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∗Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria,

Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain
E-mail: jackie.harjani@ulpgc.es
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Abstract. In this paper, by using a mixed monotone operator method we study the existence and

uniqueness of positive solutions to the following nonlinear fractional boundary value problem{
C
Dα

0
+ u(t) + f(t, u(t), (Hu)(t)) + g(t, u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) = γu′(η),

where 2 < α ≤ 3, γ, η ∈ (0, 1),
C
Dα

0
+ denotes de Caputo fractional derivative, f : [0, 1] × [0,∞) ×

[0,∞) → [0,∞) and g : [0, 1]× [0,∞) → [0,∞) are continuous functions and H is an operator (not
necessarily linear) applying C[0, 1] into itself. Moreover, in order to illustrate our results, we present

some examples.

Key Words and Phrases: Fractional boundary value problem, positive solution, mixed monotone
operator, fixed point.

2020 Mathematics Subject Classification: 47H10, 49L20.

1. Introduction

The theory of fractional differential equations has received much attention over the
past years due to its numerous applications in a great number of areas as physics,
chemistry, economics, control theory, signal and image processing, etc. (see, [5, 6, 7,
8, 9, 10], for example and the references therein).

Many methods have been used to prove the existence of solutions to fractional
boundary value problems with different boundary conditions such as fixed point the-
orems, upper and lower solution method, monotone iterative method, among others.
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In this paper, we study the existence and uniqueness of positive solutions to the
following nonlinear fractional boundary value problem{

C

Dα
0+u(t) + f(t, u(t), (Hu)(t)) + g(t, u(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) = γu′(η),
(1.1)

where 2 < α ≤ 3, γ, η ∈ (0, 1),
C

Dα
0+ denotes the Caputo frational derivative f :

[0, 1] × [0,∞) × [0,∞) → [0,∞) and g : [0, 1] × [0,∞) → [0,∞) are continuous
functions and H : C[0, 1] → C[0, 1] is an operator (not necessarily linear) satisfying
certain assumptions, by using a mixed monotone operator method. This technique
has been used by other authors in the literature (see [1],[3, 4],[13] y [14] for example).

2. Preliminaries and previous results

This section is devoted to the background material needed to establish the main
result of the paper.

Our starting point is to present some definitions and basic results about fractional
calculus. This material can be found in [5].

Definition 2.1 The Riemann-Liouville fractional integral of order α > 0 of a function
f : (0,∞)→ R is given by

(Iα0+f)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right side is pointwise defined on (0,∞).

Definition 2.2 The Caputo fractional derivative of order α > 0 of a function f :
(0,∞)→ R is defined as

(cDα
0+f) (t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α−n+1
ds,

where n− 1 < α ≤ n, provided that the right side is pointwise defined on (0,∞).

Lemma 2.3 Let n− 1 < α ≤ n and u ∈ C(n)[0, 1]. Then

Iα0+
CDα

0+u(t) = u(t)− c1 − c2t− · · · − cntn−1,

where ci ∈ R (i = 1, 2, · · · , n).

Lemma 2.4 The relation
Iα0+I

β
0+u(t) = Iα+β

0+ u(t)

holds if Re(α) > 0, Re(α+ β) > 0 and u ∈ L1(0,∞).

Next, we recall some basic concepts in ordered Banach spaces and some results
about the mixed monotone operator theory.

In the sequel, (E, ‖ · ‖) is a real Banach space.
A nonempty closed convex set P ⊂ E is said to be a cone if it satisfies: (i) x ∈ P

and λ ≥ 0 ⇒ λx ∈ P ; (ii) −x, x ∈ P ⇒ x = θE , where θE denotes the zero element
of E.
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Suppose that P is a cone in the Banach space (E, ‖ · ‖), then P induces a partial
order in E given by, for x, y ∈ E,

x ≤ y ⇐⇒ x− y ∈ P.
By x < y, we mean that x ≤ y and x 6= y. If interior of P , P̊ , is nonempty, the cone
P is said to be solid. If there exists a constant C > 0 such that, for any x, y ∈ E, with
θE ≤ x ≤ y implies ‖x‖ ≤ C‖y‖ then we say that the cone P is normal. In this case,
the smallest constant C satisfying the last inequality is called the normality constant
of P .

For x, y ∈ E, by x ∼ y we mean the existence of constants λ, µ > 0 such that

λy ≤ x ≤ µy.
It is easily seen that ∼ is an equivalence relation.

For θE < h, we denote by Ph the set given by

Ph = {x ∈ E : x ∼ h}.
It is easily proved that Ph ⊂ P .

Definition 2.5 An operator T : E → E is said to be increasing (resp. decreasing) if,
for any x, y ∈ E, x ≤ y then Tx ≤ Ty (resp. Tx ≥ Ty).

Definition 2.6 An operator A : P × P → P is called mixed monotone if A(x, y) is
increasing in x and decreasing in y, i.e., for any (x, y), (u, v) ∈ P × P ,

x ≤ u and y ≥ v ⇒ A(x, y) ≤ A(u, v).

Definition 2.7 An operator B : P → P is called subhomogeneous if

B(λx) ≥ λB(x), for any λ ∈ (0, 1) and x ∈ P.

The following result appears in [12] and it is the main tool used in our study.

Theorem 2.8 Suppose that α ∈ (0, 1), h ∈ E with θE < h, and P is a normal cone
in the Banach space (E, ‖ · ‖). Let A : P × P → P be a mixed monotone operator
satisfying

A(tx, t−1y) ≥ tαA(x, y), for any t ∈ (0, 1) and x, y ∈ P.
Let B : P −→ P be an increasing subhomogeneous operator.
Assume that

(i) There exists h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph,
(ii) There exists a constant δ0 > 0 such that

A(x, y) ≥ δ0Bx, for any x, y ∈ P.
Then

(a) A : Ph × Ph −→ Ph and B : Ph −→ Ph.
(b) There exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0 and

u0 ≤ A(u0, v0) +Bu0 ≤ A(v0, u0) +Bv0 ≤ v0.
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(c) There exists a unique x∗ ∈ Ph such that

x∗ = A(x∗, x∗) +Bx∗.

(d) For any initial values x0, y0 ∈ Ph, the sequences defined by

xn = A(xn−1, yn−1) +Bxn−1,

yn = A(yn−1, xn−1) +Byn−1

for n = 1, 2, · · · , satisfy

lim
n→∞

‖xn − x∗‖ = lim
n→∞

‖yn − x∗‖ = 0.

3. Main results

We will work in the space E = C[0, 1] = {x : [0, 1] → R, continuous }, with the
classical norm given by

‖x‖ = max{|x(t)| : t ∈ [0, 1]}.
In E, we consider the cone P defined by

P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}.
It is easily seen that P is a normal cone with normality constant C = 1. In this case,
the partial order in C[0, 1] induced by P is given by, for x, y ∈ E,

x ≤ y ⇔ x(t) ≤ y(t), for any t ∈ [0, 1].

Previously, we recall the following lemma appearing in [11], which was proved by
using Lemma 2.3 and Lemma 2.4.

Lemma 3.1 Suppose that g ∈ L1

[0, 1]. Then the following fractional boundary value
problem {

C

Dα
0+u(t) + g(t) = 0, 0 < t < 1

u(0) = u′′(0) = 0, u′(1) = γu′(η),

where 2 < α ≤ 3 and γ, η ∈ (0, 1) has as unique solution

u(t) =

∫ 1

0

G1(t, s)g(s)ds+
γt

1− γ

∫ 1

0

G2(η, s)g(s)ds,

where G1(t, s) and G2(η, s) are the functions given by

G1(t, s) =


(α− 1)t(1− s)α−2 − (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(α− 1)t(1− s)α−2

Γ(α)
, 0 ≤ t ≤ s ≤ 1,

and

G2(η, s) =


(α− 1)(1− s)α−2 − (α− 1)(η − s)α−2

Γ(α)
, 0 ≤ s ≤ η ≤ 1,

(α− 1)(1− s)α−2

Γ(α)
, 0 ≤ η ≤ s ≤ 1.
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Remark 3.2 It is clear that the functions G1(t, s) and G2(η, s) are continuous on
[0, 1]× [0, 1].

In [11], the author proves that G1(t, s) ≥ 0 for any t, s ∈ [0, 1].
In order to that the paper is self-contained, we present a proof of this fact.

Lemma 3.3 The functions G1(t, s) and G2(t, s) appearing in Lemma 3.1 are non-
negative.
Proof. Since 2 < α ≤ 3, it is clear that, for 0 ≤ t ≤ s ≤ 1,

G1(t, s) =
(α− 1)t(1− s)α−2

Γ(α)
≥ 0.

For 0 ≤ s ≤ t ≤ 1, we have

G1(t, s) =
(α− 1)t(1− s)α−2 − (t− s)α−1

Γ(α)
≥ t(1− s)α−2 − (t− s)α−1

Γ(α)

≥ (t− s)(1− s)α−2 − (t− s)α−1

Γ(α)
≥ (t− s)(t− s)α−2 − (t− s)α−1

Γ(α)

=
(t− s)α−1 − (t− s)α−1

Γ(α)
= 0.

This proves that G1(t, s) ≥ 0, for any t, s ∈ [0, 1].

For 0 ≤ η ≤ s ≤ 1, it is clear that G2(η, s) =
(α− 1)(1− s)α−2

Γ(α)
≥ 0.

In the case 0 ≤ s ≤ η ≤ 1, we have

G2(η, s) =
(α− 1)(1− s)α−2 − (α− 1)(η − s)α−2

Γ(α)

≥ (α− 1)(η − s)α−2 − (α− 1)(η − s)α−2

Γ(α)
= 0.

Therefore, G2(η, s) ≥ 0, for any η, s ∈ [0, 1].

The following lemma provides a lower and upper estimates on G1(t, s) which are
very interesting for our study, in order to apply Theorem 2.8.

Lemma 3.4 For any t, s ∈ [0, 1], the following inequalities

(α− 2)t(1− s)α−2

Γ(α)
≤ G1(t, s) ≤ (α− 1)t(1− s)α−2

Γ(α)

hold.
Proof. The right inequality is clear from the expression of G1(t, s).
In order to prove the left inequality, we note that, for 0 ≤ t ≤ s ≤ 1,

G1(t, s) =
(α− 1)t(1− s)α−2

Γ(α)
≥ (α− 2)t(1− s)α−2

Γ(α)
.

For the case 0 ≤ s ≤ t ≤ 1, since

t− s ≤ t− ts = t(1− s),
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we have, (t − s)α−1 ≤ tα−1(1 − s)α−1 and, as the function y = ax with 0 < a < 1
is decreasing and 1 < α − 1 (because 2 < α ≤ 3), tα−1(1 − s)α−1 ≤ t(1 − s)α−1.
Therefore,

G1(t, s) =
(α− 1)t(1− s)α−2 − (t− s)α−1

Γ(α)
≥ (α− 1)t(1− s)α−2 − t(1− s)α−1

Γ(α)

≥ (α− 1)t(1− s)α−2 − t(1− s)α−2

Γ(α)
=

(α− 2)t(1− s)α−2

Γ(α)
,

where, we have used the fact (1− s)α−1 ≤ (1− s)α−2.
Therefore, in any case, we have

G1(t, s) ≥ (α− 2)t(1− s)α−2

Γ(α)
.

This completes the proof.

Now, we are ready to present the main result of the paper.

Theorem 3.5 Suppose the following assumptions:

(i) f : [0, 1] × [0,∞) × [0,∞) → [0,∞) and g : [0, 1] × [0,∞) → [0,∞) are
continuous functions. Moreover, there exists t0 ∈ [0, 1] such that g(t0, 0) > 0.

(ii) For fixed t ∈ [0, 1], f(t, x, y) is increasing in x and decreasing in y and g(t, x)
is increasing in x.

(iii) g(t, λx) ≥ λg(t, x), for any λ ∈ (0, 1), t ∈ [0, 1] and x ∈ [0,∞).
(iv) There exists a constant ρ ∈ (0, 1) such that, for any λ ∈ (0, 1), t ∈ [0, 1] and

x, y ∈ [0,∞),

f(t, λx, λ−1y) ≥ λρf(t, x, y).

(v) There exists a constant δ0 > 0 such that, for any t ∈ [0, 1] and x, y ∈ [0,∞),

f(t, x, y) ≥ δ0g(t, x).

(vi) H : C[0, 1]→ C[0, 1] and satisfies the following assumptions:
(a) Hu ∈ P for any u ∈ P .
(b) For u, v ∈ P , u ≤ v ⇒ Hu ≤ Hv.
(c) For any λ ∈ (0, 1) and u ∈ P , H(λu) ≥ λHu.

Then

(a) There exists u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 ≤ v0

and, moreover,

u0(t) ≤
∫ 1

0

G1(t, s)f(s, u0(s), (Hv0)(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, u0(s), (Hv0)(s))ds

+

∫ 1

0

G1(t, s)g(s, u0)ds+
γt

1− γ

∫ 1

0

G2(η, s)g(s, u0(s))ds
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and

v0(t) ≥
∫ 1

0

G1(t, s)f(s, v0(s), Hu0(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, v0(s), (Hu0)(s))ds

+

∫ 1

0

G1(t, s)g(s, v0(s))ds+
γt

1− γ

∫ 1

0

G2(η, s)g(s, v0(s))ds,

where h(t) = t for t ∈ [0, 1].
(b) Problem (1.1) has a unique positive solution x∗ ∈ Ph (by positive solution we

mean that x∗(t) > 0 for any t ∈ (0, 1)).
(c) For any x0, y0 ∈ Ph, the sequences inductively defined by

xn(t) =

∫ 1

0

G1(t, s)f(s, xn−1(s), Hyn−1(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, xn−1(s), Hyn−1(s))ds

+

∫ 1

0

G1(t, s)g(s, xn−1(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)g(s, xn−1(s))ds

and

yn(t) =

∫ 1

0

G1(t, s)f(s, yn−1(s), Hxn−1(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, yn−1(s), Hxn−1(s))ds

+

∫ 1

0

G1(t, s)g(s, yn−1(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)g(s, yn−1(s))ds

for n = 1, 2, · · · satisfy

lim
n→∞

‖xn − x∗‖ = lim
n→∞

‖yn − x∗‖ = 0.

Proof. Taking into account Lemma 3.1, Problem (1.1) has the following formulation
integral

u(t) =

∫ 1

0

G1(t, s)[f(s, u(s), Hu(s)) + g(s, u(s))]ds

+
γt

1− γ

∫ 1

0

G2(η, s)[f(s, u(s), (Hu)(s)) + g(s, u(s))]ds, t ∈ [0, 1].
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Now, if we consider the operator A defined on P × P by

A(u, v)(t) =

∫ 1

0

G1(t, s)f(s, u(s), (Hu)(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, u(s), (Hu)(s))ds,

and the operator B defined on P by

(Bu)(t) =

∫ 1

0

G1(t, s)g(s, u(s))ds+
γt

1− γ

∫ 1

0

G2(η, s)g(s, u(s))ds,

then a solution u to Problem (1.1) is equivalent to find a function u satisfying

u = A(u, u) +Bu.

Notice that by assumption (i) and Lemma 3.3, we infer that A : P × P → P and
B : P → P .
Next, we check that the conditions appearing in Theorem 2.8 are satisfied.
By assumption (ii), it is easily proved that A is a mixed monotone operator and B is
increasing.
From assumption (vi− (c)), we notice that, for λ ∈ (0, 1) and u ∈ P ,

H(u) = H(λλ−1u) ≥ λH(λ−1u),

and, consequently, H(λ−1u) ≤ λ−1H(u).
Now, we will prove that, for λ ∈ (0, 1) and u, v ∈ P the following inequality which is
a condition in Theorem 2.8

A(λu, λ−1v) ≥ λρA(u, v)

holds, where ρ ∈ (0, 1).
Taking into account the last inequality and assumption (ii) and (iv), for λ ∈ (0, 1),
u, v ∈ P and t ∈ [0, 1], we have

A(λu, λ−1v)(t) =

∫ 1

0

G1(t, s)f(s, λu(s), H(λ−1v)(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, λu(s), H(λ−1v)(s))ds

≥
∫ 1

0

G1(t, s)f(s, λu(s), λ−1H(v)(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, λu(s), λ−1Hv(s))ds

≥ λρ
∫ 1

0

G1(t, s)f(s, u(s), (Hv)(s))ds

+ λρ
γt

1− γ

∫ 1

0

G2(η, s)f(s, u(s), (Hv)(s))ds

= λρA(u, v)(t).
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In the sequel, we will prove that B is a subhomogeneous operator.
In fact, for λ ∈ (0, 1), u ∈ P and t ∈ [0, 1], we have

B(λu)(t) =

∫ 1

0

G1(t, s)g(s, λu(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)g(s, λu(s))ds

≥ λ
∫ 1

0

G1(t, s)g(s, u(s))ds

+ λ
γt

1− γ

∫ 1

0

G2(η, s)g(s, u(s))ds

= λ(Bu)(t),

where we have used assumption (iii). This proves the subhomogeneity of B.
Now, we consider the function defined by h(t) = t for t ∈ [0, 1].
Since 0 ≤ h(t) ≤ 1 for any t ∈ [0, 1], h ∈ P and θE < h.
Moreover, by assumption (vi), 0 ≤ Hh ≤ H1.
Taking into account these facts, Lemma 3.4 and assumption (ii), for any t ∈ [0, 1], we
infer

A(h, h)(t) =

∫ 1

0

G1(t, s)f(s, h(s), Hh(s))ds (3.1)

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, h(s), Hh(s))ds

≤ (α− 1)t

Γ(α)

∫ 1

0

(1− s)α−2f(s, h(s), Hh(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, h(s), Hh(s))ds

≤ (α− 1)t

Γ(α)

∫ 1

0

(1− s)α−2f(s, 1, 0)ds+
γt

1− γ

∫ 1

0

G2(η, s)f(s, 1, 0)ds

= t

[
(α− 1)

Γ(α)

∫ 1

0

(1− s)α−2f(s, 1, 0)ds+
γ

1− γ

∫ 1

0

G2(η, s)f(s, 1, 0)ds

]
= h(t)

[
(α− 1)

Γ(α)

∫ 1

0

(1− s)α−2f(s, 1, 0)ds+
γ

1− γ

∫ 1

0

G2(η, s)f(s, 1, 0)ds

]
.

Using a similar argument and taking into account Lemma 3.4, we get

A(h, h)(t) ≥ h(t)

[
(α− 2)

Γ(α)

∫ 1

0

(1− s)α−2f(s, 0, H(1))ds

+
γ

1− γ

∫ 1

0

G2(η, s)f(s, 0, H(1))ds

]
(3.2)
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Put

α1 =
α− 2

Γ(α)

∫ 1

0

(1− s)α−2f(s, 0, (H1)(s))ds+
γ

1− γ

∫ 1

0

G2(η, s)f(s, 0, (H1)(s))ds

and

α2 =
α− 1

Γ(α)

∫ 1

0

(1− s)α−2f(s, 1, 0)ds+
γ

1− γ

∫ 1

0

G2(η, s)f(s, 1, 0)ds.

Then, from (3.1) and (3.2), it follows

α1h ≤ A(h, h) ≤ α2h.

In order to prove that A(h, h) ∈ Ph, we need that αi > 0 for i = 1, 2. For the proof
of this fact, it is sufficient to prove that α1 > 0 since α1 ≤ α2. Taking into account
assumption (v), it follows

α1 =
(α− 2)

Γ(α)

∫ 1

0

(1− s)α−2f(s, 0, (H1)(s))ds

+
γ

1− γ

∫ 1

0

G2(η, s)f(s, 0, (H1)(s))ds

≥ (α− 2)

Γ(α)

∫ 1

0

(1− s)α−2δ0g(s, 0)ds+
γ

1− γ

∫ 1

0

G2(η, s)δ0g(s, 0)ds.

Now, by assumption (i), since g(t0, 0) > 0 for certain t0 ∈ [0, 1] and the fact that g
is a continuous function, we can find a subset E ⊂ [0, 1] such that t0 ∈ E, µ(E) > 0,
where µ denotes the Lebesgue measure and g(t, 0) > 0 for any t ∈ E. From this, we
deduce

α1 ≥
(α− 2)

Γ(α)

∫
E

(1− s)α−2δ0g(s, 0)ds+
γ

1− γ

∫ 1

0

G2(η, s)δ0g(s, 0)ds > 0.

Therefore, A(h, h) ∈ Ph.
Next, we will prove that Bh ∈ Ph.
By Lemma 3.4 and assumption (ii), for any t ∈ [0, 1], we have

(Bh)(t) =

∫ 1

0

G1(t, s)g(s, h(s))ds+
γt

1− γ

∫ 1

0

G2(η, s)g(s, h(s))ds (3.3)

≤ (α− 1)t

Γ(α)

∫ 1

0

(1− s)α−2g(s, h(s))ds+
γt

1− γ

∫ 1

0

G2(η, s)g(s, h(s))ds

≤ (α− 1)

Γ(α)
t

∫ 1

0

(1− s)α−2g(s, 1)ds+
γt

1− γ

∫ 1

0

G2(η, s)g(s, 1)ds

= t

[
(α− 1)

Γ(α)

∫ 1

0

(1− s)α−2g(s, 1)ds+
γ

1− γ

∫ 1

0

G2(η, s)g(s, 1))ds

]
= h(t)

[
(α− 1)

Γ(α)

∫ 1

0

(1− s)α−2g(s, 1)ds+
γ

1− γ

∫ 1

0

G2(η, s)g(s, 1)ds

]
.
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Using a similar argument, we obtain

(Bh)(t) ≥ h(t)

[
(α− 2)

Γ(α)

∫ 1

0

(1− s)α−2g(s, 0)ds+
γ

1− γ

∫ 1

0

G2(η, s)g(s, 0)ds

]
(3.4)

Putting

β1 =
α− 2

Γ(α)

∫ 1

0

(1− s)α−2g(s, 0)ds+
γ

1− γ

∫ 1

0

G2(η, s)g(s, 0)ds

and

β2 =
α− 1

Γ(α)

∫ 1

0

(1− s)α−2g(s, 1)ds+
γ

1− γ

∫ 1

0

G2(η, s)g(s, 1)ds,

from (3.3) and (3.4),

β1h ≤ Bh ≤ β2h.

In order to prove that Bh ∈ Ph, it is sufficient to see that β1 > 0. By a similar
argument to the one used above, we deduce

β1 =
α− 2

Γ(α)

∫ 1

0

(1− s)α−2g(s, 0)ds+
γ

1− γ

∫ 1

0

G2(η, s)g(s, 0)ds

≥ α− 2

Γ(α)

∫
E

(1− s)α−2g(s, 0)ds+
γ

1− γ

∫
E

G2(η, s)g(s, 0)ds > 0.

Therefore, Bh ∈ Ph.
Finally, we have to check that assumption (ii) of Theorem 2.8 is satisfied. In fact, by
assumption (v), for u, v ∈ P and t ∈ [0, 1], we have

A(u, v)(t) =

∫ 1

0

G1(t, s)f(s, u(s), (Hv)(s))ds

+
γt

1− γ

∫ 1

0

G2(η, s)f(s, u(s), ((Hv)(s)))ds

≥
∫ 1

0

G1(t, s)δ0g(s, u(s))ds+
γt

1− γ

∫ 1

0

G2(η, s)δ0g(s, u(s))ds

= δ0(Bu)(t).

Now, by applying Theorem 2.8, we obtain the desired result. Notice that the solution
x∗ is positive since x∗ ∈ Ph and 0 < h(t) = t for t ∈ (0, 1).

In what follows, we present some examples of operator H : C[0, 1]→ C[0, 1] which
satisfy assumption (vi) of Theorem 3.5.

4. Examples

(a) Suppose that ϕ : [0.1] → [0, 1] is a continuous function and consider the
composition operator Cϕ defined on C[0, 1] by

(Cϕx)(t) = x(ϕ(t))

for any x ∈ C[0, 1] and t ∈ [0, 1]. The operator Cϕ satisfies assumption (vi)
of Theorem 3.5.
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(b) Suppose that ϕ : [0, 1] → [0,∞) is a continuous function. Consider the
multiplication operator Mϕ defined by

(Mϕx)(t) = ϕ(t)x(t),

for any x ∈ C[0, 1] and t ∈ [0, 1]. It is easily proved that Mϕ satisfies assump-
tion (vi) of Theorem 3.5.

(c) Consider the integral operator I : C[0, 1]→ C[0, 1] given by

(Ix)(t) =

∫ t

0

x(s)ds,

for x ∈ C[0, 1] and t ∈ [0, 1]. This operator satisfies also assumption (vi) of
Theorem 3.5.

In the above mentioned examples, the operators are linear.
In the following two examples, the operators defined on C[0, 1] satisfy assumption

(vi) of Theorem 3.5 and they are nonlinear.

(d) In [2], the authors proved that the operator Q defined on C[0, 1] by

(Qx)(t) = max{|x(τ)| : 0 ≤ τ ≤ t}
applies C[0, 1] into itself. It can be easily seen that Q satisfies our assumption.

(e) Consider the operator F defined on C[0, 1] by

(Fx)(t) = x(t)r, where r ∈ (0, 1).

It is easily checked that F satisfies assumption (vi) of Theorem 3.5.

Notice that the operators in Examples (a), (b), (c) and (d) satisfy the condition
H(λu) = λHu for any u ∈ P and λ ∈ (0, 1) which is a stronger condition that the
condition (c) of assumpiont (vi) of Theorem 3.5. While the operator F defined in
Example (e) satisfies H(λu) > λHu for any u ∈ P − {θE} and λ ∈ (0, 1).

On the other hand, it is easily checked that the composition of operators satisfying
assumption (vi) of Theorem 3.5 also satisfies this condition.

Now we present some numerical examples where we can apply our result.

Example 4.1 Consider the following nonlinear boundary value problem with maxi-
mum 

CD
5/2
0+ u(t) = 3 + t2 + t3 + 2 3

√
u(t) +

1

4

√
max

0≤τ≤t
u(τ) + 5

= 0,

u(0) = u′′(0) = 0, u′(1) = 1
7u
′( 1

2 ).

(4.1)

Notice that Problem (4.1) is a particular case of Problem (1.1) with α = 5
2 , γ = 1

7 ,

η = 1
2 ,

f(t, u, v) = 3 + t2 + 3
√
u+

1
4
√
v + 5

,

g(t, u) = t3 + 3
√
u

and (Hu)(t) = max
0≤τ≤t

u(τ).

It is clear that f applies [0, 1]× [0,∞)× [0,∞) into [0,∞) and g applies [0, 1]× [0,∞)
into [0,∞) and that the functions f and g are continuous and g(1/2, 0) > 0.
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This says us that assumption (i) of Theorem 3.5 is satisfied.
Moreover, it is also clear that f is increasing in u and decreasing in v and g is increasing
in u. Therefore, assumption (ii) of Theorem 3.5 is also satisfied.
Notice that, for t ∈ [0, 1], u ≥ 0 and λ ∈ (0, 1), we have

g(t, λu) = t3 +
3
√
λu >

3
√
λ(t3 + 3

√
u) > λ(t3 + 3

√
u) = λg(t, u),

where we have used the decreasing character of the function y = λx with λ ∈ (0, 1).
This means that assumption (iii) of Theorem 3.5 is satisfied.
Now, we take u, v ≥ 0 and λ ∈ (0, 1) and we infer

f(t, λu, λ−1v) = 3 + t2 +
3
√
λu+

1
4
√
λ−1v + 5

> 3
3
√
λ+

3
√
λt2 +

3
√
λ 3
√
u+

3
√
λ

4
√
v + 5λ

>
3
√
λ(3 + t2 + 3

√
u+

1
4
√
v + 5

)

=
3
√
λf(t, u, v),

where we have used that 4
√
λ > 3
√
λ and

1
4
√
v + 5λ

>
1

4
√
v + 5

.

This proves that assumption (iv) of Theorem 3.5 is satisfied with ρ = 1
3 . Moreover,

for t ∈ [0, 1] and u, v ≥ 0, we have

f(t, u, v) = 3 + t2 + 3
√
u+

1
4
√
v + 5

> t3 + 3
√
u = g(t, u)

and, therefore, assumption (v) of Theorem 3.5 is satisfied with δ0 = 1.
Since that the operator H is the one appearing in Example (e), it satisfies assumption
(vi) of Theorem 3.5.
Finally, by this theorem, Problem (4.1) has a unique positive solution u∗ ∈ C[0, 1]
with u∗ ∈ Ph, where h(t) = t for t ∈ [0, 1].

Notice that if we replace in Example 4.1 the operator H by another of the operators
defined in Examples, then the same argument is valid in order to obtain the desired
result. This makes that Theorem 3.5 is interesting and useful from a practical point
of view.

Example 4.2 Consider the following nonlinear boundary value problem
CD

9/4
0+ u(t) = 5 + t3 + 2u(t)a +

1

1 + (Hu)(t)b
= 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) =
1

3
u′(

1√
2

),

 (4.2)

where H is one of the operators given in Examples and a, b ∈ (0.1).
Notice that Problem (4.2) is a particular case of Problem (1.1) with α = 9/4, γ = 1/3,

η = 1/
√

2,

f(t, u, v) = 5 + ua +
1

1 + vb
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and

g(t, u) = t3 + ua.

It is clear that f applies [0, 1]×[0,∞)×[0,∞) into [0,∞) and it is continuous and that
g applies [0, 1]× [0,∞) into [0,∞) and it is also continuous. Moreover, g(1/4, 0) > 0.
Moreover, it is clear that f is increasing in u and decreasing in v and that g is
increasing in u.
Notice that, for t ∈ [0, 1], u ≥ 0 and λ ∈ (0, 1), we have

g(t, λu) = t3 + λaua > λa(t3 + ua) > λ(t3 + ua),

where we have used the fact that a ∈ (0, 1).
Now, for u, v ≥ 0 and λ ∈ (0, 1), we have

f(t, λu, λ−1v) = 5 + λaua +
1

1 + λ−bvb

> 5 + λmax(a,b)ua +
λmax(a,b)

λb + vb

> λmax(a,b)[5 + ua +
1

1 + vb
]

= λmax(a,b)f(t, u, v).

Therefore, assumption (iv) of Theorem 3.5 is satisfied with ρ = max(a, b).
For t ∈ [0, 1] and u, v ≥ 0 we have

f(t, u, v) = 5 + ua +
1

1 + vb
> ua + 5 > ua + t3 = g(t, u).

This says us that assumption (v) of Theorem 3.5 is satisfied with δ0 = 1.
For t ∈ [0, 1], u ≥ 0 and λ ∈ (0, 1), we infer

g(t, λu) = t3 + λaua > λa(t3 + ua) = λag(t, u) > λg(t, u),

where we have used that λa > λ for λ, a ∈ (0, 1).
Since assumptions of Theorem 3.5 are satisfied, it follows that Problem (4.2) has a
unique positive solution u∗ ∈ C[0, 1] with u∗ ∈ Ph, where h(t) = t for t ∈ [0, 1].

Acknowledgements. The first and the third authors were partially supported by
the project PID2019-106093GB-I00.

References

[1] H. Afshari, H. Marasi, H. Aydi, Existence and uniqueness of positive solutions for boundary

value problems of fractional differential equations, Filomat, 31(2017), 2675-2682.
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