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Abstract. We propose a new algorithm which can be considered as a combination between the
subgradient extragradient method and viscosity methods for solving split common fixed points prob-

lem and variational inequality problem. We find a point which belongs to the set of common fixed

points of a finite family of demimetric mappings and the common solutions to a system of variational
inequalities problem for a family of monotone and Lipschitz continuous operators in a Hilbert space

such that its image under a linear transformation belongs to the set of common fixed points of a
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some numerical results which show that our proposed algorithms are efficient and implementable

from the numerical point of view.
Key Words and Phrases: Variational inequality, subgradient extragradient method, split common

fixed point problems, demimetric mapping.

2020 Mathematics Subject Classification: 47H09, 47H10, 47J20, 47J25.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert spaceH and F : H → H
be an operator. The classical variational inequality is formulated as the following
problem:

Finding a point x? ∈ C such that 〈Fx?, y − x?〉 ≥ 0, ∀y ∈ C.
The set of solutions of this problem is denoted by V I(C,F ). Many problems in science
and engineering can be recast as variational inequalities (see, for example, [17, 1, 32]).
Several iterative methods have been developed for solving variational inequality and
related optimization problems, see the books [2, 18, 15].
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For solving the variational inequality in Euclidean space, Korpelevich [19] intro-
duced the extragradient method where two metric projections onto feasible sets must
be found at each iterative step. In 2011, Censor et al. [9] have replaced the sec-
ond projection onto any closed convex set in the extragradient method by one onto
a half-space and proposed the subgradient extragradient method for variational in-
equalities in Hilbert spaces, see also [10]. Recently, some authors proposed subgradi-
ent extragradient-like algorithms for solving variational inequality problems, see, for
example, ( [31, 20, 28, 29, 30]).

We recall the following definitions concerning an operator F : H → H.
The operator F is called:

• L-Lipschitz continuous if there exists a constant L > 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ H.
• Monotone if

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ H.
• Quasi-nonexpansive if

‖F (x)− p‖ ≤ ‖x− p‖, ∀x ∈ H, ∀p ∈ Fix(F ),

where Fix(F ) = {x ∈ H : F (x) = x}.
In [20], Kraikaew and Saejung presented an algorithm based on the subgradient

extragradient method and the Halpern method for the problem of finding a common
element of the solution set of a variational inequality and the fixed-point set of a
quasi-nonexpansive mapping in real Hilbert spaces. In particular, they proved the
following strong convergence theorem.

Theorem 1.1. Let S : H → H be a quasi-nonexpansive mapping such that I − S is
demiclosed at zero and F : H → H a monotone and L-Lipschitz mapping on C. Let
τ be a positive real number such that τL < 1. Suppose that Fix(S) ∩ V I(C,F ) 6= ∅.
Let {xn} be a sequence generated by

x0 ∈ H,
yn = PC(xn − τF (xn)),

Tn = {x ∈ H : 〈xn − τF (xn)− yn, x− yn〉 ≤ 0},
zn = αnx0 + (1− αn)PTn

(xn − τF (yn)),

xn+1 = βnzn + (1− βn)Szn ∀n ≥ 0,

(1.1)

where {βn} ⊂ [a, b] ⊂]0, 1[ for some a, b ∈]0, 1[ and {αn} is a sequence in ]0, 1[
satisfying

lim
n→∞

αn = 0 and

∞∑
n=0

αn =∞.

Then {xn} converges strongly to PV I(C,F )
⋂

Fix(S)x0.

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively. The split feasibility problem (SFP) was recently introduced by Censor
and Elfving [8] and is formulated as

to finding x∗ ∈ C such that Ax∗ ∈ Q, (1.2)
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where A : H1 → H2 is a bounded linear operator. Such models were successfully
developed for instance in radiation therapy treatment planning, sensor networks, res-
olution enhancement and so on [3, 6, 7]. Initiated by SFP, several split type problems
have been investigated and studied, for example, the split common fixed point prob-
lem (SCFP)[12], the split variational inequality problem (SVIP)[11], and the split null
point problem (SCNP)[4]. Algorithms for solving the SFP receive great attention, (see
[21-26] and references therein).

Recently, Takahashi [26, 27] introduced a new nonlinear mapping as follows: Let
E be a smooth, strictly convex and reflexive Banach space and let η be a real number
with η ∈ (−∞, 1). A mapping U : E → E with Fix(U) 6= ∅ is called η−demimetric
if, for any x ∈ E and p ∈ Fix(U),

〈x− p, J(x− Ux)〉 ≥ 1− η
2
‖x− Ux‖2,

where J is the duality mapping on E.
The demimetric mappings covers strict pseudo-contractions and generalized hybrid

mappings in Hilbert spaces, and the metric projections and the metric resolvents in
Banach spaces (see [26]). Such a class of operators is fundamental because it includes
many types of nonlinear operators arising in applied mathematics and optimization.

Now in this paper, we propose a new algorithm which can be considered a combina-
tion between the subgradient extragradient method and viscosity methods for solving
split common fixed points problem and variational inequality problem. We find a
point which belongs to the set of common fixed points of a finite family of demimetric
mappings and the common solutions to a system of variational inequalities problem
for a family of monotone and Lipschitz continuous operators in a Hilbert space such
that its image under a linear transformation belongs to the set of common fixed points
of a finite family of demimetric mappings in uniformly convex and smooth Banach
space in the image space. The strong convergence of the sequences generated by the
algorithm is proved. We also give some numerical results which show that our pro-
posed algorithms are efficient and implementable from the numerical point of view.
Our results improve and generalize the results of Censor et al. [9, 11], Kraikaew and
Saejung [20] and many others.

2. Preliminaries

Let E be a real Banach space with norm ‖.‖ and let E∗ be the dual space of E.
We denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in E,
we denote the strong convergence of {xn} to x by xn → x and the weak convergence
by xn ⇀ x. The modulus δ of convexity of E is defined by:

δ(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
,

for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if
δ(ε) > 0 for every ε > 0. The duality mapping J from E into 2E

∗
is defined by:

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2},
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for every x ∈ E. Let U = {x ∈ E, ‖x‖ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

,

exists. In this case, E is called smooth. We know that E is smooth if and only if J is
single-valued mapping of E into E∗. We also know that E is reflexive if and only if J
is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if E is a
smooth, strictly convex and reflexive Banach space, then J is a single-valued bijection
and in this case, the inverse mapping J−1 coincides with the duality mapping J∗ on
E∗. For more details, see [25]. Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E. We know that for any x ∈ E, there
exists a unique element z ∈ C, such that ‖x − z‖ ≤ ‖x − y‖ for all y ∈ C. Putting
z = PCx, we call PC the metric projection of E onto C. We will use the following
Lemmas.

Lemma 2.1. ([20]) Let F : H → H be a monotone and L-Lipschitz mapping on
C and λ be a positive number and suppose that V I(C,F ) is nonempty. Let x ∈ H.
Define 

U(x) = PC(x− λF (x)),

T x = {w ∈ H : 〈x− λF (x)− U(x), w − U(x)〉 ≤ 0},
V (x) = PTx(x− λF (U(x))),

Then for all x∗ ∈ V I(C,F ), we have

‖V (x)− x∗‖2 ≤ ‖x− x∗‖2 − (1− λL)‖x− U(x)‖2 − (1− λL)‖V (x)− U(x)‖2.

Lemma 2.2. ([16]) Assume {sn} is a sequence of nonnegative real numbers such that{
sn+1 ≤ (1− λn)sn + λnδn, n ≥ 0,

sn+1 ≤ sn − ηn + µn, n ≥ 0,

where (λn) is a sequence in (0, 1), (ηn) is a sequence of nonnegative real numbers and
(δn) and (µn) are two sequences in R such that

(i)

∞∑
n=1

λn =∞,

(ii) lim
n→∞

µn = 0

(iii) lim
k→∞

ηnk
= 0, implies lim sup

k→∞
δnk
≤ 0 for any subsequence (nk) ⊂ (n).

Then lim
n→∞

sn = 0.

Definition 2.3. Let H be a real Hilbert space. A mapping U : H → H is said to be
β-strict pseudo-contractive if there exists a constant β ∈ [0, 1) such that

‖Ux− Uy‖2 ≤ ‖x− y‖2 + β‖(x− Ux)− (y − Uy)‖2, ∀x, y ∈ H.

The following example show that the class of demimetric mappings is more general
than the class of strict pseudo-contraction mappings and quasi-nonexpansive map-
pings.
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Example 2.4. Let H be the real line. Define T on R by

T (x) =


4

5
x sin

1

2x
, 0 < x ≤ 2

−2x, o.w

Clearly, 0 is the only fixed point of T . We show that T is
1

3
− demimetric mapping.

For each x ∈ R− (0, 2] we have

3x2 = 〈x− p, x− Tx〉 =
1− η

2
‖x− Tx‖2 = 3x2.

For each x ∈ (0, 2] since

1 ≥ 1

3

(
1− 4

5
sin

1

2x

)
we have

x2

(
1− 4

5
sin

1

2x

)
= 〈x− p, x− Tx〉 ≥ 1− η

2
‖x− Tx‖2 =

1

3
x2

(
1− 4

5
sin

1

2x

)2

.

Thus T is
1

3
− demimetric mapping. Let x =

1

π
and y =

1

3π
, for each β < 1 we have

256

225π2
= ‖Tx− Ty‖2 > ‖x− y‖2 + β‖(x− Tx)− (y − Ty)‖2 =

4

9π2
+ β

36

225π2
.

Therefore T is not strict pseudo-contractive mapping. Putting p = 0 and x = 3 we
see that T is not quasi-nonexpansive.

Definition 2.5. Let T : C → C be a mapping, then I−T is said to be demiclosed at
zero if for any sequence {xn} in C, the conditions xn ⇀ x and lim

n→∞
‖xn − Txn‖ = 0,

imply x = Tx.

Lemma 2.6. [22] Let C be nonempty closed convex subset of a real Hilbert space H,
and let T : C → C be a β-strict pseudo-contractive mapping. Then I−T is demiclosed
at zero.

Lemma 2.7. [27]. Let E be a smooth, strictly convex and reflexive Banach space and
let η be a real number with η ∈ (−∞, 1). Let U be an η-demimetric mapping of E
into itself. Then Fix(U) is closed and convex.

3. Algorithm and convergence analysis

In this section, we present our algorithm for solving split common fixed points
problem and variational inequality problem.

Theorem 3.1. Let H be a Hilbert space and E be a uniformly convex and smooth
Banach spaces. Let

{µ(i)}mi=1, {κ(i)}mi=1 ⊂ (−∞, 1).

Let for i = 1, 2, ...,m, T (i) : H → H be a finite family of µ(i)−demimetric mappings
and S(i) : E → E be a finite family of κ(i)−demimetric mappings.
Assume that S(i) − I and T (i) − I are demiclosed at 0. Let for each i = 1, 2, ..,m,
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C(i) be a nonempty closed convex subset of H and let F (i) : H → H be a monotone
and L(i)- Lipschitz continuous operator on C(i). Let A : H → E be a bounded linear
operator such that A 6= 0. Suppose that

Ω =

{
x∗ ∈

m⋂
i=1

(V I(C(i), F (i)) ∩ Fix(T (i))) : Ax∗ ∈
m⋂
i=1

Fix(S(i))

}
6= ∅.

Assume that f be a contraction of H into itself with constant k ∈ (0, 1). Let {xn} be
a sequence defined by:



x1 ∈ H is chosen arbitrarily,

zn = xn −
m∑
i=1

α(i)
n θ(i)A∗JE(Axn − S(i)Axn)

u
(i)
n = PC(i)(zn − λ(i)F (i)(zn)),

U
(i)
n = {x ∈ H : 〈zn − λ(i)F (i)(zn)− u(i)

n , x− u(i)
n 〉 ≤ 0},

v
(i)
n = P

U
(i)
n

(zn − λ(i)F (i)(u
(i)
n )),

w
(i)
n = v

(i)
n +

1− µ(i)

3
(T (i)v(i)

n − v(i)
n ), i ∈ {1, 2, ...,m},

xn+1 = β
(0)
n f(xn) +

m∑
i=1

β(i)
n w(i)

n , ∀n ≥ 0,

(3.1)

where {α(i)
n }, {β(i)

n }, {λ(i)} and {θ(i)} satisfy the following conditions:

(i) {α(i)
n }mi=1, {β

(i)
n }mi=0 ⊂ (0, 1) and

m∑
i=1

α(i)
n =

m∑
i=0

β(i)
n = 1,

(ii) lim inf
n

α
(i)
n > 0, lim infn β

(i)
n > 0 for each i ∈ {1, 2, ...,m},

(iii) lim
n→∞

β
(0)
n = 0 and

∞∑
n=0

β(0)
n =∞,

(iv) λ(i) L(i) < 1 and 0 < θ(i) ≤ 1− κ(i)

‖A‖2
for each i ∈ {1, 2, ...,m}.

Then, the sequence {xn} converges strongly to a point x? ∈ Ω which solves the varia-
tional inequality:

〈x? − f(x?), x− x?〉 ≥ 0, ∀x ∈ Ω. (3.2)

Proof. First we show that {xn} is bounded. Note that PΩ(f) is a contraction of H into
itself. By the Banach contraction principle there exists a unique element x? ∈ H such
that x? = PΩ(f)x?. Since for each i ∈ {1, 2, ...,m}, S(i) : E → E is κ(i)−demimetric
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mapping, from the convexity of ‖.‖2 we have

‖zn − x?‖2 = ‖xn −
m∑
i=1

α(i)
n θ(i)A∗JE(Axn − S(i)Axn)− x?‖2

≤
m∑
i=1

α(i)
n ‖xn − x? − θ(i)A∗JE(Axn − S(i)Axn)‖2

=

m∑
i=1

α(i)
n (‖xn − x?‖2 − 2〈xn − x?, θ(i)A∗JE(Axn − S(i)Axn)〉

+ ‖θ(i)A∗JE(Axn − S(i)Axn)‖2)

≤
m∑
i=1

α(i)
n (‖xn − x?‖2 − 2θ(i)〈Axn −Ax?, JE(Axn − S(i)Axn)〉

+ (θ(i))2‖A‖2‖JE(Axn − S(i)Axn)‖2)

≤
m∑
i=1

α(i)
n (‖xn − x?‖2 − (1− κ(i))θ(i)‖Axn − S(i)Axn‖2

+ (θ(i))2‖A‖2‖Axn − S(i)Axn‖2)

= ‖xn − x?‖2 +

m∑
i=1

α(i)
n θ(i)(θ(i)‖A‖2 − (1− κ(i)))‖Axn − S(i)Axn‖2.

(3.3)

Since 0 < θ(i) ≤ 1− κ(i)

‖A‖2
for all i ∈ {1, 2, ...,m}, we have that

‖zn − x?‖ ≤ ‖xn − x?‖.
Utilizing Lemma (2.1) for each i ∈ {1, 2, ...,m} we have

‖v(i)
n −x?‖2 ≤ ‖zn−x?‖2−(1−λ(i) L(i))‖zn−u(i)

n ‖2−(1−λ(i) L(i))‖v(i)
n −u(i)

n ‖2. (3.4)

Since for each i ∈ {1, 2, ...,m}, T (i) is µ(i) - demicontractive, we arrive at

‖w(i)
n − x?‖2 = ‖v(i)

n +
1− µ(i)

3
(T (i)v(i)

n − v(i)
n )− x?‖2

= ‖v(i)
n − x?‖2 + 2〈v(i)

n − x?,
1− µ(i)

3
(T (i)v(i)

n − v(i)
n )〉

+ ‖1− µ(i)

3
(T (i)v(i)

n − v(i)
n )‖2

≤ ‖v(i)
n − x?‖2 − 2

(
1− µ(i)

3

)(
1− µ(i)

2

)
‖(T (i)v(i)

n − v(i)
n )‖2

+

(
1− µ(i)

3

)2

‖(T (i)v(i)
n − v(i)

n )‖2

= ‖v(i)
n − x?‖2 −

2

9
(1− µ(i))2‖(T (i)v(i)

n − v(i)
n )‖2. (3.5)
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Thus we get that

‖w(i)
n − x?‖ ≤ ‖v(i)

n − x?‖ ≤ ‖zn − x?‖ ≤ ‖xn − x?‖. (3.6)

Now, since f is a contraction, from the algorithm (3.1) and the inequality (3.6) we
obtain

‖xn+1 − x?‖ =‖β(0)
n f(xn) +

m∑
i=1

β(i)
n w(i)

n − x?‖

≤β(0)
n ‖f(xn)− x?‖+

m∑
i=1

β(i)
n ‖w(i)

n − x?‖

≤β(0)
n ‖f(xn)− x?‖+

m∑
i=1

β(i)
n ‖xn − x?‖

≤β(0)
n ‖f(xn)− x?‖+ (1− β(0)

n )‖xn − x?‖

≤β(0)
n ‖f(xn)− f(x?)‖+ β

(0)
n ‖f(x?)− x?‖+ (1− β(0)

n )‖xn − x?‖

≤β(0)
n k‖xn − x?‖+ β

(0)
n ‖f(x?)− x?‖+ (1− β(0)

n )‖xn − x?‖

≤ (1− (1− k))β
(0)
n ‖xn − x?‖+ (1− k)

β
(0)
n

1− k
‖f(x?)− x?‖

≤max{‖xn − x?‖,
1

1− k
‖f(x?)− x?‖}

≤ ...

≤max{‖x0 − x?‖,
1

1− k
‖f(x?)− x?‖},

which implies that {xn} is bounded. We also obtain that {f(xn)} and {w(i)
n } are

bounded. Since

xn+1 = β(0)
n f(xn) +

m∑
i=1

β(i)
n w(i)

n ,

applying inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉
in a Hilbert space, we arrive at

‖xn+1 − x?‖2 ≤ ‖
m∑
i=1

β(i)
n w(i)

n − (1− β(0)
n )x?‖2 + 2β(0)

n 〈f(xn)− x?, xn+1 − x?〉

=

∥∥∥∥∥(1−β(0)
n )

(
m∑
i=1

β
(i)
n

1− β(0)
n

w(i)
n − x?

)∥∥∥∥∥
2

+ 2β(0)
n 〈f(xn)− x?, xn+1 − x?〉

≤ (1− β(0)
n )2

m∑
i=1

β
(i)
n

1− β(0)
n

‖w(i)
n − x?‖2 + 2β(0)

n 〈f(xn)− x?, xn+1 − x?〉
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≤ (1− β(0)
n )

m∑
i=1

β(i)
n ‖xn − x?‖2 + 2β(0)

n 〈f(xn)− f(x?), xn+1 − x?〉

+ 2β(0)
n 〈f(x?)− x?, xn+1 − x?〉

= (1− β(0)
n )2‖xn − x?‖2 + 2β(0)

n k‖xn − x?‖‖xn+1 − x?‖

+ 2β(0)
n 〈f(x?)− x?, xn+1 − x?〉

≤ (1− β(0)
n )2‖xn − x?‖2 + β(0)

n k(‖xn − x?‖2 + ‖xn+1 − x?‖2)

+ 2β(0)
n 〈f(x?)− x?, xn+1 − x?〉.

This implies that

‖xn+1 − x?‖2 ≤
(1− β(0)

n )2 + β
(0)
n k

1− β(0)
n k

‖xn − x?‖2

+
2β

(0)
n

1− β(0)
n k
〈f(x?)− x?, xn+1 − x?〉

=
1− 2β

(0)
n + β

(0)
n k

1− β(0)
n k

‖xn − x?‖2 +
(β

(0)
n )2

1− β(0)
n k
‖xn − x?‖2

+
2β

(0)
n

1− β(0)
n k
〈f(x?)− x?, xn+1 − x?〉

≤

(
1− 2(1− k)β

(0)
n

1− β(0)
n k

)
‖xn − x?‖2

+
2(1− k)β

(0)
n

1− β(0)
n k

{
β

(0)
n M

2(1− k)
+

1

1− k
〈f(x?)− x?, xn+1 − x?〉

}
≤ (1− ηn)‖xn − x?‖2 + ηnδn, (3.7)

where

δn =
β

(0)
n M

2(1− k)
+

1

1− k
〈f(x?)− x?, xn+1 − x?〉,

M = sup{‖xn − x?‖2 : n ≥ 0} and ηn =
2(1− k)β

(0)
n

1− β(0)
n k

.

We observe that

ηn → 0,

∞∑
n=1

ηn =∞.
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By using inequalities (3.3), (3.4) and (3.5), and the convexity of ‖.‖2 we get

‖xn+1 − x?‖2 = ‖β(0)
n f(xn) +

m∑
i=1

β(i)
n w(i)

n − x?‖2

≤ β(0)
n ‖f(xn)− x?‖2 +

m∑
i=1

β(i)
n ‖w(i)

n − x?‖2

≤ β(0)
n ‖f(xn)− x?‖2 +

m∑
i=1

β(i)
n ‖v(i)

n − x?‖2

−
m∑
i=1

β(i)
n

2

9
(1− µ(i))2‖(T (i)v(i)

n − v(i)
n )‖2

≤ β(0)
n ‖f(xn)− x?‖2 + (1− β(0)

n )‖zn − x?‖2

−
m∑
i=1

β(i)
n

2

9
(1− µ(i))2‖(T (i)v(i)

n − v(i)
n )‖2

−
m∑
i=1

β(i)
n (1− λ(i) L(i))‖zn − u(i)

n ‖2 −
m∑
i=1

β(i)
n (1− λ(i) L(i))‖v(i)

n − u(i)
n ‖2

≤ β(0)
n ‖f(xn)− x?‖2 + (1− β(0)

n )‖xn − x?‖2

− (1− β(0)
n )

m∑
i=1

α(i)
n θ(i)((1− κ(i))

− θ(i)‖A‖2)‖Axn − S(i)Axn‖2 −
m∑
i=1

β(i)
n

2

9
(1− µ(i))2‖(T (i)v(i)

n − v(i)
n )‖2

−
m∑
i=1

β(i)
n (1− λ(i) L(i))‖zn − u(i)

n ‖2

−
m∑
i=1

β(i)
n (1− λ(i) L(i))‖v(i)

n − u(i)
n ‖2. (3.8)

Now by setting

ξn = (1− β(0)
n )

m∑
i=1

α(i)
n θ(i)((1− κ(i))− θ(i)‖A‖2)‖Axn − S(i)Axn‖2

+

m∑
i=1

β(i)
n

2

9
(1− µ(i))2‖(T (i)v(i)

n − v(i)
n )‖2 +

m∑
i=1

β(i)
n (1− λ(i) L(i))‖zn − u(i)

n ‖2

+

m∑
i=1

β(i)
n (1− λ(i) L(i))‖v(i)

n − u(i)
n ‖2. (3.9)

and

ζn = β(0)
n ‖f(xn)− x?‖2, sn = ‖xn − x?‖2, (3.10)
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the inequality (3.8) can be rewritten in the following form:

sn+1 ≤ sn − ξn + ζn. (3.11)

To use Lemma 2.2 (considering inequalities (3.7) and (3.11)), it suffices to verify that,
for all subsequences {nk} ⊂ {n}, lim

k→∞
ξnk

= 0 implies

lim sup
k→∞

δnk
≤ 0.

We assume that lim
k→∞

ξnk
= 0. By our assumption that

0 < θ(i) ≤ 1− κi
‖A‖2

and lim inf
n→∞

α(i)
n > 0,

we get that

lim
k→∞

‖Axnk
− S(i)Axnk

‖ = 0. (3.12)

By similar argument, we obtain

lim
k→∞

‖T (i)v(i)
nk
− v(i)

nk
‖ = lim

k→∞
‖v(i)

nk
− u(i)

nk
‖ = lim

k→∞
‖u(i)

nk
− xnk

‖ = 0. (3.13)

Thus

lim
k→∞

‖v(i)
nk
− xnk

‖ = 0.

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} which converges

weakly to x̂. Without loss of generality, we can assume that xnk
⇀ x̂. Since

lim
k→∞

‖v(i)
nk − xnk

‖ = 0, we have v
(i)
nk ⇀ x̂. From the demiclosedness of I − T (i)

we have x̂ ∈ Fix(T (i)). From (3.12) and the demiclosedness of I − S(i) we have
Ax̂ ∈ Fix(S(i)). Now we show that x̂ ∈ V I(C(i), F (i)), for each 1 ≤ i ≤ m. From

u
(i)
n = PC(i)(zn − λ(i)F (i)(zn)), by the variational characterization of the metric pro-

jection onto C(i), we have

〈x− u(i)
n , zn − λ(i)F (i)(zn)− u(i)

n 〉 ≤ 0, ∀x ∈ C(i). (3.14)

Since, F (i) is monotone, for each x ∈ C(i) we get

〈λ(i)F (i)(x), zn − x〉 ≤ 〈λ(i)F (i)(zn), zn − x〉. (3.15)

Utilizing the inequalities (3.14) and (3.15) we have

〈λ(i)F (i)(x), zn − x〉 ≤ 〈λ(i)F (i)(zn), zn − x〉

= 〈λ(i)F (i)(zn), zn − u(i)
n 〉+ 〈λ(i)F (i)(zn), u

(i)
n − x〉

= 〈λ(i)F (i)(zn), zn − u(i)
n 〉+ 〈zn − u(i)

n , u
(i)
n − x〉

+ 〈λ(i)F (i)(zn)− zn + u
(i)
n , u

(i)
n − x〉

≤λ(i)〈F (i)(zn), zn − u(i)
n 〉+ 〈zn − u(i)

n , u
(i)
n − x〉

≤λ(i)‖F (i)(zn)‖‖zn − u(i)
n ‖+ ‖zn − u(i)

n ‖‖u(i)
n − x‖.

(3.16)



134 MOHAMMAD ESLAMIAN, YEKINI SHEHU AND OLANIYI S. IYIOLA

Hence

〈F (i)x, zn − x〉 ≤ ‖F (i)(zn)‖‖zn − u(i)
n ‖+

1

λ(i)
‖zn − u(i)

n ‖‖u(i)
n − x‖.

Since {F (i)(zn)} is bounded, znl
− u(i)

nl → 0 and znl
⇀ x̂, we have

〈F (i)(x), x̂− x〉 = lim
l→∞
〈F (i)(x), znl

− x〉 ≤ 0, ∀x ∈ C(i).

This implies that x̂ ∈ V I(C(i), F (i)). Thus x̂ ∈ Ω. Now we show that

lim sup
k→∞

δnk
= lim sup

k→∞
〈f(x?)− x?, xnk

− x?〉 ≤ 0. (3.17)

To show this inequality, we choose a subsequence {xnkj
} of {xnk

} such that

lim
j→∞
〈f(x?)− x?, xnkj

− x?〉 = lim sup
k→∞

〈f(x?)− x?, xnk
− x?〉.

Since {xnkj
} converges weakly to x̂, it follows that

lim sup
k→∞

〈f(x?)− x?, xnk
− x?〉 = lim

j→∞
〈f(x?)− x?, xnkj

− x?〉

= 〈f(x?)− x?, x̂− x?〉 ≤ 0. (3.18)

Hence, all conditions of Lemma 2.2 are satisfied. Therefore, we immediately deduce
that

lim
n→∞

sn = lim
n→∞

‖xn − x?‖ = 0,

that is {xn} converges strongly to x? = PΩ(f(x?)), which completes the proof. �

Theorem 3.2. Let H and E be two Hilbert spaces and let A : H → E be a bounded
linear operator. Let for each i = 1, 2, ..,m, C(i) be a nonempty closed convex subset
of H and let F (i) : H → H be a monotone and L(i)- Lipschitz continuous operator on
C(i). Let {µ(i)}mi=1, {κ(i)}mi=1 ⊂ (−∞, 1). Let for i = 1, 2, ...,m, T (i) : H → H be a
finite family of µ(i)−strict pseudo-contractive mappings and S(i) : E → E be a finite
family of κ(i)−strict pseudo-contractive mappings. Suppose that

Ω =

{
x∗ ∈

m⋂
i=1

(V I(C(i), F (i)) ∩ Fix(T (i))) : Ax∗ ∈
m⋂
i=1

Fix(S(i))

}
6= ∅.
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Assume that f be a contraction of H into itself with constant k ∈ (0, 1). Let {xn} be
a sequence defined by:

x1 ∈ H is chosen arbitrarily,

zn = xn −
m∑
i=1

α(i)
n θ(i)A∗(Axn − S(i)Axn)

u
(i)
n = PC(i)(zn − λ(i)F (i)(zn)),

U
(i)
n = {x ∈ H : 〈zn − λ(i)F (i)(zn)− u(i)

n , x− u(i)
n 〉 ≤ 0},

v
(i)
n = P

U
(i)
n

(zn − λ(i)F (i)(u
(i)
n )),

w
(i)
n = v

(i)
n +

1− µ(i)

3
(T (i)v(i)

n − v(i)
n ), i ∈ {1, 2, ...,m},

xn+1 = β
(0)
n f(xn) +

m∑
i=1

β(i)
n w(i)

n , ∀n ≥ 0,

(3.19)

where {α(i)
n }, {β(i)

n }, {λ(i)} and {θ(i)} satisfy the following conditions:

(i) {α(i)
n }mi=1, {β

(i)
n }mi=0 ⊂ (0, 1) and

m∑
i=1

α(i)
n =

m∑
i=0

β(i)
n = 1,

(ii) lim inf
n

α
(i)
n > 0, lim inf

n
β

(i)
n > 0 for each i ∈ {1, 2, ...,m},

(iii) lim
n→∞

β
(0)
n = 0 and

∞∑
n=0

β(0)
n =∞,

(iv) λ(i) L(i) < 1 and 0 < θ(i) ≤ 1− κ(i)

‖A‖2
for each i ∈ {1, 2, ...,m}.

Then, the sequence {xn} converges strongly to a point x? ∈ Ω which solves the varia-
tional inequality;

〈x? − f(x?), x− x?〉 ≥ 0, ∀x ∈ Ω. (3.20)

Proof. We note that every α-strict pseudo-contractive mappings is α-demimetric (see
[7]). Also, from Lemma (2.7) we know that for each strict pseudo-contractive mapping
U, U is demiclosed (see [23]). Thus we obtain the desired result by Theorem 3.2. �

Theorem 3.3. Let H be a Hilbert space. Let for each i = 1, 2, ..,m, C(i) be a
nonempty closed convex subset of H and let F (i) : H → H be a monotone and L(i)-
Lipschitz continuous operator on C(i). Let {µ(i)}mi=1 ⊂ (−∞, 1) and {T (i)}mi=1 : H →
H be a finite family of µ(i)−demimetric mappings such that T (i) − I are demiclosed
at 0. Suppose that

Ω =

m⋂
i=1

(V I(C(i), F (i)) ∩ Fix(T (i))) 6= ∅.



136 MOHAMMAD ESLAMIAN, YEKINI SHEHU AND OLANIYI S. IYIOLA

Assume that f be a contraction of H into itself with constant k ∈ (0, 1). Let {xn} be
a sequence defined by:

x1 ∈ H is chosen arbitrarily,

u
(i)
n = PC(i)(xn − λ(i)F (i)(xn)),

U
(i)
n = {x ∈ H : 〈xn − λ(i)F (i)(xn)− u(i)

n , x− u(i)
n 〉 ≤ 0},

v
(i)
n = P

U
(i)
n

(xn − λ(i)F (i)(u
(i)
n )),

w
(i)
n = v

(i)
n +

1− µ(i)

3
(T (i)v(i)

n − v(i)
n ), i ∈ {1, 2, ...,m},

xn+1 = β
(0)
n f(xn) +

m∑
i=1

β(i)
n w(i)

n , ∀n ≥ 0,

(3.21)

where {α(i)
n }, {β(i)

n } and {λ(i)} satisfy the following conditions:

(i) {β(i)
n }mi=0 ⊂ (0, 1) and

m∑
i=0

β(i)
n = 1,

(ii) lim inf
n

β
(i)
n > 0 for each i ∈ {1, 2, ...,m},

(iii) lim
n→∞

β
(0)
n = 0 and

∞∑
n=0

β(0)
n =∞,

(iv) λ(i) L(i) < 1 for each i ∈ {1, 2, ...,m}.
Then, the sequence {xn} converges strongly to a point x? ∈ Ω which solves the varia-
tional inequality;

〈x? − f(x?), x− x?〉 ≥ 0, ∀x ∈ Ω. (3.22)

4. Numerical experiments

In this section, we provide some concrete example including numerical results of the
problem considered in Section 3 of this paper. All codes were written in MATLAB
R2016a and run on DELL i5 Dual-Core 8.00 GB (7.78 GB usable) RAM laptop.

Example 4.1. Let E = H = L2([α, β]) in (3.19) with m = 2. Let

β(i)
n =

n

2(n+ 1)
, i = 1, 2 β(0)

n =
1

n+ 1
, i = 1, 2.

We take

α(1)
n =

n

2(n+ 1)
and α(2)

n =
n+ 2

2(n+ 1)
.

Furthermore, let us take

C(1) := {x ∈ L2([α, β]) : 〈a, x〉 ≤ b},
where 0 6= a ∈ L2([α, β]) and b ∈ R, then (see, for example, [5])

PC(1)(x) =


b− 〈a, x〉
||a||2L2

a+ x, 〈a, x〉 > b

x, 〈a, x〉 ≤ b.
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Let

C(2) = {x ∈ L2([α, β]) : ||x− d||L2 ≤ r},

be a closed ball centered at d ∈ L2([α, β]) with radius r > 0, then

PC(2)(x) =

 d+ r
x− d
||x− d||

, x /∈ C(2)

x, x ∈ C(2).

Suppose that A : L2([0, 1])→ L2([0, 1]) is defined by

(Ax)(t) =

∫ t

0

x(s)ds, ∀x ∈ L2([0, 1]).

It can be easily shown that A is a bounded linear operator with ‖A‖ =
2

π
and the

adjoint A∗ of A is defined by

(A∗x)(t) =

∫ 1

t

x(s)ds, ∀x ∈ L2([0, 1]).

Now, suppose

C(1) :=

{
x ∈ L2([0, 1]) :

∫ 1

0

(t2 + 1)x(t)dt ≤ 1

}
and

C(2) =

{
x ∈ L2([0, 1]) :

∫ 1

0

|x(t)− sin t|2dt ≤ 16

}
.

Assume that S(i) := I, i = 1, 2, where I is the identity mapping, T (i) := PCi , i = 1, 2

and f(x) :=
x

2
, x ∈ L2([0, 1]). Then S(i), i = 1, 2 is demimetric with κ(i) = 0, i = 1, 2

and T (i), i = 1, 2 is demimetric with µ(i) = 0, i = 1, 2. Define

F (i)x(t) := max{0, x(t) : t ∈ [0, 1]}, i = 1, 2.

Then F (i) is monotone with L(i) = 1, i = 1, 2.
We perform the numerical computations using different choices of initial points and
λ(i). To terminate the algorithm, we use the stopping criteria

||xn+1 − xn||2
||xn||2

< ε

with a tolerance ε = 0.01.
Case 1. We choose x1 = 3(t2 − t)e2t + 2e3t with λ(i) = 0.001, λ(i) = 0.5, and
λ(i) = 0.99, i = 1, 2.
Case 2. We choose x1 = (t3 − t) cos(3t) + 2et with λ(i) = 0.001, λ(i) = 0.5, and
λ(i) = 0.99, i = 1, 2.
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Table 1. Numerical results obtained using our proposed algorithm
with different cases

Case 1 Case 2
λ(i), i = 1, 2 No. of Iter. CPU (Time) No. of Iter. CPU (Time)

0.001 17 3.2793× 10−3 8 1.7663× 10−3

0.1 72 1.0094× 10−2 62 5.2771× 10−3

0.5 26 5.2922× 10−3 25 2.4403× 10−3

0.99 24 3.5444× 10−3 23 2.3217× 10−3
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Figure 1. Proposed Algorithm with: left λ = 0.001 and right λ = 0.1
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Figure 2. Proposed Algorithm with: left λ = 0.5 and right λ = 0.99
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Remark 4.2.

(1) From the above Example 4.1, the numerical results show that our proposed
algorithm is efficient and easy to implement in both cases.

(2) We also observe that except for small λ (λ = 0.001), the choice of initial
point (with different values of λ) has no significant effect on the number of
iterations but less CPU time is required for Case 2 compared to Case 1.

(3) The choice of λ has great effect on the number of iterations and CPU time
with different cases. However, λ = 0.001 gives better results in terms of CPU
time and number of iterations required to reach the stopping criterion.
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