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Abstract. In the present paper, we define a new class of implicit contractions for a sequence of

multi-valued mappings on a metric space endowed with a graph to obtain sufficient conditions for

existence of common fixed points for this sequence. This will enable us to obtain a simultaneous
generalization of various types of fixed point theorems for a sequence of multi-valued mappings.

Moreover, multi-fractal operators related to these contractive mappings are considered.
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1. Introduction

The Banach contraction principle [3], which appeared first in Banach’s thesis, is
one of the most important results of mathematics. It also has numerous applications
in different branches of sciences and plays an influential role in the modeling of phys-
ical processes. Due to its large area of influence and its significant impact, this result
has been extended by some mathematicians either by weakening the contractive con-
dition or imposing some additional conditions on the space [4, 6, 19]. One of these
generalizations was taken in metric spaces endowed with a partial order. Ran and
Reurings [18] pioneered the field by exploiting the existence of fixed points for con-
tinuous monotone contractive mappings. Later, Nieto and Rodŕıguez-López [12, 13]
extended the result appeared in [18] and used this extension to solve some differential
equations. Jachymski [6] obtained a more general unified version of these results by
considering a directed graph instead of a partial order [1, 8].

The multi-valued version of the Banach’s theorem was innovated by Nadler [11].
Following this extension, many mathematicians focused their attention on the study
of the fixed points of multi-valued mappings [9, 16, 17, 20].
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In 1997, Popa [14] initiated the study of fixed points for mappings which satisfy
an implicit relation [5, 15]. In this paper, we use this approach to define a class of
implicit relations for a sequence of multi-valued mappings to obtain new conditions
for a sequence of multi-valued mappings in complete metric spaces endowed with a
graph, which guarantees the existence of its common fixed points. Our general result
demonstrates a concurrent generalization of various types fixed point theorems for a
sequence of multi-valued mappings. Through applications of our results, we obtain a
new fixed point theorem for multi-fractals.

2. Results

We start this section by recalling some definitions.

Definition 2.1. Let (X, d) be a metric space and let CB(X) denote the family of
all nonempty closed bounded subsets of X. The Hausdorff distance between two
elements A and B in CB(X) is defined by

H(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.

Definition 2.2. Let T : X → CB(X) be a multi-valued operator. An element x ∈ X
is called a fixed point for T if x ∈ Tx. We denote by Fix(T ) the fixed point set of T .

Hereafter, we will assume that (X, d) is a metric space endowed with a directed
graph G and {Tn : X → CB(X)}n≥1 is a sequence of multi-valued mappings such
that Tn = T1 for infinity many n ∈ N and Tn+1 = T2 whenever Tn = T1.

Definition 2.3. Let R denote the class of all mappings g : [0,∞)5 → [0,∞) with the
following properties:

(i) g is homogeneous, that is,

g(λx1, . . . , λx5) = λg(x1, . . . , x5), (x1, . . . , x5, λ ≥ 0).

(ii) If xi ≤ yi, for 1 ≤ i ≤ 5, then g(x1, . . . , x5) ≤ g(y1, . . . , y5).
(iii) g(1, 1, 1, 2, 0) < 1.

Let g ∈ R and G be a graph in X. The sequence {Tn}n≥1 is called a (g,G)-
contraction if for each i ≥ 1, there corresponds a subgraph Gi of G such that (x0, x1) ∈
E(Gi) implies that

H(Tix0, Ti+1x1) ≤ g(d(x0, x1), d(x0, Tix0), d(x1, Ti+1x1), d(x0, Ti+1x1), d(x1, Tix0)).
(2.1)

The following result shows that the sets of fixed points of a sequence of (g,G)-
contractive mappings are equal.

Lemma 2.4. Let {Tn} be a (g,G)-contraction sequence for some g ∈ R. Then
Fix(Ti) = Fix(Tj) for each i, j ∈ N provided that (x, x) ∈ E(Gi) for each i ∈ N and
each x ∈ Fix(Ti).
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Proof. Let x ∈ Fix(Ti) for some i ∈ N, then (x, x) ∈ E(Gi). Therefore

d(x, Ti+1x) ≤ H(Tix, Ti+1x) ≤ g(d(x, x), d(x, Tix), d(x, Ti+1x), d(x, Ti+1x), d(x, Tix))

≤ g(0, 0, d(x, Ti+1x), d(x, Ti+1x), 0)

≤ g(0, 0, 1, 1, 0)d(x, Ti+1x)

≤ g(1, 1, 1, 2, 0)d(x, Ti+1x).

Since g(1, 1, 1, 2, 0) < 1, we have d(x, Ti+1x) = 0. Thus x ∈ Fix(Ti+1). Hence
Fix(Ti) ⊆ Fix(Ti+1) for each i ≥ 1. Therefore Fix(T1) ⊆ Fix(T2) ⊆ · · · . Since
Tn = T1 for infinity many n, we get to the desired result. �

Definition 2.5. For each T : X → CB(X), the graph of T is defined by

Gr(T ) := {(x, y); x ∈ X and y ∈ Tx}.

Also for each t ∈ (0, 1), define

Grt(T ) := {(x, y); x ∈ X, y ∈ Tx and td(x, y) ≤ d(x, Tx)}.

Trivially for each t ∈ (0, 1), Grt(T ) ⊆ Gr(T ).

We also need the following result.

Lemma 2.6. Let (X, d) be a metric space, g ∈ R and {Tn} a (g,G)−contraction
sequence. Assume that there exists t ∈ (0, 1) with t > g(1, 1, 1, 2, 0) such that E(Gi)
contains Grt(Ti) for each i ∈ N. Then there is q ∈ [0, 1) and a sequence {xn} with
(xn, xn+1) ∈ E(Gn+1) and xn ∈ Tnxn−1 such that for each n ∈ N

d(xn, xn+1) ≤ qd(xn−1, xn). (2.2)

In particular, if X is complete, then {xn} is convergent.

Proof. Let t be a real number with g(1, 1, 1, 2, 0) < t < 1 and Grt(Ti) ⊆ E(Gi) for

each i ≥ 1. Put q = g(1,1,1,2,0)
t , then 0 ≤ q < 1. Take some arbitrary point x0 ∈ X.

Choose x1 ∈ T1x0 with td(x0, x1) ≤ d(x0, T1x0). Then (x0, x1) ∈ Grt(T1) ⊆ E(G1).
Thus

H(T1x0, T2x1) ≤ g(d(x0, x1), d(x0, T1x0), d(x1, T2x1), d(x0, T2x1), d(x1, T1x0)). (2.3)

Take some x2 ∈ T2x1 with td(x1, x2) ≤ d(x1, T2x1). Then

(x1, x2) ∈ Grt(T2) ⊆ E(G2).

By (2.3) we get

td(x1, x2) ≤ g(d(x0, x1), d(x0, T1x0), d(x1, T2x1), d(x0, T2x1), d(x1, T1x0))

≤ g(d(x0, x1), d(x0, x1), d(x1, x2), d(x0, x1) + d(x1, x2), 0)

≤ max{d(x0, x1), d(x1, x2)}g(1, 1, 1, 2, 0).

If max{d(x0, x1), d(x1, x2)} = d(x1, x2), then we get t ≤ g(1, 1, 1, 2, 0), which is a
contradiction. So max{d(x0, x1), d(x1, x2)} = d(x0, x1). Thus we have d(x1, x2) ≤
qd(x0, x1). This proves (2.2) for n = 1. Suppose that (2.2) is true for some n ≥ 1.
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Then xn+1 ∈ Tn+1xn and (xn, xn+1) ∈ Grt(Tn+1) ⊆ E(Gn+1).
Choose xn+2 ∈ Tn+2xn+1 with td(xn+1, xn+2) ≤ d(xn+1, Tn+2xn+1). Then

(xn+1, xn+2) ∈ Grt(Tn+2) ⊆ E(Gn+2).

Hence

td(xn+1, xn+2) ≤ H(Tn+1xn, Tn+2xn+1)

≤ g(d(xn, xn+1), d(xn, Tn+1xn), d(xn+1, Tn+2xn+1), d(xn, Tn+2xn+1), d(xn+1, Tn+1xn))

≤ g(d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+1) + d(xn+1, xn+2), 0)

≤ max{d(xn, xn+1), d(xn+1, xn+2)}g(1, 1, 1, 2, 0).

The above inequality together with the fact that g(1, 1, 1, 2, 0) < t proves (2.2) when
n is replaced by n+ 1. The inequality (2.2) implies that

d(xn+1, xn) ≤ qd(xn, xn−1) ≤ · · · ≤ qnd(x1, x0) (n ≥ 1).

Therefore for each n, p ∈ N,

d(xn+p, xn) ≤ d(xn+1, xn) + · · ·+ d(xn+p, xn+p−1)

≤
n+p−1∑
k=n

qkd(x0, x1).

Thus {xn} is Cauchy and converges to some x ∈ X if X is complete. �

Now, we are ready to state the main result of this paper.

Theorem 2.7. Let (X, d) be a complete metric space endowed with a graph G, g ∈ R
be continuous and t ∈ (0, 1) with t > g(1, 1, 1, 2, 0). Let {Tn} be a (g,G)-contraction
sequence and for each n ∈ N, E(Gn) contains Grt(Tn). Assume that {xn} be the
Cauchy sequence defined in proof of Lemma 2.6 and x ∈ X be its limit. Then x is a
common fixed point of {Tn} provided that there exists a subsequence {xnk

} and i ≥ 1
such that (xnk

, x) ∈ E(Gi) and xnk+1 ∈ Tixnk
for each k ∈ N.

Proof. By the definition for each k ≥ 1, we have

d(xnk+1, Ti+1x) ≤ H(Tixnk
, Ti+1x)

≤ g(d(xnk
, x), d(xnk

, Tixnk
), d(x, Ti+1x), d(xnk

, Ti+1x), d(x, Tixnk
))

≤ g(d(xnk
, x), d(xnk

, xnk+1), d(x, Ti+1x), d(xnk
, Ti+1x), d(x, xnk+1)).

Letting k →∞, by continuity of g, we have

d(x, Ti+1x) ≤ g(0, 0, d(x, Ti+1x), d(x, Ti+1x), 0) ≤ g(0, 0, 1, 1, 0)d(x, Ti+1x).

Since g(0, 0, 1, 1, 0) < 1, the above inequality implies that x ∈ Ti+1x. In view of
Lemma 2.4, x is a common fixed point of {Tn}. �

Remark 2.8. Let (X, d) be a complete metric space endowed with a graph G and g ∈
R be continuous. Assume that {Tn} be a (g,G)-contraction sequence and Gr(Ti) ⊆
E(Gi), for each i ≥ 1. Then for each t ∈ (0, 1) with t > g(1, 1, 1, 2, 0) and for each i ≥ 1
we have Grt(Ti) ⊆ E(Gi). Thus Lemma 2.6 and Theorem 2.7 also hold if we replace
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condition Grt(Ti) ⊆ E(Gi) for each i ≥ 1 by stronger condition Gr(Ti) ⊆ E(Gi) for
each i ≥ 1.

Example 2.9. Let (X, d) be a metric space such that X = { 1
2n ; n ≥ 1} ∪ {0, 1} and

d(x, y) =

{
0 if x = y

max{x, y} otherwise
(2.4)

Then (X, d) is a complete metric space. Define T1, T2 : X → CB(X) by

T1(x) =

 {0} if x = 0
{ 1
2n+1 , 0} if x = 1

2n , n ≥ 1
{ 12} if x = 1

,

and

T2(x) =

 {0} if x = 0
{ 1
2n+1 ,

1
2n+2 } if x = 1

2n , n ≥ 1
{0} if x = 1

.

For each i ∈ {1, 2} define graph Gi by V (Gi) = X,

E(G1) = Gr(T1) =

{(
1

2n
, 0

)
: n ≥ 1

}
∪
{(

1

2n
,

1

2n+1

)
: n ≥ 1

}
∪
{

(0, 0),

(
1,

1

2

)}
,

and

E(G2)= Gr(T2) =

{(
1

2n
,

1

2n+1

)
: n ≥ 1

}
∪
{(

1

2n
,

1

2n+2

)
: n ≥ 1

}
∪{(0, 0), (1, 0)}.

Let the implicit function g be defined by

g(x1, . . . , x5) =
1

2
max{x1, x2} where x1, . . . , x5 ≥ 0.

We will show that {Tn} is a (g,G)− contraction sequence where T2n−1 = T1 and
T2n = T2 for each n ≥ 1. Since

H(T10, T20) = 0 ≤ 1

2
max{d(0, 0), d(0, 0)} = 0,

H(T1
1

2n
, T20) =

1

2n+1
≤ 1

2
max{d(0,

1

2n
), d(

1

2n
, { 1

2n+1
, 0})} =

1

2n
,

H(T1
1

2n
, T2

1

2n+1
) =

1

2n+1
≤ 1

2
max{ 1

2n
,

1

2n
} =

1

2n+1
,

H(T11, T2
1

2
) =

1

2
≤ 1

2
max{1, 1} =

1

2
,

H(T20, T10) = 0 ≤ 1

2
max{d(0, 0), d(0, 0)} = 0,

H(T2
1

2n
, T1

1

2n+1
) =

1

2n+1
≤ 1

2
max{ 1

2n
,

1

2n
} =

1

2n+1
,

H(T2
1

2n
, T1

1

2n+2
) =

1

2n+1
≤ 1

2
max{ 1

2n
,

1

2n
} =

1

2n+1
,

H(T21, T10) = 0 ≤ 1

2
max{1, 1} =

1

2
,
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{Tn} is (g,G)− contraction. One can easily check that other conditions of Theorem
2.7 are satisfied. Therefore T1 and T2 have a common fixed point that is x = 0.

3. Some applications

In this section, we apply our main result to improve some Nadler’s type fixed point
theorems. In 2008, Kikkawa and Suzuki improved Nadler’s fixed point theorem as
follows.

Theorem 3.1. [7, Theorem 2] Define a strictly decreasing function η from [0, 1) onto
( 1
2 , 1] by

η(r) =
1

1 + r
.

Let (X, d) be a complete metric space and T be a mapping from X into CB(X) and
there exists r ∈ [0, 1) such that

η(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rd(x, y),

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

Mot and Petruşel extended the above result for generalized multi-valued contrac-
tions.

Theorem 3.2. [10, Theorem 6.6] Let (X, d) ba a complete metric space and T be a
multi-valued function from X into nonempty closed subsets of X. Assume that for
some r1, r2, r3 ∈ [0, 1) with r1 + r2 + r3 < 1, 1−r2−r31+r1

d(x, Tx) ≤ d(x, y) implies that

H(Tx, Ty) ≤ r1d(x, y) + r2d(x, Tx) + r3d(y, Ty)

for all x, y ∈ X. Then there is some x ∈ X such that x ∈ Tx.
Since 1−r2−r3

1+r1
< 1

1+r1+r2+r3
, the following result can be considered as a refinement

of Theorem 3.2 when r4 = 0.

Theorem 3.3. Let (X, d) be a complete metric space and T : X → CB(X). Assume
that there exist 0 ≤ r1, r2, r3, r4 < 1 with r = r1 + r2 + r3 + 2r4 < 1 and s ∈ (r, 1)
such that 1

1+rd(x, Tx) ≤ d(x, y) ≤ 1
1−sd(x, Tx) implies that

H(Tx, Ty) ≤ r1d(x, y) + r2d(x, Tx) + r3d(y, Ty) + r4(d(x, Ty) + d(y, Tx)).

Then T has a fixed point.

Proof. Define graph G by V (G) = X and

E(G) = {(x, y) :
1

1 + r
d(x, Tx) ≤ d(x, y) ≤ 1

1− s
d(x, Tx)}.

Assume that g : [0,∞)5 → [0,∞) is defined by

g(a1, . . . , a5) = r1a1 + r2a2 + r3a3 + r4(a4 + a5).

Then g(1, 1, 1, 2, 0) = r1 + r2 + r3 + 2r4 = r < 1. Therefore g ∈ R.
Let {Tn} be a sequence in which Tn = T for each n ∈ N. we show that {Tn} = T is
a (g,G)−contraction. Let (x0, x1) ∈ E(G). Thus we have

1

1 + r
d(x0, Tx0) ≤ d(x0, x1) ≤ 1

1− s
d(x0, Tx0).
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By our hypothesis

H(Tx0, Tx1) ≤ r1d(x0, x1)+r2d(x0, Tx0)+r3d(x1, Tx1)+r4(d(x0, Tx1)+d(x1, Tx0))

= g(d(x0, x1), d(x0, Tx0), d(x1, Tx1), d(x0, Tx1), d(x1, Tx0)).

Hence T is a (g,G)− contraction.

Since 0 ≤ r < s < 1, we have r < r
1+r−s < s. Choose s1 ∈

(
r

1+r−s , s
)

. Put t = 1−s
1−s1 .

Then we get

r

1 + r − s
< s1 ⇒ r < s1 + rs1 − s1s⇒ r − rs1 < s1 − s1s⇒

r(1− s1)

1− s
< s1.

Hence r < r
s1
< 1−s

1−s1 = t. Thus r = g(1, 1, 1, 2, 0) < t.

We show that Grt(T ) ⊆ E(G). Let (x0, x1) ∈ Grt(T ). Then x1 ∈ Tx0 and

1− s
1− s1

d(x0, x1) = td(x0, x1) ≤ d(x0, Tx0).

We have

1

1 + r
d(x0, Tx0) ≤ d(x0, Tx0) ≤ d(x0, x1) ≤ 1− s1

1− s
d(x0, Tx0) ≤ 1

1− s
d(x0, Tx0).

Hence (x0, x1) ∈ E(G). Therefore Grt(T ) ⊆ E(G). Lemma 2.6 implies that there
exists a Cauchy sequence {xn} such that for each n ≥ 1, xn ∈ Txn−1, (xn−1, xn) ∈
E(G) and d(xn, xn+1) ≤ qd(xn−1, xn) where q = g(1,1,1,2,0)

t = r
t .

Since X is complete, there exists x ∈ X such that xn → x as n→∞. We show that
there exists a subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G), for each k ≥ 0.

For each n ≥ 0 and each p ≥ 1 we have

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

= d(xn, xn+1)(1 + q + q2 + · · ·+ qp−1)

=
1− qp

1− q
d(xn, xn+1).

Tending p → ∞ we get d(xn, x) ≤ 1
1−qd(xn, xn+1). Since r

s1
< t and q = r

t we get

q < s1. So d(xn, x) ≤ 1
1−qd(xn, xn+1) ≤ 1

1−s1 d(xn, xn+1), for each n ≥ 0.

Thus for each n ≥ 0 we get

d(xn, x) ≤ 1

1− s1
d(xn, xn+1)

≤ 1

1− s1
1

t
d(xn, Txn) ≤ 1

1− s1
1− s1
1− s

d(xn, Txn)

=
1

1− s
d(xn, Txn).
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On the other hand, for each n ≥ 0 we have (xn, xn+1) ∈ E(G). Since T is a
(g,G)−contraction, for each n ≥ 0 we get

d(xn+1, Txn+1) ≤ H(Txn, Txn+1)

≤ r1d(xn, xn+1) + r2d(xn, Txn) + r3d(xn+1, Txn+1)

+r4(d(xn, Txn+1) + d(xn+1, Txn))

≤ r1d(xn, xn+1) + r2d(xn, Txn) + r3d(xn+1, Txn+1) + r4d(xn, Txn+1).

Thus for each n ≥ 0,

d(xn+1, Txn+1)− r3d(xn+1, Txn+1)− r4d(xn+1, Txn+1)

≤ (r1 + r4)d(xn, xn+1) + r2d(xn, Txn),

and so

(1− r3 − r4)d(xn+1, Txn+1) ≤ (r1 + r4)d(xn, xn+1) + r2d(xn, Txn). (3.1)

Now, suppose in contrary that there exists N ∈ N such that d(x, xn) < 1
1+rd(xn, Txn)

for each n ≥ N . By (3.1), for each n ≥ N we get

d(xn, xn+1) ≤ d(x, xn) + d(x, xn+1) <
1

1 + r
[d(xn, Txn) + d(xn+1, Txn+1)]

≤ 1

1 + r
[d(xn, Txn) +

r1 + r4
1− r3 − r4

d(xn, xn+1) +
r2

1− r3 − r4
d(xn, Txn)].

Hence

d(xn, xn+1)− 1

(1 + r)

r1 + r4
1− r3 − r4

d(xn, xn+1)

<
1

1 + r
d(xn, Txn) +

1

1 + r

r2
1− r3 − r4

d(xn, Txn).

So

(1 + r)d(xn, xn+1)− r1 + r4
1− r3 − r4

d(xn, xn+1) < d(xn, Txn) +
r2

1− r3 − r4
d(xn, Txn).

Thus we get

(1 + r)(1− r3 − r4)− (r1 + r4)

1− r3 − r4
d(xn, xn+1) <

1− r3 − r4 + r2
1− r3 − r4

d(xn, Txn),

and so

(1 + r)(1− r3 − r4)− (r1 + r4)d(xn, xn+1) < (1− r3 − r4 + r2)d(xn, Txn).

If r3 = r4 = 0 then

(1 + r)(1− r3 − r4)− (r1 + r4)

1− r3 − r4 + r2
=

1 + r2
1 + r2

= 1.

Otherwise r3 > 0 or r4 > 0. We show that

(1 + r)(1− r3 − r4)− (r1 + r4)

1− r3 − r4 + r2
> 1. (3.2)
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It is easy to see that (3.2) is equivalent to

r − (r3 + r4)

r − r(r3 + r4)
< 1

which is true in this case. Hence

(1 + r)(1− r3 − r4)− (r1 + r4)

1− r3 − r4 + r2
≥ 1.

Thus for each n ≥ N ,

d(xn, xn+1) ≤ (1 + r)(1− r3 − r4)− (r1 + r4)

1− r3 − r4 + r2
d(xn, xn+1) < d(xn, Txn),

which is a contradiction. Hence, there exists a subsequence {xnk
} of {xn} such that

d(x, xnk
) ≥ 1

1+rd(xnk
, Txnk

), for each k ≥ 0.

Since for each n ≥ 0, d(x, xn) ≤ 1
1−sd(xn, Txn), we may consider {xnk

} as a sequence

where (xnk
, x) ∈ E(G) for each k ≥ 0. Theorem 2.7 implies that x is a fixed point of

T . �

Remark 3.4. By imitating the proof of Theorem 3.3 for implicit function

g(t1, . . . , t5) = rmax

{
t1, t2, t3,

t4 + t5
2

}
,

one can prove the following result.

Theorem 3.5. [16, Theorem 2.7] Let (X, d) be a complete metric space and T : X →
CB(X). If r, s ∈ [0, 1), s > r and x, y ∈ X with

1

1 + r
d(x, Tx) ≤ d(x, y) ≤ 1

1− s
d(x, Tx)

implies

H(Tx, Ty) ≤ rmax{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
},

then T has a fixed point.

Now, we give some results that ensure the existence of common fixed points for a
sequence of multi-valued mappings. All of which are consequences of Theorem 2.7.
The following result may be considered as a generalization of Amini Theorem [2].

Theorem 3.6. Let (X, d) be a complete metric space and T1, T2, · · · : X → CB(X)
be a sequence of multi-valued mappings such that Tn = T1 for infinity many n ∈ N
and Tn+1 = T2 whenever Tn = T1. Assume that 1

1+rd(x, Tix) ≤ d(x, y) implies that

H(Tix, Ti+1y) ≤ rmax{d(x, y), d(x, Tix), d(y, Ti+1y), d(x, Ti+1y), d(y, Tix)} (3.3)

for each x, y ∈ X, each i ∈ N and for some r ∈ [0, 12 ). Then {Tn} has a common fixed
point.
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Proof. Define g : [0,∞)5 → [0,∞) by g(t1, . . . , t5) = rmax{t1, . . . , t5} for each
t1, . . . , t5 ∈ R. Then g is sub-homogenous and increasing with respect to each vari-
able and g(1, 1, 1, 2, 0) = 2r ∈ (0, 1). Therefore g ∈ R. For each i ≥ 1 define Gi by
V (Gi) = X and

E(Gi) = {(x, y);
1

1 + r
d(x, Tix) ≤ d(x, y)}.

Define graph G by

V (G) = X and E(G) =
⋃
i≥1

E(Gi).

Then E(Gi) ⊇ Gr(Ti) for each i ≥ 1. For each i ≥ 1 and (x0, x1) ∈ E(Gi), we have

H(Tix0, Ti+1x1)≤rmax{d(x0, x1), d(x0, Tix0), d(x1, Ti+1x1), d(x0, Ti+1x1), d(x1, Tix0)}
= g(d(x0, x1), d(x0, Tix0), d(x1, Ti+1x1), d(x0, Ti+1x1), d(x1, Tix0)).

Thus {Tn} is a (g,G)−contraction sequence. By Lemma 2.4,

Fix(Ti) = Fix(Tj) for each i, j ∈ N.

Lemma 2.6 implies that there exists a Cauchy sequence {xn} such that xn ∈ Tnxn−1
for each n ≥ 0. Since X is complete, there exists x ∈ X such that

lim
n→∞

d(xn, x) = 0.

Suppose that for some n ≥ 2,

xn−1 ∈ T1xn−2 and xn ∈ T2xn−1.

We claim that either

1

1 + r
d(xn−2, T1xn−2) ≤ d(xn−2, x) (3.4)

or
1

1 + r
d(xn−1, T2xn−1) ≤ d(xn−1, x). (3.5)

Suppose that neither (3.4) nor (3.5) holds. Then we get

(1 + r)d(xn−2, xn−1) ≤ (1 + r)d(xn−2, x) + (1 + r)d(xn−1, x)

< d(xn−2, T1xn−2) + d(xn−1, T2xn−1)

≤ d(xn−2, xn−1) + d(xn−1, xn)

≤ d(xn−2, xn−1) + rd(xn−2, xn−1)

= (1 + r)d(xn−2, xn−1),

which is a contradiction. Thus either (3.4) or (3.5) holds. Hence either (xn−1, x) ∈
E(G1) or (xn−1, x) ∈ E(G2) for infinity many n ∈ N. Theorem 2.7 implies that {Tn}
has a common fixed point. �

The following generalization of Amini-Harandi fixed point theorem follows imme-
diately from Theorem 3.6.
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Corollary 3.7. Let (X, d) be a complete metric space and T : X → CB(X) be a
multi-valued mappings. Assume that 1

1+rd(x, Tx) ≤ d(x, y) implies that

H(Tx, Ty) ≤ rmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} (3.6)

for some r ∈ [0, 12 ). Then T has a fixed point.

By imitating the proof of Theorem 3.6 for the implicit function

g(t1, . . . , t5) = rmax

{
t1, t2, t3,

t4 + t5
2

}
,

one can prove the following result.

Theorem 3.8. Let (X, d) be a complete metric space and {Tn} be a sequence of
multi-valued mappings of X to CB(X) such that Tn = T1 for infinity many n ∈ N
and Tn+1 = T2 whenever Tn = T1. Assume that 1

1+rd(x, Tix) ≤ d(x, y) implies that

H(Tix, Ti+1y) ≤ rmax

{
d(x, y), d(x, Tix), d(y, Ti+1y),

d(x, Ti+1y) + d(y, Tix)

2

}
(3.7)

for each x, y ∈ X, each i ∈ N and for some r ∈ [0, 1). Then {Tn} has a common fixed
point.

The next result is another extension of Theorem 3.2 when {Tn} is a sequence of
multi-valued mappings.

Theorem 3.9. Let (X, d) ba a complete metric space and {Tn} be a sequence of
multi-valued mappings such that Tn = T1 for infinity many n ∈ N and Tn+1 = T2
whenever Tn = T1. Assume that 1−b−c

1+a d(x, Tix) ≤ d(x, y) implies that

H(Tix, Ti+1y) ≤ ad(x, y) + bd(x, Tix) + cd(y, Ti+1y), (3.8)

for some a, b, c ∈ [0, 1) with a + b + c < 1 and for all x, y ∈ X. Then {Tn} has a
common fixed point.

Proof. Let g : [0,∞)5 → [0,∞) be defined by g(t1, . . . , t5) = at1 + bt2 + ct3, for each
t1, . . . , t5 ∈ [0,∞), then g ∈ R. Let V (Gi) = X and

E(Gi) = {(x0, x1);
1− b− c

1 + a
d(x0, Tix0) ≤ d(x0, x1)},

for i ∈ N. Define the graph of G by

V (G) = X and E(G) =
⋃
i≥1

E(Gi).

Let (x0, x1) ∈ E(Gi) for some i ∈ N, then 1−b−c
1+a d(x0, Tix0) ≤ d(x0, x1). Therefore

H(Tix0, Ti+1x1) ≤ ad(x0, x1) + bd(x0, Tix0) + cd(x1, Ti+1x1))

= g(d(x0, x1), d(x0, Tix0), d(x1, Ti+1x1), d(x0, Ti+1x1), d(x1, Tix0)).

Hence {Tn} is a (G, g)-contraction sequence. By Lemma 2.4,

Fix(Ti) = Fix(Tj) for each i, j ∈ N.
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Since E(Gi) contains Gr(Ti) for each i ≥ 1, we can use Lemma 2.6 to obtain a Cauchy
sequence {xn} such that xn ∈ Tn xn−1 for each n > 0. Since X is complete, there
exists x ∈ X such that limn→∞ d(xn, x) = 0. Let for some n ≥ 2,

xn−1 ∈ T1xn−2 and xn ∈ T2xn−1.

We claim that either
1− b− c

1 + a
d(xn−2, T1xn−2) ≤ d(xn−2, x) or (3.9)

1− b− c
1 + a

d(xn−1, T2xn−1) ≤ d(xn−1, x). (3.10)

Suppose that neither (3.9) nor (3.10) holds. Then we have

(1 + a)d(xn−2, xn−1) ≤ (1 + a)d(xn−2, x) + (1 + a)d(xn−1, x)

< (1− b− c) (d(xn−2, T1xn−2) + d(xn−1, T2xn−1))

≤ (1− b− c) (d(xn−2, xn−1) +H(T1xn−2, T2xn−1))

≤ (1− b− c)
(
d(xn−2, xn−1) + ad(xn−2, xn−1)

+ bd(xn−2, T1xn−2) + cd(xn−1, T2xn−1)
)

≤ (1− b− c)
(
d(xn−2, xn−1) + ad(xn−2, xn−1)

+ bd(xn−2, T1xn−2) + cd(xn−1, xn)
)

≤ (1− b− c)(1 + a+ b+ c)d(xn−2, xn−1).

Since (1 − b − c)(1 + a + b + c) = 1 + a − (b + c)(a + b + c), the above inequality
implies that −(b + c)(a + b + c) > 0, which is a contradiction. Thus either (3.9) or
(3.10) holds for infinity many n ∈ N. So either (xn, x) ∈ E(G1) or (xn, x) ∈ E(G2)
for infinity many n. By Theorem 2.7, {Tn} has a common fixed point. �

4. Multi-fractal mappings

Let (X, d) be a metric space and T : X → CB(X). Define

CBcp(X) = {A ∈ CB(X) and A is compact}.

The mapping T̂ : CBcp(X)→ CBcp(X) defined by T̂ (A) =
⋃

a∈A Ta is said to be
the multi-fractal operator generated by T .

In this section, we give an application of our results to finding unique fixed point
of a multi-fractal. In order to achieve this goal, we Consider a subset R′ of R such
that the condition (iii) in Definition 2.3 is replaced by following property:

(iii)′ g(1, 1, 1, 2, 1) < 1.

Trivially R′ ⊆ R.
Regarding {Tn} as a sequence of single valued mappings and g ∈ R′, we get the

following result.

Theorem 4.1. Let (X, d) be a complete metric space endowed with a graph G, g ∈ R′
be continuous. Let {Tn} be single valued (g,G)-contraction sequence and (x, Tnx) ∈
E(Gn) for each x ∈ X and each n ∈ N. Let {xn} be the Cauchy sequence defined in
proof of Lemma 2.6 and x ∈ X be its limit. Then x is a common fixed point of {Tn}
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provided that there exists a subsequence {xnk
} and i ≥ 1 such that (xnk

, x) ∈ E(Gi)
and xnk+1 = Tixnk

for each k ∈ N. Further x is a unique common fixed point of
{Tn} if y, z ∈ Fix(Ti) for some i ≥ 1 implies that there exists j ≥ 1 such that
(y, z) ∈ E(Gj).

Proof. By our hypothesis, for each n ∈ N and each z ∈ Fix(Tn) we have (z, z) =
(z, Tnz) ∈ E(Gn). Therefore the first part follows by Theorem 2.7. Let y, z ∈ Fix(Ti)
for some i ≥ 1. Lemma 2.4 implies that y, z ∈ Fix(Ti) for each i ≥ 1. Assume that
(y, z) ∈ E(Gj) for some j ≥ 1. Then we get

d(y, z) ≤ d(Tjy, Tj+1z)

≤ g(d(y, z), d(y, Tjy), d(z, Tj+1z), d(y, Tj+1z), d(z, Tjy))

= g(d(y, z), 0, 0, d(y, z), d(z, y))

= g(1, 0, 0, 1, 1)d(y, z) ≤ g(1, 1, 1, 2, 1)d(y, z),

Since g ∈ R′, g(1, 1, 1, 2, 1) < 1. Therefore d(y, z) = 0. Thus y = z. �

The following result gives conditions under which a multi-fractal has a unique fixed
point.

Corollary 4.2. Let (X, d) be a metric space and g ∈ R′. Let T : X → CB(X) be
a upper semi continuous (g,G)−contraction where V (G) = X and E(G) = X × X.

Then the multi-fractal T̂ generated by T has a unique fixed point.

Proof. We show that the single-valued mapping T̂ : CBcp(X)→ CBcp(X) satisfies in

conditions of Theorem 4.1. Define graph Ĝ by

V (Ĝ) = CBcp(X) and E(Ĝ) = CBcp(X)× CBcp(X).

Let (A,B) ∈ E(Ĝ). Then

sup
a∈A

inf
b∈B
H(Ta, Tb) ≤ sup

a∈A
inf
b∈B

g(d(a, b), d(a, Ta), d(b, T b), d(a, Tb), d(b, Ta))

≤ sup
a∈A

g(d(a,B), d(a, Ta),H(B, TB), d(a, TB), d(B, Ta))

≤ g(H(A,B),H(A, TA),H(B, TB),H(A, TB),H(B, TA)).

Similarly one can show that

sup
b∈B

inf
a∈A
H(Ta, Tb) ≤ g(H(A,B),H(A, TA),H(B, TB),H(A, TB),H(B, TA)).

Hence for each (A,B) ∈ E(Ĝ),

H(TA, TB) ≤ g(H(A,B),H(A, TA),H(B, TB),H(A, TB),H(B, TA)).

Thus T̂ is a (g, Ĝ)-contraction. Also for each A ∈ CBcp(X), (A, T̂ (A)) ∈ E(Ĝ). Thus

conditions of Theorem 4.1 hold. Hence T̂ has a unique fixed point. �
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