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1. Introduction

The discrete Laplace operator is determined similarly to the continuous Laplace
operator, defined so that it has meaning on a graph or a discrete grid. Most phenom-
ena on many cases are expressed by the discrete Laplacian, such as physics problems,
computer science, elasticity, control systems, artificial or biological, neural networks
and economics. Recently, a great attention has been focused on the study of existence
and multiplicity of solutions for equations involving the discrete p-Laplacian operator
with different methods such as various fixed point theorems, critical point theory,
variational methods, Morse theory, the mountain-pass theorem and lower and upper
solutions method (see [3, 4, 9, 10, 11, 12, 13, 14, 16, 18]). In the paper [2], Atici
and Guseinov investigated the existence of positive periodic solutions for nonlinear
difference equations with periodic coefficients by employing a fixed point theorem
in a cone. By using the upper and lower solution method, in [1] Atici and Cabada
considered the equation ∆2(xk−1) + qkxk + f(k, xk) = 0, k ∈ [1, N ] with boundary
value conditions x0 = xN and ∆x0 = ∆xN and obtained a new existence result for it.
Based on fixed point theorem in a cone due to Krasnoselskii, in [6] Jiang with Chu
characterized the eigenvalues and showed the existence of positive solutions and, in
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[15] with Zhou, based on Ricceri’s variational principle, established the existence of
at least three solutions for the problem{

−∆(φp(u(k − 1))) = f(x, u), ∀k ∈ Z[1, T ],
u(0) = u(T + 1) = 0,

(1.1)

where p > 1, φp : R −→ R is defined by φp(s) := |s|p−2s, for every s ∈ R, f :
Z[1, T ] × R −→ R is a continuous function and ∆u(k − 1) := u(k) − u(k − 1) is a
forward difference operator. Wang and Guan in [20], by using the five functionals
fixed point theorem, obtained the existence criteria for three positive solutions of
p-Laplacian difference equation ∆(φp(∆u(t− 1))) + a(t)f(u(t)) = 0, ∀t ∈ [1, T + 1],

u(0) = u(T + 1) = 0, or
u(0) = ∆u(T + 1) = 0,

(1.2)

where f : [0,∞)→ [0,∞) is a continuous function. Cabada et al. in [5], based on three
critical points theorems, investigated different sets of assumptions which guarantee the
existence and multiplicity of solutions for difference equations involving the discrete p-
Laplacian operator. In [7], by considering variational methods for smooth functionals,
the existence of at least three solutions was established for the following problem{

−∆(α(k))|∆u(k − 1)|p(k−1)−2 = λf(k, u(k)), ∀k ∈ [1, T ],
u(0) = u(T + 1) = 0,

In the present paper, we obtain a multiplicity result for the following discrete problem{
−∆(φp(u(k − 1))) = εf(x, u)− λg(x, u) + νh(x, u), ∀k ∈ Z[1, T ],
u(0) = u(T + 1) = 0,

(1.3)

where p > 1, φp : R −→ R is defined by φp(s) := |s|p−2s, for every s ∈ R, f, g, h :
Z[1, T ]× R −→ R are continuous functions, ε, λ and ν are real parameters and

∆u(k − 1) := u(k)− u(k − 1)

is a forward difference operator. In fact, as motivated in the work by Molica Bisci and
Pansera [17], and applying the critical point theorem given by Ricceri in [19], we prove
that exist at least three solutions for the problem (1.3) under some assumptions. Also,
at the finally in this paper we are going to provide some examples which illustrate
main result.

2. Preliminaries

In this section, firstly we present the following theorem which is an important
tool to prove our main result. This, including our other presented tools, has been
successfully applied to different problems in [17].

Let E be a non-empty set. We define

β(µI + Ψ,Φ, r) := sup
u∈Φ−1(r,+∞)

µI(u) + Ψ(u)− infu∈Φ−1(−∞,r)(µI + Ψ)

r − Φ(u)
,



SOME DISCRETE PROBLEMS VIA p-LAPLACIAN OPERATOR 233

where I,Ψ,Φ : E −→ R, µ > 0 and r ∈ (infE Φ, supE Φ) . Moreover, if the map Ψ + Φ
is bounded from below, for each

r ∈
(

inf
E

Φ, sup
E

Φ

)
,

such that

inf
u∈Φ−1(−∞,r)

I(u) ≤ inf
u
∈ Φ−1(r)I(u),

we put

µ∗(I,Ψ,Φ, r) := inf

{
Ψ(u)− γ + r

ηr − I(u)
: u ∈ E,Φ(u) < r, I(u) < ηr

}
,

where γ := infE(Ψ(u) + Φ(u)) and ηr := infu∈Φ−1(r) I(u).

Theorem 2.1. ([19]) Let (E, ‖.‖) be a reflexive Banach space; I : E −→ R a
sequentially weakly lower semicontinuous, bounded on each bounded subset of E,
C1-functional whose derivative admits a continuous inverse on the topological dual
E∗,Φ,Ψ : X −→ R two C1-functionals with compact derivative. Assume also that the
functional Ψ + λΦ is bounded below for all λ > 0 and

lim inf
‖u‖−→+∞

Ψ(u)

I(u)
= −∞.

Then for each r > sups Φ, where S is the set of all global minima of I, for each
µ > max{0, µ∗(I,Ψ,Φ, r)} and for each compact interval [a, b] ⊂ (0, β(µI + Ψ,Φ, r)),
there exists a number ρ > 0 such that, for each ν ∈ [0, δ], the equation

µI
′
(u) + Ψ

′
(u) + λΦ

′
(u) + νΓ

′
(u) = 0

has at least three solutions in E whose norms are less than ρ.

In [8], Theorem 2.1 was successfully employed to the existence of least three weak
solutions to a degenerate quasilinear elliptic system with three parameters and Dirich-
let boundary conditions.

Let’s give some notations and definitions that we use to through the following.
We define the T -dimensional space H by

H := {u : Z[0, T + 1] −→ R |u(0) = u(T + 1) = 0}.

The space H can be normed by

‖u‖ :=

(
T+1∑
k=1

|∆u(k − 1)|p
) 1

p

.

It is easy to see that (H, ‖.‖) is a Banach space. Let f, g, h : Z[1, T ] × R −→ R be
continuous functions. Furthermore, let the functions S, JF (u), JG(u), JH(u) : X → R
be defined by

S(u) =
1

p

T+1∑
k=1

|∆u(k − 1)|p,
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JF (u) =

T+1∑
k=1

F (k, u(k))dx,

JG(u) =

T+1∑
k=1

F (k, u(k))dx,

JH(u) =

T+1∑
k=1

F (k, u(k))dx,

and define J : H −→ R by

J(u) :=
1

p

T+1∑
k=1

|∆u(k − 1)|p − ε
T∑
k=1

Fk(u(k)) + λ

T∑
k=1

Gk(u(k)) + ν

T∑
k=1

Hk(u(k)),

for every u ∈ H, k ∈ Z[0, 1] and ξ ∈ R where

Fk(ξ) :=

∫ ξ

0

f(k, s)ds,

Gk(ξ) :=

∫ ξ

0

g(k, s)ds

and

Hk(ξ) :=

∫ ξ

0

h(k, s)ds.

We recall that a solution of the problem (1.3) is a function u ∈ H such that

T+1∑
k=1

φp(∆u(k − 1))∆v(k − 1) = ε

T∑
k=1

f(k, u(k))v(k)− λ
T∑
k=1

g(k, u(k))v(k)

− ν
T∑
k=1

h(k, u(k))v(k),

for every v ∈ H. There exists a variational structure of the problem (1.3) (see [15]),
and so

〈J
′
(u), v〉 =

T+1∑
k=1

φp(∆u(k − 1))∆v(k − 1)− ε
T∑
k=1

f(k, u(k))v(k)

+ λ

T∑
k=1

g(k, u(k))v(k) + ν

T∑
k=1

h(k, u(k))v(k),

for every v ∈ H. Thus, critical points of J are solutions to the problem (1.3).
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3. Main results

In this section, we want to use Theorem 2.1 to obtain the critical points of the
problem (1.3). For this purpose, we will first introduce some of the symbols that will
be used later.
Let g : Z[0, T ] × R −→ R be continuous function. If G-F is bounded from below for
each r > 0, we set

µ̃(f, g, r) := 2 inf

{
r − γ̃ − Jf (u)

η̃r − ‖u‖p
: u ∈ H,Jg(u) < r, ‖u‖p < v

}
,

where

γ̃ :=

T∑
k=1

(
inf
ξ∈R

Gk(ξ)− Fk(ξ)
)

and

η̃r := inf
u∈J−1

g (r)
‖u‖p.

Also, we define

β(ε, f, g, r) = sup
u∈J−1

g (r,+∞)

‖u‖2 − 2εJf (u)− infu∈J−1
g (r,+∞)(‖u‖2 − 2εJf (u))

2(r − Jg(u))
,

for each ε ∈
(

0,
1

max(0, µ̃(f, g, r))

)
.

We formulate our main result as follows:

Theorem 3.1. Let p > 1, σ > p and f, g : Z[1, T ] × R −→ R be two continuous
functions such that

lim
ξ−→+∞

mink∈Z[1,T ] Fk(ξ)

ξp
= +∞, lim sup

|ξ|−→+∞

mink∈Z[1,T ] Fk(ξ)

ξσ
< +∞

and

lim
|ξ|−→+∞

mink∈Z[1,T ]Gk(ξ)

|ξ|σ
= +∞.

Then for each r > 0, for each

ε ∈
(

0,
1

max(0, µ̃(f, g, r))

)
,

and for each compact interval [a, b] ⊂ (0, β(ε, f, g, r)), there exist a number ρ > 0 with
the following property: for every λ ∈ [a, b] and a continuous function h, there exists
a number δ > 0 such that for every ν ∈ [0, δ], the problem (1.3) has at least three
solutions whose norms in H are less than ρ.

Proof. First, we must show that

lim sup
‖u‖−→+∞

Jf (u)

‖u‖p
= +∞. (3.1)
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We have the following characterization of the eigenvalue

λ1,p = min
H\{0H}

∑T+1
k=1 |∆u(k − 1)|p∑T

k=1 |u(k)|p
. (3.2)

Let the first eigenfunction ϕ1 ∈ H be positive, it follows by (3.2) that

‖ϕ1‖p = λ1,p

T∑
k=1

ϕ1(k)p.

To show (3.1), it is enough to show that

lim
s−→∞

Jf (sϕ1)

‖sϕ1‖p
= +∞. (3.3)

For this purpose, let us fix two M , M1 such that M < M1/2. Since

lim
ξ−→+∞

infk∈Z[1,T ] Fk(ξ)

ξp
= +∞,

there exists η ≥ 0 such that for all (x, ξ) ∈ H × (η,+∞), we have

Fk(ξ) ≥ λ1,pM1ξ
p.

For all 1 ≤ k ≤ T , we set

As :=
{
k ∈ Z[1, T ] : ϕ1(k) ≥ η

s

}
.

Therefore, for all s ∈ N, we have As ⊆ As+1, and so the numerical sequence
{Σk∈Asϕ1(k)p} is nondecreasing i.e.∑

k∈As

ϕ1(k)p ≤
∑

k∈As+1

ϕ1(k)p,

then, we can write ∑
k∈As

ϕ1(k)p −→
k=T∑
k=1

ϕ1(k)p,

as s −→∞. Fixed s̃ ∈ N, so that∑
k∈As̃

ϕ1(k)p >
2M

M1

T∑
k=1

ϕ1(k)p.

Applying the continuity of the function f , we have

max
(x,ξ)∈Z[1,T ]×∈[0,η]

|Fk(ξ)| < +∞.

Therefore, for each s ∈ N satisfying

s > max

s̃,
(
T ×max(x,ξ)∈H×[0,η] |Fk(ξ)|

M‖ϕ1‖p

)1

p

 ,
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we have

Jf (kϕ1)

‖kϕ1‖p
=

∑T
k=1 Fk(kϕ1(k))

kp‖ϕ1‖p

=

∑
k∈As

Fk(sϕ1(k))

kp‖ϕ1‖p
+

∑
k∈Z[0,T ]−As

Fk(sϕ1(k))

kp‖ϕ1‖p

≥
λ1M1

∑
As
ϕ1(k)p

‖ϕ1‖p
+

∑
k∈Z[0,T ]−As

Fk(sϕ1(k))

kp‖ϕ1‖p

≥
2λ1M

∑
As
ϕ1(k)p

‖ϕ1‖p
−
T × sup(k,ξ)∈Z[1,T ]×[0,η] Fk(ξ)

kp‖ϕ1‖p
> 2M −M = M,

which shows (3.3). On the other hand, since

lim sup
|ξ|−→+∞

infk∈Z[1,T ] Fk(ξ)

ξp
< +∞ and lim

|ξ|−→+∞

infk∈Z[1,T ]Gk(ξ)

|ξ|p
= +∞,

there exists a > 0 such that

Fk(ξ) ≤ a(|ξ|σ + 1), ∀(k, ξ) ∈ Z[1, T ]× R, (3.4)

and for each b > 0, there exists cb > 0 such that

Gk(ξ) ≥ b|ξ|σ − cb, ∀(k, ξ) ∈ Z[1, T ]× R. (3.5)

Applying (3.4) and (3.5), we conclude that G − λF : R −→ R for each λ > 0 is
bounded from below in R. Furthermore, fixing λ > 0 with b > λa, by using (3.4) and
(3.5), for each (k, ξ) ∈ Z[1, T ]× R, we obtain that

(Gk − λFk)(ξ) ≥ b|ξ|σ − cb − λa(|ξ|p + 1)

= (b− λa)|ξ|σ − (cb − aλ)

≥ −(cb + aλ).

Thus, we have
T∑
k=1

(Gk − λFk)(u(k)) ≥ −(cb − aλ)× T.

Therefore, Jg − λJf is bounded from below in H. We put

I(u) :=
‖u‖p

p
, ψ(u) := −Jf (u), Φ(u) = Jg(u) and Γ(u) = Jh(u),

for each u ∈ H. Applying Theorem 2.1, the problem (1.3) has at least three solutions
whose norms in H are less than ρ. �

The following remarks allow us to know more about the solutions of the problem
(1.3).

Remark 3.2. In Theorem 3.1, we have guaranteed the existence of at least three
nontrivial solutions for (1.3). The nontriviality of these solutions achived by taking
either f(k, t) 6= 0 for all (k, t) ∈ [1, T ] × R or g(k, t) 6= 0 for all (k, t) ∈ [1, T ] × R, or
h(k, t) 6= 0 for all (k, t) ∈ [1, T ] × R , or two of them are true, or all three are true.
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If one of these conditions does not hold, the second solution u2 of the problem (1.3)
may be trivial.

Remark 3.3. If in Theorem 3.1, f(k, t) 6= 0 for all (k, t) ∈ [1, T ] × R or g(k, t) 6= 0
for all (k, t) ∈ [1, T ] × R, or both to be true, then the ensured solution is obviously
non-trivial. On the other hand, the non-triviality of the solution can be achieved
also in the case f(k, 0) = g(k, 0) = 0 for all k ∈ [1, T ] requiring the extra condition
at zero, that is there are discrete intervals [1, T1] ⊆ [1, T ] and [1, T2] ⊂ [1, T1] where
T1, T2 ≥ 2, such that

lim sup
ξ→0+

infk∈[1,T2] Fk(ξ)

|ξ|p
= lim sup

ξ→0+

infk∈[1,T2]Gk(ξ)

|ξ|p
= +∞,

and

lim inf
ξ→0+

infk∈[1,T1] Fk(ξ)

|ξ|p
> −∞, lim inf

ξ→0+

infk∈[1,T1]Gk(ξ)

|ξ|p
> −∞.

Indeed, let 0 < λ̄ < λ∗ where

λ∗ =
1

pT p
sup
γ>0

γp∑T
k=1 max|t|≤γ(Fk +Gk)(t)

.

Then, there exists γ̄ > 0 such that

λ̄
1

pT p
<

γ̄p∑T
k=1 max|t|≤γ̄(Fk +Gk)(t)

.

Let T and Jf be as given in Theorem 3.1. Due to Theorem 3.1, for every λ ∈ (0, λ̄)
there exists a critical point of Iλ = T − λJf + λJg such that uλ ∈ Φ−1(−∞, rλ)
where rλ = 1

Tpp γ̄
p. In particular, uλ is a global minimum of the restriction of Iλ to

Φ−1(−∞, rλ). We will prove that the function uλ can not be trivial.
Let us show that

lim sup
‖u‖→0+

(Jf + Jg)(u)

T (u)
= +∞. (3.6)

Thanks to our assumptions at zero, we can fix a sequence {ξn} ⊂ R+ converging to
zero and two constants ε and κ (with ε > 0) such that for every ξ ∈ [0, ε]

lim
n→+∞

infk∈[1,T2](Fk +Gk)(ξn)

|ξn|p
= +∞,

and infk∈[1,T1](Fk +Gk)(ξ) ≥ κ|ξ|p.
Now, let us consider a discrete interval [1, T3] ⊂ [1, T2] where T3 ≥ 2.
Further, let v ∈ E be a function

(k1) v(k) ∈ [0, 1] for every k ∈ [1, T ],
(k2) v(k) = 1 for every k ∈ [1, T3],
(k3) v(k) = 0 for every k ∈ [T1 + 1, T ].

Finally, fix M > 0 and consider a real positive number η with

M <
η T3 + κ

∑T1

k=T3+1 |v(k)|p
2p(T+1)

p (Cp‖v‖p + 1)
,
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where

Cp =
2

p(2p−1 − 1)
.

Then, there is n0 ∈ N such that ξn < ε and infk∈[1,T2] Fk(ξn) ≥ η|ξn|p
−

for every
n > n0. At this point, for every n > n0, and bearing in mind the properties of the
function v (that is 0 ≤ ξnv(k) < ε for n large enough), we obtain

Jf (ξnv) + Jg(ξnv)

T (ξnv)
=

∑T3

k=1(Fk +Gk)F (ξn) +
∑T1

k=T3+1(Fk +Gk)(ξnv(k))

T (ξnv)

>
η T3 + κ

∑T1

k=T3+1 |v(k)|p
2p(T+1)

p (Cp‖v‖p + 1)
> M.

Since M can be chosen arbitrarily large, it follows that

lim
n→∞

Jf (ξnv) + Jf (ξnv)

T (ξnv)
= +∞,

from which (3.6) clearly follows. Hence, there exists a sequence {wn} ⊂ X converging
to zero such that, for n large enough, wn ∈ T−1(−∞, r) and Iλ(wn) < 0. Since uλ is a
global minimum of the restriction of Iλ to Φ−1(−∞, r), we conclude that Iλ(uλ) < 0,
so that uλ is not trivial.

Moreover, we present some examples to clarify Theorem 3.1.

Example 3.1. Let 1 < p1 < p < p2 < 2 and consider the problem{
−∆(φp(u(k − 1))) = ε|u|p1−1u+ λ|u|p2−1u+ νh(u), ∀k ∈ Z[1, 10],
u(0) = u(11) = 0.

(3.7)

Then for each ε > 0 small enough, there exists λε such that, for every compact interval
[ā, b̄] ⊂ (0, λε) there exists ρ > 0 with the property that, for every λ ∈ [ā, b̄] and every
continuous function h : R → R, there exists δ > 0 such that for every ν ∈ [0, δ], the
problem (3.7) has at least three solutions.

Example 3.2. Consider the problem{
−∆(|u(k − 1)|3u(k − 1) = εf(u)− λg(u) + νh(u), ∀k ∈ Z[1, 10],
u(0) = u(11) = 0,

(3.8)

with

f(t) = 1 +
√
t9 and g(t) = 1 + t8.

By setting σ = 7, we have 1 < % < 5 = p, p = 5 < 7 = σ,

lim
t∈R

f(ξ)

ξp−1
= lim
ξ→+∞

1 + ξ
9
2

ξ4
= +∞,

lim sup
|ξ|→+∞

f(ξ)

|ξ|σ−1
=

1 + ξ
9
2

|ξ|6
= 0 < +∞,

lim
|ξ|→+∞

g(ξ)

|ξ|p−1
=

1 + t8

|ξ|4
= +∞.
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Thus, for each ε > 0 small enough, there exists λε such that, for every compact
interval [ā, b̄] ⊂ (0, λε) there exists ρ > 0 with the property that, for every λ ∈ [ā, b̄]
and every continuous function h : R → R, there exists δ > 0 such that for every
ν ∈ [0, δ], the problem (3.8) has at least three solutions.
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