊕ d(x, f(x)).
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which is a contradiction thus d(x, f(x) = 0K , therefore x = f(x). Analogously, if we
choose a subsequence {x2k(i)+1} of {x2k(i)+1}, we obtain g(x) = x. Hence

g(x) = f(x) = x.

Example 3.8 Let X = [−1, 0] and K = R with the operations a ⊕ b := min{a, b}.
And the metric d : X ×X → K defined by

d(x, y) = x⊕ y, for x, y ∈ X.
Now define the mapping g, f : X → X by T (x) = g(x) = x

4 . Without loss of generality,
assume x ≥⊕ y. Then

d(T (x), T (y)) ≤⊕
1

2
d(x, y).

Thus, all conditions of Theorem are satisfied, and 0 is the common fixed point of f .

4. Conclusion

In this paper, we introduce an partial metric space over idempotent-valued. Also
we prove the existence and uniqueness of some common fixed point theorems for
mappings respect to metric space were not contractive but are idempotent-valued
contractive mapping.
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