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1. Introduction

Degree theory is a fundamental tool in nonlinear analysis, especially in the study
of existence of solutions to many types of problems; see [9, 11, 14]. Readers interested
in the history and the development of degree theory are referred to the expository
paper by Mawhin [13].

As a well–known fact, continuity is a basic assumption in degree theory and the
clearest limitation of its applicability. As an important particular case, we point
out the usual degree-theory-based proofs of existence of solutions to boundary value
problems, which consist on turning the former problems into fixed point problems
of integral operators for which degree theory applies. However, most discontinuous
differential equations, see [2, 10], fall outside that scope simply because the corre-
sponding fixed point operators are not continuous.

On the other hand, the analysis of discontinuous differential equations usually
leans on fixed points results for monotone operators, and therefore the corresponding
existence results lean, to some extent, on monotonicity conditions imposed on the
nonlinear parts of the considered problems.

In this paper we introduce a new definition of topological degree, which coincides
with the usual degree in the continuous case, and it is also suitable for a wide class
of operators which need not be continuous. As a consequence, this new degree proves
useful in the study of discontinuous differential equations and, moreover, it yields new
existence results which do not require monotonicity at all. Using multivalued analysis
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in the study of discontinuous problems is a classical approach and the novelty in this
paper is the use of multivalued analysis to obtain results for single-valued operators.
The applicability of our abstract results will be clear in the last section, where we prove
existence of solutions to differential equations which are allowed to be discontinuous
over countable families of curves, similar to Filippov discontinuity sets [8].

This paper is organized as follows: in Section 2 we introduce our new definition of
degree, which is based on the degree for multivalued upper semicontinuous operators;
in Section 3 we show that the degree satisfies the usual and desirable properties; in
Section 4 we deduce some fixed point theorems, very much along the line of the clas-
sical degree theory but replacing continuity by the less stringent condition introduced
in Section 2; finally, in Section 5, we illustrate the applicability of theory by proving
the existence of solutions to an initial value problem for a discontinuous first–order
ordinary differential equation.

2. A topological degree for discontinuous operators

Here and henceforth, Ω denotes a nonempty open subset of a Banach space (X, ‖·‖)
and T : Ω −→ X is an operator, not necessarily continuous. The main idea in our
definition of degree consists on replacing T by a Krasovskij–type multivalued version
of T for which a degree theory is already available.

Definition 2.1. The closed–convex Krasovskij envelope of an operator T : Ω −→ X
is the multivalued mapping T : Ω −→ 2X given by

Tx =
⋂
ε>0

coT
(
Bε(x) ∩ Ω

)
for every x ∈ Ω, (2.1)

where Bε(x) denotes the closed ball centered at x and radius ε, and co means closed
convex hull.

In other words, we say that y ∈ Tx if for every ε > 0 and every ρ > 0 there
exist m ∈ N and a finite family of vectors xi ∈ Bε(x) ∩ Ω and coefficients λi ∈ [0, 1]
(i = 1, 2, . . . ,m) such that

∑
λi = 1 and∥∥∥∥∥y −

m∑
i=1

λi Txi

∥∥∥∥∥ < ρ.

The following properties are straightforward consequences of the previous defini-
tion.

Proposition 2.2. In the conditions of Definition 2.1 the following statements are
true:

(1) Tx is closed and convex, and Tx ∈ Tx for all x ∈ Ω;
(2) If T Ω ⊂ K for some closed and convex set K ⊂ X, then TΩ ⊂ K.

Closed–convex envelopes (cc–envelopes, for short) need not be upper semicontin-
uous (usc, for short), see [4, Example 1.2], unless some additional assumptions are
imposed on T .

Proposition 2.3. Let T be the cc–envelope of an operator T : Ω −→ X. The following
properties are satisfied:
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(1) If T maps bounded sets into relatively compact sets, then T assumes compact
values and it is usc;

(2) If T Ω is relatively compact, then TΩ is relatively compact.

Proof. Let x ∈ Ω be fixed and let us prove that Tx is compact. We know that Tx is
closed, so it suffices to show that it is contained in a compact set. To do so, we note
that

Tx =
⋂
ε>0

coT
(
Bε(x) ∩ Ω

)
⊂ coT

(
B1(x) ∩ Ω

)
⊂ coT

(
B1(x) ∩ Ω

)
,

and coT
(
B1(x) ∩ Ω

)
is compact because it is the closed convex hull of a compact

subset of a Banach space; see [1, Theorem 5.35]. Hence Tx is compact for every
x ∈ Ω, and this property allows us to check that T is usc by means of sequences, see
[1, Theorem 17.20]: let xn → x in Ω and let yn ∈ Txn for all n ∈ N be such that
yn → y; we have to prove that y ∈ Tx. Let ε > 0 be fixed and take N ∈ N such that
Bε(xn) ⊂ B2ε(x) for all n ≥ N . Then we have

yn ∈ coT (Bε(xn) ∩ Ω) ⊂ coT (B2ε(x) ∩ Ω)

for all n ≥ N , which implies that y ∈ coT (B2ε(x) ∩ Ω). Since ε > 0 was arbitrary,
we conclude that y ∈ Tx.

Arguments are similar for the second part of the proposition. For every x ∈ Ω and
ε > 0 we have

coT (Bε(x) ∩ Ω) ⊂ coT Ω,

and therefore Tx ⊂ coT Ω for all x ∈ Ω. Hence, TΩ is compact because it is a closed

subset of the compact set coT Ω. �
Our next proposition shows that T is the smallest closed and convex–valued usc

operator which has T as a selection.

Proposition 2.4. Let T be the cc–envelope of an operator T : Ω −→ X.
If T̃ : Ω −→ 2X is an usc operator which assumes closed and convex values and

Tx ∈ T̃x for all x ∈ Ω, then Tx ⊂ T̃x for all x ∈ Ω.

Proof. Let T̃ : Ω −→ 2X be an operator in the conditions of the statement, let x ∈ Ω
be fixed and take y ∈ Tx; we have to show that y ∈ T̃x.

First, we fix r > 0 and we consider the open set

V =
⋃
u∈T̃x

Br/2(u),

where Br/2(u) = {z ∈ X : ‖z − u‖ < r/2} is the open ball centered at u and radius

r/2. Obviously, we have T̃x ⊂ V and ρ(z, T̃x) < r/2 for all z ∈ V , where ρ denotes
the metric induced by the norm in X. Furthermore, we have that

ρ(z, T̃x) < r/2 for all z ∈ coV (2.2)

because T̃x is convex.
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Since T̃ is upper semicontinuous, there exists ε0 > 0 such that T̃(Bε0(x)∩Ω) ⊂ V .

Since T is a selection of T̃, we also have that T (Bε0(x) ∩ Ω) ⊂ V , and then

y ∈ Tx =
⋂
ε>0

coT
(
Bε(x) ∩ Ω

)
⊂ coT (Bε0(x) ∩ Ω) ⊂ coV.

Hence we can find zi ∈ V and λi ∈ [0, 1], for i = 1, 2, . . . ,m, such that
∑
λi = 1 and∥∥∥∥∥y −

m∑
i=1

λizi

∥∥∥∥∥ < r

2
.

Since
∑
λizi ∈ coV , we can use (2.2) to obtain that

ρ(y, T̃x) ≤ ρ

(
m∑
i=1

λizi, T̃x

)
+

∥∥∥∥∥y −
m∑
i=1

λizi

∥∥∥∥∥ < r,

which implies that y ∈ T̃x because r > 0 can be arbitrarily small and T̃x is closed. �
As a corollary of the previous result we obtain the following.

Corollary 2.5. If T : Ω −→ X is continuous then Tx = {Tx} for all x ∈ Ω.

We are already in a position to define a topological degree for some discontinuous
operators. In this case we replace continuity by condition (2.3), which just means
that every fixed point of T must be a fixed point of T .

Definition 2.6. Let Ω be a nonempty bounded open subset of a Banach space X
and let T : Ω −→ X be such that TΩ is relatively compact, Tx 6= x for every x ∈ ∂Ω,
and

{x} ∩ Tx ⊂ {Tx} for every x ∈ Ω ∩ TΩ, (2.3)

where T is the cc–envelope of T .
We define the degree of I − T on Ω with respect to 0 ∈ X as follows:

deg (I − T,Ω, 0) = deg (I − T,Ω, 0) , (2.4)

where the degree in the right–hand side is that of usc multivalued operators (see, e.g.
[3, 14, 16]).

Let us see that deg (I − T,Ω, 0) is well–defined in the conditions of Definition 2.6.
First, we know from Proposition 2.3 that TΩ is relatively compact. Second, if x ∈ Tx
for some x ∈ ∂Ω, then

{x} ∩ Tx = {x} and x ∈ Ω ∩ TΩ,

which, together with condition (2.3), yields x = Tx, a contradiction with the as-
sumptions on T . Therefore, deg (I − T,Ω, 0) is well defined and Definition 2.6 makes
sense.

Moreover, Definition 2.6 reduces to the usual Leray–Schauder degree when T is
continuous. Indeed, when T is continuous we have Tx = {Tx} for all x ∈ Ω, so
condition (2.3) is trivially satisfied, and (2.4) is just

deg (I − T,Ω, 0) = deg (I − {T},Ω, 0) ,
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where deg (I − {T},Ω, 0) is the degree for multivalued operators in the particular
case of a single–valued completely continuous operator T , which coincides with the
Leray–Schauder degree.

As usual, we shall simplify notation and write deg (I − T,Ω) instead of
deg (I − T,Ω, 0). The definition of deg (I − T,Ω, p) for any p ∈ X reduces to the
case p = 0, see [14].

3. Properties of this new degree

The degree we defined in the previous section provides, as we have seen, a gen-
eralization of Leray–Schauder degree for some kind of discontinuous operators. As
we said in Introduction, Leray–Schauder degree is a very powerful tool that has been
extensively used in many contexts, particularly for guaranteing the existence of solu-
tions of differential equations. The utility of the degree lies in the fact that it satisfies
some topological and algebraic properties. Now we will show that our new degree also
fulfills these properties, and this will be a consequence of the properties of degree for
multivalued mappings.

Proposition 3.1. Let T : Ω −→ X be a mapping in the conditions of Definition 2.6.
Then the degree deg(I − T,Ω) satisfies the following properties:

(1) (Homotopy invariance) Let H : Ω× [0, 1] −→ X a mapping such that:
(a) for each (x, t) ∈ Ω × [0, 1] and all ε > 0 there exists δ = δ(ε, x, t) > 0

such that

s ∈ [0, 1], |t− s| < δ =⇒ ‖H(z, t)−H(z, s)‖ < ε ∀ z ∈ Bδ(x) ∩ Ω;

(b) H
(
Ω× [0, 1]

)
is relatively compact;

(c) given t ∈ [0, 1], if Ht(x) := H(x, t) and Ht denotes the cc-envelope of Ht

then for all x ∈ Ω we have

{x} ∩Ht(x) ⊂ {Ht(x)}. (3.1)

If x 6= Ht(x) for all x ∈ ∂Ω and all t ∈ [0, 1], then deg(I − Ht,Ω) does not
depend on t.

(2) (Additivity) Let Ω1,Ω2 ⊂ Ω be disjoint open sets such that Ω1 ∪ Ω2 = Ω.
If 0 /∈ (I − T )(Ω\(Ω1 ∪ Ω2)), then we have

deg(I − T,Ω) = deg(I − T,Ω1) + deg(I − T,Ω2).

(3) (Excision) Let A ⊂ Ω be a closed set such that 0 /∈ (I − T )(∂Ω)∪ (I − T )(A).
Then

deg(I − T,Ω) = deg(I − T,Ω\A).

(4) (Existence) If deg(I − T,Ω) 6= 0 then there exists x ∈ Ω such that Tx = x.
(5) (Normalization) deg(I,Ω) = 1 if and only if 0 ∈ Ω.

Proof. (1) We define H as the following multivalued mapping:

H(x, t) =
⋂
ε>0

coH
(
Bε(x) ∩ Ω, t

)
.

Observe that H(x, t) = Ht(x), where Ht is as in the statement.
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Since H
(
Ω× [0, 1]

)
is a relatively compact set, H

(
Ω× [0, 1]

)
is relatively compact.

In addition, the multivalued mapping H is convex and closed valued. Let us prove
that H : Ω× [0, 1]→ 2X is an upper semicontinuous operator. To see this, it suffices
to prove that if xn → x in Ω, tn → t in [0, 1] and yn ∈ H(xn, tn) with yn → y, then
y ∈ H(x, t). Let ε > 0 and µ > 0 be fixed; we have to find xi ∈ Bε(x) ∩ Ω and

λi ∈ [0, 1] (i = 1, . . . ,m) such that

m∑
i=1

λi = 1 and

∥∥∥∥∥y −
m∑
i=1

λiH(xi, t)

∥∥∥∥∥ < µ. (3.2)

We can assume without loss of generality that ε < δ(µ/4, x, t), where δ is as in 1 (a),
and so we can take N ∈ N such that

xN ∈ Bε/2(x) ∩ Ω,

‖y − yN‖ <
µ

2
,

‖H(z, tN )−H(z, t)‖ < µ

4
∀ z ∈ Bε(x) ∩ Ω.

As yN ∈ H(xN , tN ) we know that there exist xi ∈ Bε/2(x) ∩ Ω and λi ∈ [0, 1]

(i = 1, . . . ,m) with

m∑
i=1

λi = 1 and

∥∥∥∥∥yN −
m∑
i=1

λiH(xi, tN )

∥∥∥∥∥ < µ

4
.

Hence, we have

‖x− xi‖ ≤ ‖x− xN‖+ ‖xN − xi‖ ≤
ε

2
+
ε

2
= ε,

so xi ∈ Bε(x) ∩ Ω. Moreover, by triangle inequality∥∥∥∥∥y −
m∑
i=1

λiH(xi, t)

∥∥∥∥∥ ≤ ‖y − yN‖+

∥∥∥∥∥yN −
m∑
i=1

λiH(xi, tN )

∥∥∥∥∥
+

∥∥∥∥∥
m∑
i=1

λi (H(xi, tN )−H(xi, t))

∥∥∥∥∥
<
µ

2
+
µ

4
+
µ

4
= µ,

and thus (3.2) is satisfied.
On the other hand, condition (3.1) along with x 6= H(x, t) for every (x, t) ∈ ∂Ω×[0, 1],
imply that x 6∈ H(x, t) for all (x, t) ∈ ∂Ω× [0, 1], and so the degree

deg (I −Ht,Ω) = deg (I −Ht,Ω)

is well–defined and it is independent of t ∈ [0, 1], by homotopy property of degree for
multivalued mappings, see [16].
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(2) Condition (2.3) and the hypothesis 0 6∈ (I − T )
(
Ω \ (Ω1 ∪ Ω2)

)
imply that

x 6∈ Tx holds for all x ∈ Ω \ (Ω1 ∪ Ω2). Then, by direct application of the additivity
property of degree for multivalued mappings we conclude that

deg (I − T,Ω) = deg (I − T,Ω) = deg (I − T,Ω1) + deg (I − T,Ω2)

= deg (I − T,Ω1) + deg (I − T,Ω2) .

(3) As 0 /∈ (I − T )(A) ∪ (I − T )(∂Ω), condition (2.3) implies that

0 /∈ (I − T)(A) ∪ (I − T)(∂Ω),

and so the conclusion derives from the excision property of the degree for multivalued
mappings.

(4) As deg(I−T,Ω) = deg(I−T,Ω) 6= 0 then there exists x ∈ Ω such that x ∈ Tx,
and so condition (2.3) implies that x = Tx.

(5) Since deg(I,Ω) = deg(I − 0,Ω), and the operator 0 is continuous, our degree
coincides with Leray–Schauder’s, and the normalization property is fulfilled. �

Remark 3.2. Note that condition (2.3) is not essential in order to define deg(I−T,Ω)
in terms of deg(I−T,Ω); in fact, to this end it suffices to require that {x}∩Tx ⊂ {Tx}
in ∂Ω. However, we need this condition to be satisfied in the whole of Ω ∩ TΩ to
guarantee the desirable existence property. As an example, the reader can consider
the mapping T : (−1, 1) 7−→ (−1, 1) defined by 1

2 (χ(−1,0] − χ(0,1)). Thus defined,
{x} ∩ Tx = ∅ for x ∈ {−1, 1} and deg(I − T, (−1, 1)) 6= 0 (as a consequence of the
multivalued version of Borsuk’s Theorem [16]), but T has no fixed point in (−1, 1).

The homotopy invariance property that we proved above becomes not very useful
in practice. It is due to the unstability of condition (3.1) requested for all t ∈ [0, 1]
and all x ∈ Ω, because the set of functions satisfying this condition is not very well–
behaved, as we show in the following example.

Example 3.3. Let T : [0, 1]→ [0, 1] be the piecewise constant function given by

T (x) =


1/3 if 0 ≤ x ≤ 1/3,

2/3 if 1/3 < x ≤ 2/3,

1 if 2/3 < x ≤ 1.

Then it is easy to check that condition (2.3) holds for all x ∈ [0, 1] but this is not true
for the mapping S = 1

2T at the point x = 1/3. Indeed, in this case we have{
1

3

}
∩ S

(
1

3

)
=

{
1

3

}
∩
[

1

6
,

1

3

]
=

{
1

3

}
6⊂
{

1

6

}
=

{
S

(
1

3

)}
.

The previous example shows that even for linear homotopies condition (3.1) can fail.
To overcome this difficulty we improve on the previous proposition in order to avoid
requesting condition (3.1) for all t.

Theorem 3.4. Let H : Ω× [0, 1]→ X be a map satisfying the following conditions:

(a) for each (x, t) ∈ Ω × [0, 1] and all ε > 0 there exists δ = δ(ε, x, t) > 0 such
that

s ∈ [0, 1], |t− s| < δ =⇒ ‖H(z, t)−H(z, s)‖ < ε ∀ z ∈ Bδ(x) ∩ Ω;
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(b) H
(
Ω× [0, 1]

)
is relatively compact;

(c) {x} ∩Ht(x) ⊂ {Ht(x)} is satisfied for all x ∈ Ω ∩HtΩ when t = 0 and t = 1.

If x 6∈ H(x, t) for all (x, t) ∈ ∂Ω× [0, 1] then

deg (I −H0,Ω) = deg (I −H1,Ω) .

Proof. It is possibly to prove that the degree for multivalued mappings is well defined
for

Ht(x) =
⋂
ε>0

co
(
Ht

(
Bε(x) ∩ Ω

))
,

for every t ∈ [0, 1], in a similar way that for homotopy invariance property above.
Therefore, homotopy invariance property of the degree for multivalued mappings
guarantees in particular that

deg (I −H0,Ω) = deg (I −H0,Ω) = deg (I −H1,Ω) = deg (I −H1,Ω) ,

which finishes the proof. �
We finish this section by introducing two classical results in the context of Leray–

Schauder degree that remain true when considering our new degree for discontinuous
operators satisfying (2.3). The first one is the well–known fact that for degree “only
what happens in the boundary matters,” and the second one is the natural extension
of Borsuk’s Theorem in our setting.

Proposition 3.5. Let T, S : Ω −→ X be two mappings in the conditions of Definition
2.6. If Tx = Sx for all x ∈ ∂Ω and 0 /∈ (I − T )(∂Ω) ∪ (I − S)(∂Ω) then

deg(I − T,Ω) = deg(I − S,Ω).

Proof. The degree for the multivalued mappings T and S in Ω is well defined because
T and S are in the conditions of Definition 2.6, so Tx = Sx for all x ∈ ∂Ω implies that
deg (I − T,Ω) = deg (I − S,Ω), see [16, Theorem 4]. Therefore, by Definition 2.6, we
conclude that deg (I − T,Ω) = deg (I − S,Ω). �

As the proof of the following result is similar to the previous one with the obvious
changes we will omit it.

Theorem 3.6. (Borsuk’s) Assume that 0 ∈ Ω and that x ∈ Ω implies −x ∈ Ω, and
let T : Ω −→ X be a mapping in the conditions of Definition 2.6. If 0 /∈ (I − T )(∂Ω)
and T(x) = −T(−x) for all x ∈ ∂Ω then deg(I − T,Ω) is odd.

4. Fixed point theorems

One of the most typical applications of degree theory is the search for topological
spaces which satisfy the so called fixed point property, that is, topological spaces M
such that any continuous mapping T : M −→M has a fixed point. It was proved by
Dugundji [5] that in every infinite–dimensional space there exists a fixed–point–free
mapping from its closed unit ball into itself, and so some extra–assumption regarding
compactness of images is required in the infinite–dimensional case. In this section we
will use our new degree to extend these results for operators which are not necessarily
continuous but satisfy condition (2.3).
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Theorem 4.1. Let M be a bounded, closed and convex subset of X containing the
origin 0 in its interior. Let T : M →M be a mapping satisfying (2.3) with Ω = int(M)
and such that T (M) is a relatively compact subset of X. Then T has a fixed point in
M .

Proof. Let Ω = int(M). The assumptions imply that Ω 6= ∅ and, since M is convex,
we have Ω = M and ∂M = ∂Ω, see [1, Lemma 5,28].

We can assume that x 6∈ Tx for all x ∈ ∂Ω, because otherwise condition (2.3)
guarantees that x = Tx and the proof is over.

Consider the homotopy

H(x, t) = t T (x)
(
x ∈ Ω, 0 ≤ t ≤ 1

)
.

Given t ∈ [0, 1), we define the set S =
{
tx : x ∈ Ω

}
, which is closed. Since 0 ∈ Ω,

we deduce from Lemma 5.28 in [1] that S ⊂ Ω. Hence co
(
Ht

(
Ω
))
⊂ S ⊂ Ω and,

therefore, we have Ht
(
Ω
)
⊂ co

(
Ht

(
Ω
))
⊂ Ω. This implies that x 6∈ Ht(x) for all

x ∈ ∂Ω and all t ∈ [0, 1). Moreover, since TΩ is relatively compact, then so is
H
(
Ω× [0, 1]

)
. Now, we can apply Theorem 3.4 and we obtain that

deg (I − T,Ω) = deg (I,Ω) .

By the normalization property in Proposition 3.1, we have deg (I,Ω) = 1 and then
the existence property ensures that there is x ∈ Ω with Tx = x. �

Now we relax the hypothesis that M has non-empty interior. This restriction can
be removed by using the extension of Tietze’s Theorem given by Dugundji. We omit
its proof, the reader can see [5, Theorem 4.1].

Theorem 4.2 (Dugundji). Suppose that A is a closed subset of a metric space B,
and let L be a normed linear space. Every continuous function f : A → L has a
continuous extension F : B → L such that F (B) ⊂ cof(A).

The following result is a generalization of Schauder’s fixed–point Theorem for not
necessarily continuous operators. It is possible to find other results in this direction
in [6, 12], but here we present a direct proof using our new degree theory.

Theorem 4.3. Let M be a non-empty, bounded, closed and convex subset of X. Let
F : M →M be a mapping such that FM is a relatively compact subset of X and

{x} ∩ Fx ⊂ {Fx} for every x ∈M ∩ FM , (4.1)

where Fx =
⋂
ε>0 coF (Bε(x) ∩M).

Then F has a fixed point in M .

Proof. Since M is bounded, there exists an open ball B containing the origin such
that M ⊂ B. By Dugundji’s Theorem 4.2, there is a continuous function r : B →M
such that r|M = I, the identity. Let us prove now that the operator T = F ◦r : B → B

satisfies the conditions in Theorem 4.1. First, note that T B is a relatively compact
subset of X because T B ⊂ FM . Now we prove that {x} ∩ Tx ⊂ {Tx} for all
x ∈ B ∩ TB. Since T B ⊂ F M ⊂ M , and M is a closed and convex subset of X,
then TB ⊂M and B ∩ TB ⊂ B ∩M = M .
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If x ∈M , then T (x) = F (x). Moreover, as r is continuous at x and r(x) = x, then
for all ε > 0 there exists δ > 0 (we can always choose δ < ε) such that

r
(
Bδ(x) ∩B

)
⊂ Bε(r(x)) ∩M = Bε(x) ∩M.

Therefore, we deduce that

Tx =
⋂
δ>0

coT
(
Bδ(x) ∩B

)
=
⋂
δ>0

co (F ◦ r)
(
Bδ(x) ∩B

)
⊂
⋂
ε>0

coF
(
Bε(x) ∩M

)
= F(x).

Then {x} ∩ Tx ⊂ {x} ∩ Fx ⊂ {Fx} = {Tx} for all x ∈ M ⊃ B ∩ TB. By Theorem
4.1, there exists z ∈ B such that T (z) = z. Since T B ⊂M , we conclude that z ∈M
and F (z) = z. �

Corollary 4.4. Let K be a non-empty, convex and compact subset of X. Let T :
K → K be a mapping satisfying (4.1) with M = K. Then T has a fixed point in K.

Proof. Since T K ⊂ K and K is compact, T K is a relatively compact subset of X.
Applying Theorem 4.3, T has a fixed point. �

Theorem 4.5. (Schaefer’s) Let X be a Banach space and T : X −→ X mapping
bounded sets into relatively compact ones. Assume that there exists R > 0 such that
condition x ∈ σTx for some σ ∈ [0, 1] implies ‖x‖ < R. If T satisfies condition (2.3)
with Ω = BR(0) (open ball centered at the origin and radius R) then T has a fixed
point in BR(0).

Proof. For each σ ∈ [0, 1] the mapping I − σT : BR(0) −→ 2X satisfies that

0 /∈ (I − σT)(∂BR(0)),

and so deg(I − σT, BR(0)) is well–defined. Now the homotopy invariance property
guarantees that

deg(I − T,BR(0)) = deg(I − T, BR(0)) = deg(I,BR(0)) = 1,

and so there exists x ∈ BR(0) such that Tx = x. �

5. Application to a first order differential problem

In this section we illustrate the applicability of the degree theory described in
sections 2 and 3. To do so, we consider a specially simple problem, namely, the
existence of absolutely continuous solutions of the initial value problem

x′ = f(t, x) for a.a. t ∈ I = [a, b], x(a) = xa ∈ R. (5.1)

Unlike the classical situation, we do not assume that f : I×R −→ R is a Carathéodory
function. Indeed, we shall allow f to be discontinuous over the graphs of countably
many functions in the conditions of the following definition. Similar definitions can
be found in [6, 12].
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Definition 5.1. An admissible discontinuity curve for the differential equation x′ =
f(t, x) is an absolutely continuous function γ : [c, d] ⊂ I → R satisfying one of the
following conditions:

either γ′(t) = f(t, γ(t)) for a.a. t ∈ [c, d] (and we say that γ is viable for the
differential equation),
or there exists ε > 0 and ψ ∈ L1(c, d), ψ(t) > 0 for a.a. t ∈ [c, d], such that

either

γ′(t) + ψ(t) < f(t, y) for a.a. t ∈ I and all y ∈ [γ(t)− ε, γ(t) + ε] , (5.2)

or

γ′(t)− ψ(t) > f(t, y) for a.a. t ∈ I and all y ∈ [γ(t)− ε, γ(t) + ε] . (5.3)

We say that γ is inviable for the differential equation if it satisfies (5.2) or (5.3).

First, we state three technical results that we need in the proof of our main existence
result for (5.1). Their proofs can be lookep up in [12].

In the sequel m denotes Lebesgue measure in R.

Lemma 5.2. Let a, b ∈ R, a < b, and let g, h ∈ L1(a, b), g ≥ 0 a.e., and h > 0 a.e.
on (a, b).

For every measurable set J ⊂ (a, b) such that m(J) > 0 there is a measurable set
J0 ⊂ J satisfying that m (J \ J0) = 0 and for all τ0 ∈ J0 we have

lim
t→τ+

0

∫
[τ0,t]\J g(s) ds∫ t
τ0
h(s) ds

= 0 = lim
t→τ−

0

∫
[t,τ0]\J g(s) ds∫ τ0
t
h(s) ds

.

Corollary 5.3. Let a, b ∈ R, a < b, and let h ∈ L1(a, b) be such that h > 0 a.e. on
(a, b).

For every measurable set J ⊂ (a, b) such that m(J) > 0 there is a measurable set
J0 ⊂ J satisfying that m (J \ J0) = 0 and for all τ0 ∈ J0 we have

lim
t→τ+

0

∫
[τ0,t]∩J h(s) ds∫ t
τ0
h(s) ds

= 1 = lim
t→τ−

0

∫
[t,τ0]∩J h(s) ds∫ τ0
t
h(s) ds

.

Corollary 5.4. Let a, b ∈ R, a < b, and let f, fn : [a, b]→ R be absolutely continuous
functions on [a, b] (n ∈ N), such that fn → f uniformly on [a, b] and for a measurable
set A ⊂ [a, b] with m(A) > 0 we have

lim
n→∞

f ′n(t) = g(t) for a.a. t ∈ A.

If there exists M ∈ L1(a, b) such that |f ′(t)| ≤ M(t) a.e. in [a, b] and also |f ′n(t)| ≤
M(t) a.e. in [a, b] (n ∈ N), then f ′(t) = g(t) for a.a. t ∈ A.

We are already in a position to prove a new existence result for (5.1) by means
of the degree theory introduced in Section 2. We note that the same result can be
proven by means of Theorem 4.3, but we intend to show how to apply our degree
theory. Observe that f can be discontinuous with respect to both of its variables.
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Theorem 5.5. Problem (5.1) has at least an absolutely continuous solution x : I → R
provided that f satisfies the following conditions:

(H1) There exists M ∈ L1 (I, [0,∞ )) such that |f(t, x)| ≤M(t) for a.a. t ∈ I and
all x ∈ R.

(H2) Any composition t ∈ I 7→ f (t, x(t)) is measurable if x ∈ C(I).
(H3) There exist admissible discontinuity curves γn : In = [an, bn] → R (n ∈ N)

such that for a.a. t ∈ I the function x 7→ f(t, x) is continuous on

R \
⋃

{n:t∈In}

{γn(t)} .

Proof. Consider the Banach space X = C(I) with the norm ‖·‖∞. We define the
integral operator T : X → X given by

Tx(t) = xa +

∫ t

a

f(s, x(s)) ds (t ∈ I, x ∈ X). (5.4)

Clearly, finding fixed points of the operator T is equivalent to finding absolutely
continuous solutions of problem (5.1). To prove that T has at least one fixed point
we shall use Theorem 3.4 and the normalization property of the degree.

First, note that operator T is bounded. Indeed, thanks to conditions (H1) and
(H2), we have for all x ∈ X that

|Tx(t)| ≤ |xa|+
∫ t

a

|f(s, x(s))| ds ≤ |xa|+ ‖M‖L1 ,

so there exists R > 0 such that

T (X) ⊂ BR/2(0) = {x ∈ X : ‖x‖∞ < R/2} .

In addition, T is well defined and maps BR(0) into itself.
Second, T BR(0) is equicontinuous. Since (Tx)′(t) = f(t, x(t)) for a.a. t ∈ I, we have

|(Tx)(t)− (Tx)(s)| =
∣∣∣∣∫ t

s

(Tx)′(r) dr

∣∣∣∣ =

∣∣∣∣∫ t

s

f(r, x(r)) dr

∣∣∣∣
≤
∫ t

s

|f(r, x(r))| dr ≤
∫ t

s

M(r) dr (s ≤ t). (5.5)

Therefore, T BR(0) is relatively compact in X.
We have that T(X) ⊂ co (T (X)) ⊂ BR/2(0) ⊂ BR(0), which implies that x 6∈ σTx

for all (x, σ) ∈ ∂BR(0)× [0, 1], where T is the multivalued map associated to T . Thus,
deg (I − σT, BR(0)) is well defined as the degree for multivalued operators.

We consider the homotopy H : BR(0)× [0, 1]→ BR(0) given by

H(x, σ) = σ Tx.

It is obvious that H
(
BR(0)× [0, 1]

)
is relatively compact, because T BR(0) is rela-

tively compact.
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If the operator T satisfies the condition {x}∩Tx ⊂ {Tx} for all x ∈ BR(0)∩TBR(0),
then Theorem 3.4 and the normalization property of Proposition 3.1 guarantee us
that

deg (I − T,BR(0)) = deg (I,BR(0)) = 1,

so the operator T would have at least a fixed point as we want to see.
Therefore, to finish we only have to prove that {x} ∩ Tx ⊂ {Tx} for all x ∈

BR(0)∩TBR(0). We fix x ∈ BR(0)∩TBR(0) and consider the following three cases.
Case 1. m ({t ∈ In : x(t) = γn(t)}) = 0 for all n ∈ N. Let us prove that then T is
continuous at x.

By assumption, for a.a. t ∈ I the mapping f(t, ·) is continuous at x(t). Thus, if
xk → x in BR(0) then

f(t, xk(t))→ f(t, x(t)) for a.a. t ∈ I,

which, along with (H1), yield Txk → Tx uniformly on I.
Case 2. m ({t ∈ In : x(t) = γn(t)}) > 0 for some n ∈ N such that γn is inviable. We
suppose that x ∈ Tx and we will prove, by reductio ad absurdum, that it is false.

We consider the set

K =

{
x ∈ C(I) : |x(t)− x(s)| ≤

∫ t

s

M(r) dr (s ≤ t)
}
,

which is a convex and closed subset of X.
It is obvious, by inequality (5.5), that T X ⊂ K, so TX ⊂ X because K is a convex

and closed set. Hence, x ∈ K.
Now, we fix some notation. Let us assume that for some n ∈ N we have

m ({t ∈ In : x(t) = γn(t)}) > 0

and there exist ε > 0 and ψ ∈ L1(In), ψ(t) > 0 for a.a. t ∈ In, such that (5.3) holds
with γ replaced by γn. (We can prove the result in a similar way if we assume (5.2)
instead of (5.3), so we omit it).

We denote J = {t ∈ In : x(t) = γn(t)}, and we deduce from Lemma 5.2 that there
is a measurable set J0 ⊂ J with m(J0) = m(J) > 0 such that for all τ0 ∈ J0 we have

lim
t→τ+

0

2
∫

[τ0,t]\JM(s) ds

(1/4)
∫ t
τ0
ψ(s) ds

= 0 = lim
t→τ−

0

2
∫

[t,τ0]\JM(s) ds

(1/4)
∫ τ0
t
ψ(s) ds

. (5.6)

By Corollary 5.3 there exists J1 ⊂ J0 with m(J0) = m(J1) such that for all τ0 ∈ J1

we have

lim
t→τ+

0

∫
[τ0,t]∩J ψ(s) ds∫ t
τ0
ψ(s) ds

= 1 = lim
t→τ−

0

∫
[t,τ0]∩J ψ(s) ds∫ τ0
t
ψ(s) ds

. (5.7)
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Let us fix a point τ0 ∈ J1. From (5.6) and (5.7) we deduce that there exist t− < τ0
and t+ > τ0, t± sufficiently close to τ0 so that the following inequalities are satisfied:

2

∫
[τ0,t+]\J

M(s) ds <
1

4

∫ t+

τ0

ψ(s) ds, (5.8)

2

∫
[t−,τ0]\J

M(s) ds <
1

4

∫ τ0

t−

ψ(s) ds, (5.9)∫
[τ0,t+]∩J

ψ(s) ds >
1

2

∫ t+

τ0

ψ(s) ds, (5.10)∫
[t−,τ0]∩J

ψ(s) ds >
1

2

∫ τ0

t−

ψ(s) ds. (5.11)

Now, we define a positive number

ρ = min

{
1

4

∫ τ0

t−

ψ(s) ds,
1

4

∫ t+

τ0

ψ(s) ds

}
. (5.12)

We will prove that for ε > 0 given by our assumptions over γn and ρ as in (5.12), for
every finite family xi ∈ Bε(x)∩K and λi ∈ [0, 1] (i = 1, 2, . . . ,m), with

∑
λi = 1, we

have ∥∥∥x−∑λiTxi

∥∥∥
∞
≥ ρ.

Hence, we will get a contradiction with the hypothesis x ∈ Tx, so we can conclude
that x 6∈ Tx.
Let us denote y =

∑
λiTxi. For a.a. t ∈ I we have

y′(t) =

m∑
i=1

λi(Txi)
′(t) =

m∑
i=1

λif (t, xi(t)) ≤M(t). (5.13)

On the other hand, for every t ∈ J = {t ∈ In : x(t) = γn(t)} we have

|xi(t)− γn(t)| = |xi(t)− x(t)| < ε,

and then the assumptions on γn ensure that for a.a. t ∈ J we have

y′(t) =

m∑
i=1

λif(t, xi(t)) <

m∑
i=1

λi (γ′n(t)− ψ(t)) = γ′n(t)− ψ(t).

Well-known results, e.g. [15, Lemma 6.92], guarantee that γ′n(t) = x′(t) for a.a. t ∈ J ,
hence

y′(t) < x′(t)− ψ(t) for a.a. t ∈ J. (5.14)
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Now we use (5.13) and (5.14) first, and later (5.9) and (5.11), to deduce the following
estimate:

y(τ0)− y(t−) =

∫ τ0

t−

y′(s) ds =

∫
[t−,τ0]∩J

y′(s) ds+

∫
[t−,τ0]\J

y′(s) ds

<

∫
[t−,τ0]∩J

x′(s) ds−
∫

[t−,τ0]∩J
ψ(s) ds+

∫
[t−,τ0]\J

M(s) ds

= x(τ0)− x(t−)−
∫

[t−,τ0]\J
x′(s) ds−

∫
[t−,τ0]∩J

ψ(s) ds

+

∫
[t−,τ0]\J

M(s) ds

≤ x(τ0)− x(t−)−
∫

[t−,τ0]∩J
ψ(s) ds+ 2

∫
[t−,τ0]\J

M(s) ds

< x(τ0)− x(t−)− 1

4

∫ τ0

t−

ψ(s) ds.

Hence ‖x− y‖∞ ≥ y(t−)− x(t−) ≥ ρ provided that y(τ0) ≥ x(τ0).
Similar computations with t+ instead of t− show that if y(τ0) ≤ x(τ0) then we have
‖x− y‖∞ ≥ ρ too and we conclude that x 6∈ Tx.
Case 3. m ({t ∈ In : x(t) = γn(t)}) > 0 only for some of those n ∈ N such that
γn is viable. We will assume that all admissible discontinuity curves are viable and
m(Jn) > 0 for all n ∈ N, where Jn = {t ∈ In : x(t) = γn(t)}. Hence, by Definition
5.1, for a.a. t ∈ A =

⋃
n∈N Jn we have x′(t) = f(t, x(t)).

Now, if we assume that x ∈ Tx, then we will show that x′(t) = f(t, x(t)) for a.a.
t ∈ I \A, thus we conclude that x = Tx.

Since x ∈ Tx then for each k ∈ N we can choose ε = ρ = 1/k to guarantee that we
can find functions xk,i ∈ B1/k(x)∩K and coefficients λk,i ∈ [0, 1] (i = 1, 2, . . . ,m(k))
such that

∑
i λk,i = 1 and ∥∥∥∥∥∥x−

m(k)∑
i=1

λk,iTxk,i

∥∥∥∥∥∥
∞

<
1

k
.

Let us denote yk =
∑m(k)
i=1 λk,iTxk,i, and notice that yk → x uniformly in I and

‖xk,i − x‖ ≤ 1/k for all k ∈ N and all i ∈ {1, 2, . . . ,m(k)}.
On the other hand, for a.a. t ∈ I \ A we have that f(t, ·) is continuous at x(t) so

for any ε > 0 there is some k0 = k0(t) ∈ N such that for all k ∈ N, k ≥ k0, we have

|f(t, xk,i(t))− f(t, x(t))| < ε for all i ∈ {1, 2, . . . ,m(k)} ,

and hence

|y′k(t)− f(t, x(t))| ≤
m(k)∑
i=1

λk,i |f(t, xk,i(t))− f(t, x(t))| < ε.

Therefore y′k(t) → f(t, x(t)) for a.a. t ∈ I \ A, and then we conclude from Corollary
5.4 that x′(t) = f(t, x(t)) for a.a. t ∈ I \A. �
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Finally we illustrate the applicability of Theorem 5.5 (and hence of the degree
theory introduced in the first sections) with the following example.

Example 5.6. Problem (5.1) has at least one absolutely continuous solution on
I = [0, 1] for f(t, x) = 1/

√
t+ sin[1/x] for x > 0 (square brackets mean integer part),

f(t, x) = 1/
√
t for x ≤ 0, and x0 = 0. In this case f(t, x) is discontinuous at x = 0 or

x = 1/n, n ∈ N, but it is not monotone. Notice that γ0 = 0 and γn = 1/n (n ∈ N) are
admissible discontinuity curves, all of which are necessarily crossed by any solution
because x′(t) > 1/

√
t− 1 for a.a. t ∈ [0, 1].
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