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Abstract. In this paper, we first prove the existence and uniqueness results for the Cauchy problems
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1. Introduction

The Cauchy problem

du

dt
= F (t, u), t ∈ (0, T ), u(0) = u0, (1.1)

with operator F acting in a scale of Banach spaces (Xs, |.|s), s ∈ [a, b], is the abstract
version of the Cauchy–Kovalevskaya–Nagumo partial differential equation

∂tu = F (t, x, u,∇u).

The existence and uniqueness results of the problem (1.1) (also called the abstract
Cauchy–Kovalevskaya theorems) in the Lipschitz case of F ,

|F (t, u)− F (t, v)|s ≤
C

r − s
|u− v|r, s < r,

were first proven by T. Yamanaka, and V. Ovsyannikov [20, 21, 27]. They were
further generalized and simplified by F. Treves, L. Nirenberg, T. Nishida, Baouendi–
Goulaouic, K. Asano, and others, (see [1, 3, 17, 18, 23, 25] and the references therein).
When F satisfies certain conditions concerning compactness, the problem (1.1) has
been investigated by H. Begehr, K. Deimling, M. Ghisi, N.B. Huy and W. Tutschke
in [4, 6, 8, 11, 12, 26].
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Abstract results of the problem (1.1) can be applied to equations that involve non-
local operators, such as the water wave equation [20], the Boltzmann equation in
the fluid dynamic limit [19], the incompressible fluid equations in the zero-viscosity
limit [15, 24], and the vortex sheet equations [7]. New applications of the abstract
Cauchy problems in a scale of Banach spaces were recently discovered in the integrable
Camassa–Holm type equation [5], the Navier–Stokes equations for viscous incompress-
ible flows [15, 16], the Hele-Shaw flows in the plane [22], birth-and-death stochastic
dynamics in the continuum [9, 10], and fractional differential equations [4].

The Cauchy-Kovalevskaya-type theorems for some classes of differential equations
with deviating variables have been proven in [2, 13, 14, 28]. However, to the best of
our knowledge, the abstract version has not yet been considered. In this paper, we
study two Cauchy problems with deviating variables in the scale of Banach spaces.
The first problem is

du

dt
= F (t, u(t), u(h(t))), t ∈ (0, 1), u(0) = u0, (1.2)

where the function h : [0, 1)→ [0, 1) is continuous, and satisfies h(t) < t1/p, t ∈ (0, 1)
for some p ∈ (0, 1), and the operator F satisfies the combination of the Lipschitz and
Holder conditions as follows:

|F (t, u1, v1)− F (t, u2, v2)|s ≤
C

r − s
(
|u1 − u2|r + |v1 − v2|pr

)
, s < r.

To the best of our knowledge, such a condition for the Cauchy problems in a scale of
Banach spaces has not been considered yet. Our second problem has the form

du

dt
= F (t, A(t, u(t)), B(u(h(t)))), t ∈ (0, T0), u(0) = u0, (1.3)

where the operator F acts in each space of the scale but singularities are contained
in operators A and B. In the study of problem (1.2), we used the iterative method,
whereas to treat problem (1.3), we applied a special norm. We proved the existence
and uniqueness results for problems (1.2) and (1.3) in Section 2 of the paper.
General results on problem (1.3) will be then applied to solve the following equation:

∂1u(t, x) = f [t, x, ∂
(l1)
2 u(t, σ(t)x), ∂

(l2)
2 u(h(t), x)] (1.4)

in the class of Gevrey functions. The problem (1.4) was considered in [14, 28] with-
out being reduced to an abstract form, with the following restricted conditions on
functions σ(t) and h(t):

0 ≤ σ(t) ≤ m, 0 ≤ h(t) ≤ mt, for some 0 < m < 1. (1.5)

In investigating (1.4) we separated the singular parts and obtained the abstract form
(1.3) of the problem. In turn, applying the general results of (1.3) to treat (1.4) makes
the study clearer and easier to follow, and allowed us to extend condition (1.5). This
is detailed in Section 3 of the paper.



THE CAUCHY PROBLEM IN SCALE OF BANACH SPACES 221

2. Abstract results

In this section, we proved the existence and uniqueness results for the Cauchy
problems (1.2) and (1.3) in the scale of Banach spaces (Xs, |.|s), s ∈ [a, b], i.e.,

Xr ⊂ Xs, |u|s ≤ |u|r, if s, r ∈ [a, b], s < r.

Theorem 2.1 Assume that u0 ∈ Xb and

(1) the function h : [0, 1) → [0, 1) is continuous and increasing, and there exists
a number p ∈ (0, 1) such that h(t) < t1/p, ∀ t ∈ (0, 1); and

(2) there exists a constant C > 0 such that for s < r, the operator F is continuous
from [0, 1)×Xr ×Xr into Xs and satisfies

|F (t, u1, v1)− F (t, u2, v2)|s ≤
C

r − s
(
|u1 − u2|r + |v1 − v2|pr

)
for all u1, u2, v1, v2 ∈ Xr.

Then, for s ∈ (a, b) such that (b − s)/(2Ce) < 1, the problem (1.2) has a unique
solution u : [0, Ts]→ Xs where Ts < (b− s)/(2Ce).
Proof. Fix s ∈ (a, b) and Ts so that Ts < (b − s)/(2Ce) < 1, and choose s′ ∈ (s, b)
such that Ts < (s′ − s)/(2Ce). By the Stirling formula,

lim
n→∞

n

√
2nCn(1 + n)n

(s′ − s)n(n+ 1)!
=

2Ce

s′ − s
> 1.

Thus, we can choose a number M with the following properties:

M(2C)n(n+ 1)n

(s′ − s)n(n+ 1)!
> 1, ∀n ∈ N∗ and M ≥ sup

t∈[0,Ts]

|F (t, u0, u0)|s′ . (2.1)

Clearly, the differential equation (1.2) is equivalent to find solutions u ∈ C([0, Ts], Xs)
of the following integral equation:

u(t) = u0 +

∫ t

0

F [τ, u(τ), u(h(τ))]dτ. (2.2)

To solve (2.2), we construct a successive sequence {un} by

u0(t) ≡ u0, un+1(t) = u0 +

∫ t

0

F [τ, un(τ), un(h(τ))]dτ.

We prove by induction that

|un+1(t)− un(t)|r ≤
M(2C)n(n+ 1)ntn+1

(s′ − r)n(n+ 1)!
, t ∈ [0, Ts], r ∈ [s, s′). (2.3)

Indeed, as

|u1(t)− u0|r ≤
∫ t

0

|F (τ, u0, u0)|s′dτ ≤Mt,

we see that (2.3) holds for n = 0. Let (2.3) be established for n = k. For r ∈ [s, s′),
we set ε = (s′ − r)/(k + 2) and apply (2.3) with n = k and r + ε in place of r. We
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obtain

|uk+1(t)− uk(t)|r+ε ≤
M(2C)k(k + 1)ktk+1

(s′ − r − ε)k(k + 1)!
, t ∈ [0, Ts],

and

|uk+2(t)−uk+1(t)|r ≤
C

ε

∫ t

0

[
|uk+1(τ)− uk(τ)|r+ε + |uk+1(h(τ))− uk(h(τ))|pr+ε

]
dτ

≤ C

ε

∫ t

0

[M(2C)k(k + 1)kτk+1

(s′ − r − ε)k(k + 1)!
+
(M(2C)k(k + 1)k(h(τ))k+1

(s′ − r − ε)k(k + 1)!

)p]
dτ

≤ C

ε

M(2C)k(k + 1)k

(s′ − r − ε)k(k + 1)!

∫ t

0

[
τk+1 + (τ1/p)p(k+1)

]
dτ

≤ M(2C)k+1(k + 2)k+1tk+2

(s′ − r)k+1(k + 2)!
,

which proves (2.3) with n = k + 1. The induction is complete. From (2.3) and

lim
n→∞

(
M(2C)n(n+ 1)nTn+1

s

(s′ − s)n(n+ 1)!

) 1
n

=
2CeTs
s′ − s

< 1,

it follows that the sequence {un} uniformly converges in Xs to a function u ∈
C([0, Ts], Xs). As

lim
n→∞

∫ t

0

F [τ, un(τ), un(h(τ))]dτ =

∫ t

0

F [τ, u(τ), u(h(τ))]dτ

in Xs′′ , with s′′ < s, we conclude that u is an Xs-valued solution of (2.2) on [0, Ts].
We now prove the uniqueness. Let u, v : [0, T ]→ Xs be solutions of (1.2) with T < 1.
We choose l ∈ (a, s) satisfying s− l < 2Ce and N > 1 such that

N ≥ sup
t∈[0,T ]

|u(t)− v(t)|s, N
(2C)nnn

(s− l)nn!
> 1.

From this,

|u(t)− v(t)|r ≤
C

ε

∫ t

0

[
|u(τ)− v(τ)|r+ε + |u(h(τ))− v(h(τ))|pr+ε

]
dτ,

which gives

|u(t)− v(t)|r ≤
N2Ct

s− r
when ε = s− r.

Applying the arguments used in the proof of existence, we deduce that

|u(t)− v(t)|r ≤
N(2C)nnntn

(s− r)nn!
, ∀ t ∈ [0, T ], r ∈ [l, s), ∀n ∈ N∗

This clearly forces u(t) = v(t) into an interval [0, t1] with t1 < min{T, (s− l)/(2Ce)}.
Now, we define

T1 = sup{t1 ∈ [0, T ] : u(t) = v(t) in [0, t1]}
and prove T1 = T .
Assume T1 < T ; there exists T2 ∈ (T1, T ] satisfying u(h(t)) = v(h(t)), ∀ t ∈ [T1, T2].
Indeed, if h(T ) ≤ T1, we take T2 = T . In case T1 < h(T ), there exists T2 ∈ (T1, T )
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such that h(T2) = T1. By monotonicity of h, h(t) ≤ T1 and u(h(t)) = v(h(t)) for all
t ∈ [T1, T2]. By the properties of T1, T2, we get

|u(t)− v(t)|r ≤
C

ε

∫ t

T1

|u(τ)− v(τ)|r+εdτ, ∀ r, r + ε ∈ (l, s), t ∈ [T1, T2].

Then, we can prove by induction that

|u(t)− v(t)|r ≤
NCnnn(t− T1)n

(s− r)nn!
, ∀ t ∈ [T1, T2], r ∈ (l, s).

This implies that u(t) = v(t) in an interval [T1, T1 + ε), a contradiction to the choice
of T1. The proof is complete.

We return to the Cauchy problem (1.3). We denoted by Bs(u0, R) the closed ball in
Xs, centered at u0 with radius R. Clearly, the null of space Xb was also that of all
Xs. We denote it by θ.
Theorem 2.2 Assume that u0 ∈ Xb and

(1) there exist positive numbers C,R such that
i) F ([0, T0)×Bs(u0, R)×Bs(u0, R)) ⊂ Xs, and

|F (t, u1, v1)− F (t, u2, v2)|s ≤ C(|u1 − u2|s + |v1 − v2|s)

for all u1, u2, v1, v2 ∈ Bs(u0, R) and s ∈ [a, b];
ii) for s < r, F is continuous from [0, T0)×Br(u0, R)×Br(u0, R) into Xs;

(2) for s < r, A(t, ·) ∈ L(Xr, Xs), t ∈ [0, T0) and the function t 7→ A(t, ·) is
continuous in the operator-norm; moreover, there exists a function α(t) ∈
L1(0, T0) such that

‖A(t, ·)‖L(Xr,Xs) ≤ α(t), ∀ t ∈ (0, T0), r, s ∈ [a, b], s < r;

(3) there are positive constants C1, q such that

B ∈ L(Xr, Xs), ‖B‖L(Xr,Xs) ≤
C1

(r − s)q
, ∀ r, s ∈ [a, b], s < r;

(4) the function h : [0, T0)→ [0, T0) is continuous, h(t) < t for all t ∈ (0, T0), and
there exists a function S : ∆ = {(t, T ) : 0 ≤ t ≤ T < T0} → [a, b] satisfying:

S is continuous on ∆, decreasing with respect to the variable t; and

lim
T→0

∫ T

0

dt

[S(h(t), T )− S(t, T )]q
= 0.

Then, there exists a number T < T0 such that the problem (1.3) has a unique solution
u ∈ C([0, T ], Xa) satisfying

u(t) ∈ XS(t,T ), |u(t)|S(t,T ) ≤ R, ∀ t ∈ [0, T ].

Proof. Let E be the Banach space of functions u ∈ C([0, T ], Xa) such that

u(t) ∈ XS(t,T ) for all t ∈ [0, T ], ‖u‖ = sup
t∈[0,T ]

|u(t)|S(t,T ) <∞,
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where the number T < T0 is specified later. In E, we denote by u0 the function
u0(t) = u0 and by B(u0, R) the closed ball centered at u0 with radius R. We reduce
the problem (1.3) to the equivalent equation of finding u ∈ E satisfying

u(t) = u0 +

∫ t

0

F [τ,A(τ, u(τ)), B(u(h(τ)))]dτ := Gu(t). (2.4)

The main idea of the proof is to show that G(B(u0, R)) ⊂ B(u0, R) and that G is
contractive on B(u0, R). The fixed point of G is a solution to problem (1.3).
For u ∈ B(u0, R) due to properties of function F, S

|Gu(t)− u0|S(t,T ) ≤
∫ t

0

|F (τ,A(τ, u(τ)), B(u(h(τ)))|S(t,T )dτ

≤
∫ t

0

[
|F (τ, θ, θ)|b + C[|A(τ, u(τ))|S(t,T ) + |B(u(h(τ)))|S(t,T )]

]
dτ

≤
∫ T

0

|F (t, θ, θ)|bdt+ C

∫ T

0

[
α(τ)|u(τ)|S(τ,T ) +

C1|u(h(τ))|S(h(τ),T )

[S(h(τ), T )− S(τ, T )]q

]
dτ

≤
∫ T

0

|F (t, θ, θ)|bdt+ C‖u‖
∫ T

0

[
α(τ) +

C1

[S(h(τ), T )− S(τ, T )]q

]
dτ.

Therefore, we can choose T to be sufficiently small for the right-hand side to be less
than R for all u ∈ B(u0, R), t ∈ [0, T ]. This proves Gu ∈ B(u0, R).
Similarly, for u, v ∈ B(u0, R)

|Gu(t)−Gv(t)|S(t,T ) ≤ C
∫ T

0

[
α(τ)|u(τ)− v(τ)|S(τ,T )

+
C1|u(h(τ))− v(h(τ))|S(h(τ),T )

[S(h(τ), T )− S(τ, T )]q

]
dτ,

which gives

‖Gu−Gv‖ ≤ C‖u− v‖
∫ T

0

[
α(τ) +

C1

[S(h(τ), T )− S(τ, T )]q

]
dτ.

From this and hypothesis 4. we see that G is contractive if T is sufficiently small.
The proof is complete.
Example. Given q > 0, let α > 0 be such that αq < 1 and

S(t, T ) = b− (b− a)tα

Tα
, 0 ≤ t ≤ T < T0.

(1) If there exists m ∈ (0, 1) such that 0 ≤ h(t) ≤ mt, ∀ t ∈ [0, T0), then

1

[S(h(t), T )− S(t, T )]q
≤ Tαq

(1−mα)q(b− a)q
1

tαq
, 0 < t ≤ T < T0.

(2) Assume that 0 < h(t) < t1/p, ∀ t ∈ (0, 1) with p ∈ (0, 1). We have

1

[S(h(t), T )− S(t, T )]q
≤ Tαq

(b− a)q
1

tαq[1− tα((1/p)−1)]q
, 0 < t ≤ T < 1.

Thus, hypothesis 4 of Theorem 2.2 holds in both cases.
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3. Application to a Cauchy problem in the Gevrey class,
with deviating variables

Following Yamanaka and Kawaghisi [14, 28] we consider the problem{
∂1u(t, x) = f [t, x, ∂

(l1)
2 u(t, σ(t)x), ∂

(l2)
2 u(h(t), x)], t ∈ (0, T0), x ∈ Ω,

u(0, x) = 0, x ∈ Ω,
(3.1)

where Ω = (−R0, R0), u(t, x) is an unknown function belonging to the Gevrey class
in the second variable, ∂i, i = 1, 2 denotes the derivative of the i-th variable of u(t, x),
l1, l2 ∈ N∗ and the functions h, σ : [0, T0)→ R. f : [0, T0)× U → R, U = {(x, u, v) ∈
R3 : |x| < R0, |u|, |v| < R1} satisfy suitable conditions.

We begin by recalling the main definitions and notations. Let Z+ be the set of
all non-negative integers and λ > 1 be a constant. We fix such a λ throughout this
section. A C∞ function u : Ω→ R is called a Gevrey function on Ω of order λ if there
are two constants C, r such that

|u(k)(x)| ≤ C(k!)λ

rk
, ∀ k ∈ Z+, x ∈ Ω, (u(0) = u). (3.2)

Define function Γ : Z+ → R by Γ(k) = 2−8(k!)λk−2−λ for k ≥ 1 and Γ(0) = 2−6. It
is easily seen that the condition (3.2) is equivalent to the following one:

∃C ′, s > 0 : |u(k)(x)| ≤ C ′Γ(k)

sk
, ∀ k ∈ Z+, x ∈ Ω. (3.3)

We denote by Xs = Gs(Ω) the space of all Gevrey functions satisfying (3.3), endowed
with the norm

|u|s = sup

{
|u(k)(x)|

Γ(k)
sk : x ∈ Ω, k ∈ Z+

}
.

The spaces (Xs, |.|s), s ∈ [a, b] ⊂ (0,∞) form a scale of Banach spaces.
Let V ⊂ Rm be an open set. We write f ∈ C[0, T0) ⊗ Gs(V ) if the function

f : [0, T0) × V → R has continuous partial derivative ∂kf in variable y ∈ V for all
k ∈ Zm+ , and

∃C > 0 : |∂kf(t, y)| ≤ CΓ(k)

s|k|
, ∀ (t, y) ∈ [0, T0)× V, k ∈ Zm+ ,

where, for k = (k1, ..., km) ∈ Zm+ , we define ∂kf = ∂k11 ...∂kmm f, k! = k1!...km!, |k| =

k1 + ...+ km and ∂kf = f if k = (0, ..., 0).
Lemma 3.1 Let u ∈ Xr, r ∈ [a, b], l ∈ N∗.

(1) If s ∈ [a, b], s < r, then u(l) ∈ Xs and

|u(l)|s ≤
C(l)

(r − s)λl
|u|r, where C(l) = max

{
26Γ(l)(b− a)λl

al
,
(bλl
e

)λl 1

al

}
.

(2) If σ ∈ (0, 1) and v(x) = u(l)(σx), then v ∈ Xr and

|v|r ≤
C(l)

[a(1− σ)]λl
|u|r.
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Proof. (1) With w = u(l), we have

|w(x)|
Γ(0)

≤ 26|u|rΓ(l)

rl
≤ 26Γ(l)(b− a)λl

al
|u|r

(r − s)λl
,

|w(k)(x)|
Γ(k)

sk =
|u(k+l)(x)|

Γ(k)
sk ≤ |u|rΓ(k + l)

rk+lΓ(k)
sk

≤
(
k + l

k

)−2−λ |u|r
sl

(k + l)λl
(s
r

)k+l
≤ |u|r

sl
sup
z≥0

zλl
(s
r

)z
=
|u|r
sl

(
λl

e(ln r − ln s)

)λl
≤
(bλl
e

)λl 1

al
|u|r

(r − s)λl
, k ≥ 1,

which proves the assertion.
(2) The assertion follows from

|v|r = sup
x,k

|
(
u(l)
)(k)

(σx)|
Γ(k)

(σr)k

≤ |u(l)|σr ≤
C(l)|u|r

(r − σr)λl
.

Lemma 3.2 Let the function σ : [0, T0) → R be continuous and 0 ≤ σ(t) < 1, ∀ t ∈
(0, T0). Consider the operators A(t, ·) and B defined on Xr, r ∈ [a, b] by

A(t, u)(x) = u(l1)(σ(t)x), Bu = u(l2).

Then, for s < r

(1) A(t, ·) ∈ L(Xr, Xs) and

‖A(t, ·)‖L(Xr,Xs) ≤
C(l1)

[a(1− σ(t))]λl1
, ∀ t ∈ (0, T0).

Moreover, the function t 7→ A(t) is continuous in the operator-norm of
L(Xr, Xs).

(2) B ∈ L(Xr, Xs) and

‖B‖L(Xr,Xs) ≤
C(l2)

(r − s)λl2
.

Proof. The estimates for A(t), B follow from Lemma 3.1.
Let t, t0 ∈ [0, T0), u ∈ Xr and v = A(t, u)−A(t0, u). We have

v(x) = u(l1)(σ(t)x)− u(l1)(σ(t0)x) =

∫ σ(t)

σ(t0)

[u(l1)(τx)]′τdτ

=

∫ σ(t)

σ(t0)

xu(l1+1)(τx)dτ,
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v(k)(x)

Γ(k)
sk =

∫ σ(t)

σ(t0)

sk

Γ(k)

[
xu(l1+1)(τx)

](k)
x
dτ

=

∫ σ(t)

σ(t0)

sk

Γ(k)

[
xτku(l1+1+k)(τx) + kτk−1u(l1+k)(τx)

]
dτ. (3.4)

On the other hand by Lemma 3.1, we get

sk

Γ(k)

∣∣∣xτku(l1+1+k)(τx)
∣∣∣ ≤ R0

∣∣∣[u(1+l1)](k)(τx)
∣∣∣ sk

Γ(k)
≤ R0|u(l1+1)|s

≤ R0C(1 + l1)

(r − s)λ(1+l1)
|u|r, (3.5)

sk

Γ(k)

∣∣∣u(l1+k)(τx)
∣∣∣ ≤ ∣∣∣u(l1)∣∣∣

s
≤ C(l1)

(r − s)λl1
|u|r. (3.6)

From (13)-(15) we deduce that

|v|s ≤
[
R0C(1 + l1)

(r − s)λ(1+l1)
|σ(t)− σ(t0)|+ C(l1)

(r − s)λl1
|σk(t)− σk(t0)|

]
|u|r,

which proves ‖A(t) − A(t0)‖L(Xr,Xs) → 0 as t → t0. Thus, the function t 7→ A(t) is
continuous at t0.
Lemma 3.3 Assume that f ∈ C[0, T0)⊗ GS(U) and R ≤ {25R1, S}, s ≤ S/4. Then:

(1) There is a constant D depending only on f such that if u, v ∈ Bs(θ,R), the
function w(t, x) = f [t, x, u(x), v(x)] belongs to the class C[0, T0)⊗ Gs(Ω) and
|w(t, ·)|s ≤ D, ∀ t ∈ [0, T0). Moreover, for ui, vi ∈ Bs(θ,R) the functions
wi(t, x) = f [t, x, ui(x), vi(x)], i = 1, 2 satisfy the inequality

|w1(t, ·)− w2(t, ·)|s ≤ D
(
|u1 − u2|s + |v1 − v2|s

)
, ∀ t ∈ [0, T0).

(2) If s < r ≤ S/4, the operator F defined by

F (t, u, v)(x) = f [t, x, u(x), v(x)]

is continuous from [0, T0)×Br(θ,R)×Br(θ,R) into Xs.

Proof. The first statement of the lemma was proved in [28]-propositions 8-9. This
statement yields

|F (t′, u′, v′)− F (t, u, v)|s ≤ |F (t′, u, v)− F (t, u, v)|s +D
(
|u− u′|r + |v − v′|r

)
for u, u′, v, v′ ∈ Br(θ,R). Therefore, to prove the Xr − Xs continuity of F , it is
sufficient to show the continuity of the function t 7→ w(t) = F (t, u, v) in Xs-norm
when u, v ∈ Br(θ,R) are fixed. We have by Statement 1:

|w(k)
x (t, x)|
Γ(k)

rk ≤ D, ∀ (t, x) ∈ [0, T0)× (−R0, R0), k ∈ Z+.

Thus, given ε > 0 there exists an integer k0 such that

|w(k)
x (t, x)− w(k)

x (t0, x)|
Γ(k)

sk ≤ 2D
(s
r

)k
≤ ε, ∀ k > k0, (t, x) ∈ [0, T0)× (−R0, R0). (3.7)
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We now estimate the left-hand side of (16) for k ≤ k0. Let 0 < R2 < R0; by uniform

continuity of the functions w
(k)
x (t, x), k ≤ k0 on a compact set [t1, t2] × [−R2, R2],

there exists δ > 0 such that

|w(k)
x (t, x)− w(k)

x (t0, x)|
Γ(k)

sk ≤ ε

2
, (3.8)

∀x ∈ [−R2, R2], t ∈ (t0 − δ, t0 + δ) ∩ [0, T0), k ≤ k0.
For x ∈ (−R0, R0) \ [−R2, R2], we can choose y = R2 (or y = −R2) such that
|x− y| ≤ R0 −R2; by the Lagrange Theorem,

|w(k)
x (t, x)− w(k)

x (t0, x)|
Γ(k)

sk ≤ |w(k)
x (t, y)− w(k)

x (t0, y)| s
k

Γ(k)

+
(R0 −R2)sk

Γ(k)

(
|w(k+1)
x (t, c1)|+ |w(k+1)

x (t0, c2)|
)

≤ ε

2
+ (R0 −R2)2D

Γ(k + 1)

sΓ(k)

≤ ε, ∀ k ≤ k0, x ∈ (−R0, R0) \ [−R2, R2], t ∈ (t0 − δ, t0 + δ) ∩ [0, T0) (3.9)

provided that R0 −R2 is sufficiently small. From (16)-(18) we obtain

|w(t)− w(t0)|s ≤ ε, t ∈ (t0 − δ, t0 + δ) ∩ [0, T0).

The lemma is thus proved.
From Theorem 2.2 and Lemmas 3.1-3.3, we obtain the following result:
Theorem 3.4 Suppose the following hypotheses:

(1) The function f is in class C[0, T0)⊗ GS(U).
(2) The functions σ, h are continuous on [0, T0) and satisfy

0 < σ(t) < 1, 0 < h(t) < t, ∀ t ∈ (0, T0),

∫ T0

0

dt

[1− σ(t)]λl1
<∞.

(3) There exists a function S : ∆ = {(t, T ) : 0 ≤ t ≤ T < T0} → [a, S/4], (a > 0)
such that:

S is continuous in (t, T ), decreasing in the first variable, and

lim
T→0

∫ T

0

dt

[S(h(t), T )− S(t, T )]λl2
= 0.

Let R ≤ min{25R1, S}. Then, there exists a number 0 < T < T0 such that problem
(3.1) has a unique solution u in the Gevrey class of order λ and

u(t) ∈ XS(t,T ), |u(t)|S(t,T ) ≤ R, ∀ t ∈ [0, T ].

Example. Let α > 0 be such that αλl2 < 1 and

S(t, T ) =
S

4
−
(
S

4
− a
)(

t

T0

)α
, 0 ≤ t ≤ T < T0.

Assume that

(1) the function h is continuous on [0, T0) and satisfies at least one of the following
conditions:
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a) 0 < h(t) ≤ mt, t ∈ (0, T0) for some m ∈ (0, 1), and
b) T0 = 1 and 0 < h(t) < t1/p, t ∈ (0, 1) for some p ∈ (0, 1); and

(2) the function σ is continuous on [0, T0) and

0 < σ(t) ≤ 1−
(
t

T0

)β
, t ∈ [0, T0), for some β ∈

(
0,

1

λl1

)
.

Then, hypotheses 2 and 3 of Theorem 3.4 hold.

Note that the function σ(t) = 1−
(
t
T0

)β
does not satisfy condition (1.5), which is the

main condition in [14, 28].
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