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1. Introduction

Let E be a real reflexive Banach space and C a nonempty, closed and convex subset
of E and E∗ be the dual space of E. Let Θ be a bifunction of C × C into R, where
R is the set of real numbers, Ψ : C → E∗ be a nonlinear mapping and ϕ : C → R be
a real valued function. The generalized mixed equilibrium problem is to find x ∈ C
such that

Θ(x, y) + 〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GMEP (Θ), that is

GMEP (Θ) = {x ∈ C : Θ(x, y) + 〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x), ∀y ∈ C}.
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Let Λ = {Θj , ϕj ,Ψj}j∈I be a finite family of bifunction from C×C into R, real-valued
function from C into R and monotone mapping from C to E∗, respectively.
The system of generalized mixed equilibrium problems is to determine common gen-
eralized mixed equilibrium points for Λ. i.e., the set

GMEP (Λ) = {x ∈ C : Θj(x, y) + 〈Ψjx, y − x〉+ ϕj(y) ≥ ϕj(x), ∀y ∈ C, ∀j ∈ I}.

We can write GMEP (Λ) = ∩j∈IGMEP (Θj).
In particular, if Ψ ≡ 0, the problem (1.1) is reduced to the mixed equilibrium

problem [12] for finding x ∈ C such that

Θ(x, y) + ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by MEP (Θ, ϕ).
If ϕ ≡ 0, the problem (1.1) is reduced to the generalized equilibrium problem [38]

for finding x ∈ C such that

Θ(x, y) + 〈Ψx, y − x〉 ≥ 0, ∀y ∈ C. (1.3)

The set of solution (1.3) is denoted by GEP (Θ,Ψ).
If Θ ≡ 0, the problem (1.1) is reduced to the mixed variational inequality of Browder

type [6] for finding inC such that

〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.4)

The set of solution of (1.4) is denoted by MV I(C,ϕ,Ψ).
If Ψ ≡ 0 and ϕ ≡ 0, the problem (1.1) is reduced to the equilibrium problem [4] for

finding x ∈ C such that

Θ(x, y) ≥ 0, ∀y ∈ C. (1.5)

The set of solutions of (1.5) is denoted by EP (Θ). This problem contains fixed point
problems, includes as special cases numerous problems in physics, optimization and
economics. Some methods have been proposed to solve the equilibrium problem, (see
[14, 15, 16, 18, 20, 34, 37, 39]).

The above formulation (1.5) was shown in [4] to cover monotone inclusion prob-
lems, saddle point problems, variational inequality problems, minimization problems,
optimization problems, variational inequality problems, vector equilibrium problems,
Nash equilibria in noncooperative games.

Equilibrium problems which were introduced by Blum and Oettli [4] and Noor and
Oettli [2] in 1994 have had a great impact and influence in the development of several
branches of pure and applied sciences. It has been shown that the equilibrium problem
theory provides a novel and unified treatment of a wide class of problems which arise in
economics, finance, image reconstruction, ecology, transportation, network, elasticity
and optimization.

In [36], Suantai, et al., used the following Halpern’s iterative scheme for Bregman
strongly nonexpansive self mapping T on E; for x1 ∈ E let {xn} be a sequence defined
by

xn+1 = ∇f∗(αn∇f(u) + (1− αn)∇f(Txn)), ∀n ≥ 1,

where {αn} satisfying limn→∞ αn = 0 and
∑∞
n=1 αn = ∞. They proved that the

above sequence converges strongly to a fixed point of T .
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The authors of [22] introduced the following algorithm:

x1 = x ∈ C chosen arbitrarily,

zn = ResfH(xn),

yn = ∇f∗(βn∇f(xn) + (1− βn)∇f(Tn(zn)))

xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(Tn(yn))), (1.6)

where H is an equilibrium bifunction and Tn is a Bregman strongly nonexpansive
mapping for any n ∈ N. They proved the sequence (1.6) converges strongly to the
point projF (T )∩EP (H)x.

The author of [17] presented the following iterative scheme:

x1 = x ∈ C chosen arbitrarily,

yn = ResfΘM ,ϕM ,ΨM
◦ . . . ◦ResfΘ2,ϕ2,Ψ2

◦ResfΘ1,ϕ1,Ψ1
(xn),

xn+1 = projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn))). (1.7)

It was proved that the sequence {xn} defined in (1.7) converges strongly to the point

proj(∩N
i=1F (Ti))∩(∩M

j=1GMEP (Θj))x.

In this paper, motivated by the above algorithms, we present the following iterative
scheme:

x1 = x ∈ C chosen arbitrarily,

zn = ResfΘM ,ϕM ,ΨM
◦ . . . ◦ResfΘ2,ϕ2,Ψ2

◦ResfΘ1,ϕ1,Ψ1
(xn),

yn = projfC∇f
∗(βn∇f(xn) + (1− βn)∇f(T (zn)))

xn+1 = projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn))), (1.8)

where T = TN ◦ TN−1 ◦ . . . ◦ T1 such that each Ti is Bregman strongly nonexpansive
mapping for i = 1, 2, . . . , N, ϕj : C → R are real-valued functions, Ψj : C → E∗

are continuous monotone mappings, Θj : C ×C → R are equilibrium bifunctions, for
j ∈ {1, 2, . . .M}. We will prove that the sequence {xn} defined in (1.8) converges
strongly to the point

proj(∩N
i=1F (Ti))∩(∩M

j=1GMEP (Θj))x.

Also, we give some examples and numerical results to support our theorem.

2. Preliminaries

Let f : E → (−∞,+∞] be a proper, lower semi-continuous and convex function.
We denote by domf , the domain of f , that is the set {x ∈ E : f(x) < +∞}. Let
x ∈ int(domf), the subdifferential of f at x is the convex set defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗, y − x〉 ≤ f(y),∀y ∈ E},

where the Fenchel conjugate of f is the function f∗ : E∗ → (−∞,+∞] defined by

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ E}.
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For any x ∈ int(domf), the right-hand derivative of f at x in the derivation y ∈ E is
defined by

f
′
(x, y) := lim

t↘0

f(x+ ty)− f(x)

t
.

The function f is called Gâteaux differentiable at x if limt↘0
f(x+ty)−f(x)

t exists for

all y ∈ E. In this case, f
′
(x, y) coincides with ∇f(x), the value of the gradient (∇f)

of f at x. The function f is called Gâteaux differentiable if it is Gâteaux differentiable
for any x ∈ int(domf) and f is called Fréchet differentiable at x if this limit is attain
uniformly for all y which satisfies ‖y‖ = 1. The function f is uniformly Fréchet
differentiable on a subset C of E if the limit is attained uniformly for any x ∈ C and
‖y‖ = 1. It is known that if f is Gâteaux differentiable (resp. Fréchet differentiable)
on int(domf), then f is continuous and its Gâteaux derivative ∇f is norm-to-weak∗

continuous (resp. continuous) on int(domf) (see [5]).
Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The function

Df : domf × int(domf)→ [0,+∞)

defined as follows:

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉 (2.1)

is called the Bregman distance with respect to f , [13].
The Legendre function f : E → (−∞,+∞] is defined in [3]. It is well known

that in reflexive spaces, f is Legendre function if and only if it satisfies the following
conditions:

(L1) The interior of the domain of f , int(domf), is nonempty, f is Gâteaux differ-
entiable on int(domf) and domf = int(domf);

(L2) The interior of the domain of f∗, int(domf∗), is nonempty, f∗ is Gâteaux
differentiable on int(domf∗) and domf∗ = int(domf∗).
Since E is reflexive, we know that (∂f)−1 = ∂f∗ (see [5]). This , with (L1) and (L2),
imply the following equalities:

∇f = (∇f∗)−1, ran∇f = dom∇f∗ = int(domf∗)

and

ran∇f∗ = dom(∇f) = int(domf),

where ran∇f denotes the range of ∇f .
When the subdifferential of f is single-valued, it coincides with the gradient ∂f = ∇f ,
[26]. By Bauschke et al., [3] the conditions (L1) and (L2) also yields that the function
f and f∗ are strictly convex on the interior of their respective domains.
If E is a smooth and strictly convex Banach space, then an important and interesting
Legendre function is f(x) := 1

p‖x‖
p(1 < p < ∞). In this case the gradient ∇f of f

coincides with the generalized duality mapping of E, i.e., ∇f = Jp(1 < p < ∞). In
particular, ∇f = I, the identity mapping in Hilbert spaces. From now on we assume
that the convex function f : E → (−∞,∞] is Legendre. In connection with Legendre
functions, see also the recent paper [27].
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Definition 2.1. Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable
function. The Bregman projection of x ∈ int(domf) onto the nonempty, closed and

convex subset C ⊂ domf is the necessary unique vector projfC(x) ∈ C satisfying

Df (projfC(x), x) = inf{Df (y, x) : y ∈ C}.

Remark 2.2. If E is a smooth and strictly convex Banach space and f(x) = ‖x‖2 for
all x ∈ E, then we have that ∇f(x) = 2Jx for all x ∈ E, where J is the normalized
duality mapping from E in to 2E

∗
, and hence Df (x, y) reduced to

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2,
for all x, y ∈ E, which is the Lyapunov function introduced by Alber [1] and Bregman

projection P fC(x) reduces to the generalized projection ΠC(x) which is defined by

φ(ΠC(x), x) = min
y∈C

φ(y, x).

If E = H, a Hilbert space, J is the identity mapping and hence Bregman projection

P fC(x) reduced to the metric projection of H onto C, PC(x).

Definition 2.3. [10, 8] Let f : E → (−∞,+∞] be a convex and Gâteaux differen-
tiable function. f is called:

(1) totally convex at x ∈ int(domf) if its modulus of total convexity at x, that
is, the function νf : int(domf)× [0,+∞)→ [0,+∞) defined by

νf (x, t) := inf{Df (y, x) : y ∈ domf, ‖y − x‖ = t},
is positive whenever t > 0;

(2) totally convex if it is totally convex at every point x ∈ int(domf);
(3) totally convex on bounded sets if νf (B, t) is positive for any nonempty

bounded subset B of E and t > 0, where the modulus of total convexity of the
function f on the set B is the function νf : int(domf) × [0,+∞) → [0,+∞)
defined by

νf (B, t) := inf{νf (x, t) : x ∈ B ∩ domf}.

The set levf≤(r) = {x ∈ E : f(x) ≤ r} for some r ∈ R is called a sublevel of f .

Definition 2.4. [8, 32] The function f : E → (−∞,+∞] is called;

(1) cofinite if domf∗ = E∗;
(2) coercive [19] if the sublevel set of f is bounded; equivalently,

lim
‖x‖→+∞

f(x) = +∞;

(3) strongly coercive if lim‖x‖→+∞
f(x)
‖x‖ = +∞;

(4) sequentially consistent if for any two sequences {xn} and {yn} in E such that
{xn} is bounded,

lim
n→∞

Df (yn, xn) = 0⇒ lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.5. [11] The function f is totally convex on bounded subsets if and only if
it is sequentially consistent.
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Lemma 2.6. [32, Proposition 2.3] If f : E → (−∞,+∞] is Fréchet differentiable
and totally convex, then f is cofinite.

Lemma 2.7. [11] Let f : E → (−∞,+∞] be a convex function whose domain con-
tains at least two points.Then the following statements hold:

(1) f is sequentially consistent if and only if it is totally convex on bounded sets;
(2) If f is lower semicontinuous, then f is sequentially consistent if and only if

it is uniformly convex on bounded sets;
(3) If f is uniformly strictly convex on bounded sets, then it is sequentially con-

sistent and the converse implication holds when f is lower semicontinuous,
Fréchet differentiable on its domain and Fréchet derivative ∇f is uniformly
continuous on bounded sets.

Lemma 2.8. [30, Proposition 2.1] Let f : E → R be uniformly Fréchet differentiable
and bounded on bounded subsets of E. Then ∇f is uniformly continuous on bounded
subsets of E from the strong topology of E to the strong topology of E∗.

Lemma 2.9. [32, Lemma 3.1] Let f : E → R be a Gâteaux differentiable and totally
convex function. If x0 ∈ E and the sequence {Df (xn, x0)} is bounded, then the
sequence {xn} is also bounded.

Let T : C → C be a nonlinear mapping. The fixed point set of T is denoted by
F (T ), that is F (T ) = {x ∈ C : Tx = x}. A mapping T is said to be nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. T is said to be quasi-nonexpansive if
F (T ) 6= ∅ and ‖Tx − p‖ ≤ ‖x − p‖, for all x ∈ C and p ∈ F (T ). A point p ∈ C is
called an asymptotic fixed point of T (see [29]) if C contains a sequence {xn} which

converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. We denote by F̂ (T ) the
set of asymptotic fixed points of T .

A mapping T : C → int(domf) with F (T ) 6= ∅ is called:

(1) quasi-Bregman nonexpansive [32] with respect to f if

Df (p, Tx) ≤ Df (p, x),∀x ∈ C, p ∈ F (T ).

(2) Bregman relatively nonexpansive [9, 32] with respect to f if,

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T ), and F̂ (T ) = F (T ).

(3) Bregman strongly nonexpansive (see [7, 32]) with respect to f and F̂ (T ) if,

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F̂ (T )

and, if whenever {xn} ⊂ C is bounded, p ∈ F̂ (T ), and

lim
z→∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that
lim
n→∞

Df (xn, Txn) = 0.

(4) Bregman firmly nonexpansive (for short BFNE [31]) with respect to f if, for
all x, y ∈ C,

〈∇f(Tx)−∇f(Ty), Tx− Ty〉 ≤ 〈∇f(x)−∇f(y), Tx− Ty〉
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equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x). (2.2)

The existence and approximation of Bregman firmly nonexpansive mappings was
studied in [29]. It is also known that if T is Bregman firmly nonexpansive and f
is Legendre function which is bounded, uniformly Fréchet differentiable and totally

convex on bounded subset of E, then F (T ) = F̂ (T ) and F (T ) is closed and convex.
It also follows that every Bregman firmly nonexpansive mapping is Bregman strongly

nonexpansive with respect to F (T ) = F̂ (T ).

Lemma 2.10. [11] Let C be a nonempty, closed and convex subset of E. Let f : E →
R be a Gâteaux differentiable and totally convex function. Let x ∈ E, then

1) z = projfC(x) if and only if

〈∇f(x)−∇f(z), y − z〉 ≤ 0, ∀y ∈ C.

2) Df (y, projfC(x)) +Df (projfC(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ C.

Let f : E → R be a convex, Legendre and Gâteaux differentiable function. Following
[1] and [13], we make use of the function Vf : E × E∗ → [0,∞) associated with f ,
which is defined by

Vf (x, x∗) = f(x)− 〈x∗, x〉+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

Then Vf is nonexpansive and Vf (x, x∗) = Df (x,∇f∗(x∗)) for all x ∈ E and x∗ ∈ E∗.
Moreover, by the subdifferential inequality,

Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗) (2.3)

for all x ∈ E and x∗, y∗ ∈ E∗ [21]. In addition, if f : E → (−∞,+∞] is a proper
lower semicontinuous function, then f∗ : E∗ → (−∞,+∞] is a proper weak∗ lower
semicontinuous and convex function (see [23]). Hence, Vf is convex in the second
variable. Thus, for all z ∈ E,

Df

(
z,∇f∗

(
N∑
i=1

ti∇f(xi)

))
≤

N∑
i=1

tiDf (z, xi),

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N
i=1 ti = 1.

Lemma 2.11. [23] Let f : E → (−∞,+∞] be a bounded, uniformly Fréchet dif-
ferentiable and totally convex function on bounded subsets of E. Assume that ∇f∗
is bounded on bounded subsets of domf∗ = E∗ and let C be a nonempty subset of
int(domf). If {Ti : i = 1, 2, . . . , N} be N Bregman strongly nonexpansive mappings

from C into itself satisfying ∩Ni=1F̂ (Ti) 6= ∅. Let T = TN ◦ TN−1 ◦ . . . ◦ T1, then T is

Bregman strongly nonexpansive mapping and F̂ (T ) = ∩Ni=1F̂ (Ti).

Lemma 2.12. [33] Let C be a nonempty, closed and convex subset of int(domf) and
T : C → C be a quasi-Bregman nonexpansive mappings with respect to f . Then F (T )
is closed and convex.
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For solving the generalized mixed equilibrium problem, let us assume that the
bifunction Θ : C × C → R satisfies the following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C;
(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for any x, y ∈ C;
(A3) for each y ∈ C, x 7→ Θ(x, y) is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t↘0

Θ(tz + (1− t)x, y) ≤ Θ(x, y);

(A4) for each x ∈ C, y 7→ Θ(x, y) is convex and lower semicontinuous (see [25]).

Definition 2.13. Let C be a nonempty, closed and convex subsets of a real reflexive
Banach space and let ϕ be a lower semicontinuous and convex functional from C
to R and Ψ : C → E∗ be a continuous monotone mapping. Let Θ : C × C → R
be a bifunctional satisfying (A1)-(A4). The mixed resolvent of Θ is the operator

ResfΘ,ϕ,Ψ : E → 2C

ResfΘ,ϕ,Ψ(x) = {z ∈ C : Θ(z, y) + ϕ(y) + 〈Ψx, y − z〉+ 〈∇f(z)−∇f(x), y − z〉
≥ ϕ(z), ∀y ∈ C}. (2.4)

Lemma 2.14. [17] Let f : E → (−∞,+∞] be a coercive and Gâteaux differentiable
function. Let C be a closed and convex subset of E. Assume that ϕ : C → R be a
lower semicontinuous and convex functional, Ψ : C → E∗ be a continuous monotone
mapping and the bifunctional Θ : C × C → R satisfies conditions (A1)-(A4), then

dom(ResfΘ,ϕ,Ψ) = E.

Lemma 2.15. [17] Let f : E → (−∞,+∞] be a Legendre function. Let C be a
closed and convex subset of E. If the bifunction Θ : C × C → R satisfies conditions
(A1)-(A4), then

(1) ResfΘ,ϕ,Ψ is single-valued;

(2) ResfΘ,ϕ,Ψ is a BFNE operator;

(3) F
(
ResfΘ,ϕ,Ψ

)
= GMEP (Θ);

(4) GMEP (Θ) is closed and convex;

(5) Df

(
p,ResfΘ,ϕ,Ψ(x)

)
+Df

(
ResfΘ,ϕ,Ψ(x), x

)
≤ Df (p, x),

∀p ∈ F
(
ResfΘ,ϕ,Ψ

)
, x ∈ E.

Lemma 2.16. [28, 40] Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− αn)an + βn, ∀n ≥ 1,

where {αn} is a sequence in (0, 1) and {βn} is a sequence such that

(1)
∑∞
n=1 αn = +∞;

(2) lim supn→∞
βn

αn
≤ 0 or

∑∞
n=1 |βn| < +∞.

Then limn→∞ an = 0.
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3. Main result

Theorem 3.1. Let E be a real reflexive Banach space, C be a nonempty, closed and
convex subset of int(domf). Let f : E → R be a coercive Legendre function which
is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets
of E. Let Ti : C → C, for i = 1, 2, . . . , N, be a finite family of Bregman strongly

nonexpansive mappings with respect to f such that F (Ti) = F̂ (Ti) and each Ti is
uniformly continuous. Let Θj : C×C → R satisfying conditions (A1)-(A4), ϕj : C →
R are real-valued convex functions, Ψj : C → E∗ are continuous monotone mappings
for j ∈ {1, 2, . . . ,M}. Assume that

(
∩Ni=1F (Ti)

)
∩
(
∩Mj=1GMEP (Θj)

)
is nonempty

and bounded. Let {xn} be a sequence generated by

x1 = x ∈ C chosen arbitrarily,

zn = ResfΘM ,ϕM ,ΨM
◦ . . . ◦ResfΘ2,ϕ2,Ψ2

◦ResfΘ1,ϕ1,Ψ1
(xn),

yn = projfC∇f
∗(βn∇f(xn) + (1− βn)∇f(T (zn)))

xn+1 = projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn))), (3.1)

where T = TN ◦ TN−1 ◦ . . . ◦ T1, {αn}, {βn} ⊂ (0, 1) satisfying

lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞.

Then {xn} converges strongly to projf
(∩N

i=1F (Ti))∩(∩M
j=1GMEP (Θj))

x.

Proof. We note from Lemma 2.12 that F (Ti), for each i ∈ {1, 2, . . . , N} is closed and
convex and hence ∩Ni=1F (Ti) is closed and convex.
Let p = proj(∩N

i=1F (Ti))∩(∩M
j=1GMEP (Θj))x ∈

(
∩Ni=1F (Ti)

)
∩
(
∩Mj=1GMEP (Θj)

)
. Then

p ∈ (∩Ni=1F (Ti)) and p ∈ ∩Mj=1GMEP (Θj). Now, by using (3.1) and Lemma 2.15, we
have

Df (p, zn) = Df (p,ResfΘM ,ϕM ,ΨM
◦ . . . ◦ResfΘ2,ϕ2,Ψ2

◦ResfΘ1,ϕ1,Ψ1
(xn))

≤ Df (p,ResfΘM−1,ϕM−1,ΨM−1
◦ . . . ◦ResfΘ2,ϕ2,Ψ2

◦ResfΘ1,ϕ1,Ψ1
(xn))

...

≤ Df (p,ResfΘ1,ϕ1,Ψ1
(xn))

≤ Df (p, xn).

Also,

Df (p, yn) = Df (p, projfC∇f
∗(βn∇f(xn) + (1− βn)∇f(T (zn))))

≤ Df (p,∇f∗(βn∇f(xn) + (1− βn)∇f(T (zn))))

≤ βnDf (p, xn) + (1− βn)Df (p, T (zn))

≤ βnDf (p, xn) + (1− βn)Df (p, zn)

≤ βnDf (p, xn) + (1− βn)Df (p, xn)

≤ Df (p, xn).
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So,

Df (p, xn+1) = Df (p, projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn))))

≤ Df (p,∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn))))

≤ αnDf (p, xn) + (1− αn)Df (p, T (yn))

≤ αnDf (p, xn) + (1− αn)Df (p, yn)

≤ αnDf (p, xn) + (1− αn)Df (p, xn)

≤ Df (p, xn).

Hence {Df (p, xn)} and Df (p, Tyn) are bounded. Moreover, by Lemma 2.9 we get
that the sequences {xn} and {T (yn)} are bounded.
From the fact that αn → 0 as n→∞, Lemma 2.10 we get that

Df (T (yn), xn+1) ≤ Df (T (yn), projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn)))

≤ Df (T (yn),∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn)))

≤ αnDf (T (yn), xn) + (1− αn)Df (T (yn), T (yn))

= αnDf (T (yn), xn).

Therefore, by Lemma 2.5, we have

‖xn+1 − T (yn)‖ → 0, as n→∞. (3.2)

From Lemma 2.10 and (3.1), we have

lim
n→∞

Df (xn, zn) = lim
n→∞

Df (xn, Res
f
ΘM ,ϕM ,ΨM

◦ . . . ◦ResfΘ1,ϕ1,Ψ1
(xn))

≤ lim
n→∞

Df (xn, Res
f
ΘM−1,ϕM−1,ΨM−1

◦ . . . ◦ResfΘ1,ϕ1,Ψ1
(xn))

...

≤ lim
n→∞

Df (xn, Res
f
Θ1,ϕ1,Ψ1

(xn))

≤ lim
n→∞

[Df (p,ResfΘ1,ϕ1,Ψ1
xn)−Df (p, xn)]

≤ lim
n→∞

[Df (p, xn)−Df (p, xn)]

= 0.

By Lemma 2.5, we obtain

lim
n→∞

‖xn − zn‖ = 0. (3.3)

Since f is uniformly Fréchet differentiable on bounded subsets of E, by Lemma 2.8,
∇f is norm-to-norm uniformly continuous on bounded subsets of E. So,

lim
n→∞

‖∇f(xn)−∇f(zn)‖∗ = 0. (3.4)

Since f is uniformly Fréchet differentiable, it is also uniformly continuous, we get

lim
n→∞

‖f(xn)− f(zn)‖ = 0. (3.5)
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By Bregman distance we have

Df (p, xn)−Df (p, zn)

= f(p)− f(xn)− 〈∇f(xn), p− xn〉 − f(p) + f(zn) + 〈∇f(zn), p− zn〉
= f(zn)− f(xn) + 〈∇f(zn), p− zn〉 − 〈∇f(xn), p− xn〉
= f(zn)− f(xn) + 〈∇f(zn), xn − zn〉 − 〈∇f(zn)−∇f(xn), p− xn〉,

for each p ∈ ∩Ni=1F (Ti). By (3.3)-(3.5), we obtain

lim
n→∞

(Df (p, xn)−Df (p, zn)) = 0. (3.6)

By the above equation, we have

Df (zn, yn) = Df (p, yn)−Df (p, zn)

= Df (p, projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (zn))−Df (p, zn))

≤ Df (p,∇f∗(αn∇f(xn) + (1− αn)∇f(T (zn))−Df (p, zn))

≤ αnDf (p, xn) + (1− αn)Df (p, T (zn)−Df (p, zn)

≤ αnDf (p, xn) + (1− αn)Df (p, zn)−Df (p, zn)

= αn(Df (p, xn)−Df (p, zn))

= 0.

By (3.6), we have

lim
n→∞

‖zn − yn‖ = 0. (3.7)

Note that

‖xn − yn‖ ≤ ‖xn − zn‖+ ‖zn − yn‖.
By applying (3.3) and (3.7), we can write

lim
n→∞

‖xn − yn‖ = 0. (3.8)

Now, we claim that

lim
n→∞

‖xn − Txn‖ = 0. (3.9)

Since f is uniformly Fréchet differentiable on bounded subsets of E, by Lemma 2.8,
∇f is norm-to-norm uniformly continuous on bounded subsets of E. So,

lim
n→∞

‖∇f(xn)−∇f(yn)‖∗ = 0. (3.10)

Since f is uniformly Fréchet differentiable, it is also uniformly continuous, we get

lim
n→∞

‖f(xn)− f(yn)‖ = 0. (3.11)

Then, we have

Df (p, xn)−Df (p, yn)

= f(p)− f(xn)− 〈∇f(xn), p− xn〉 − f(p) + f(yn) + 〈∇f(yn), p− yn〉
= f(yn)− f(xn) + 〈∇f(yn), p− yn〉 − 〈∇f(xn), p− xn〉
= f(yn)− f(xn) + 〈∇f(yn), xn − yn〉+ 〈∇f(yn)−∇f(xn), p− xn〉,
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for each p ∈ (∩Ni=1F (Ti)). By (3.8)-(3.11), we obtain

lim
n→∞

(Df (p, xn)−Df (p, yn)) = 0. (3.12)

By the above equation, we have

Df (yn, xn+1) = Df (p, xn+1)−Df (p, yn)

= Df (p, projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (xn))−Df (p, yn))

≤ Df (p,∇f∗(αn∇f(xn) + (1− αn)∇f(T (xn))−Df (p, yn))

≤ αnDf (p, xn) + (1− αn)Df (p, T (yn)−Df (p, yn)

≤ αnDf (p, xn) + (1− αn)Df (p, yn)−Df (p, yn)

= αn(Df (p, xn)−Df (p, yn))

= 0.

By Lemma 2.5, we have

lim
n→∞

‖yn − xn+1‖ = 0.

From the above equation and (3.2), we can write

‖yn − T (yn)‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − T (yn)‖
= 0 (3.13)

when n→∞. By applying the triangle inequality, we get

‖xn − T (xn)‖ ≤ ‖xn − yn‖+ ‖yn − T (yn)‖+ ‖T (yn)− T (xn)‖.

By (3.8), (3.13) and since each Ti for i ∈ {1, 2, . . . N} is uniformly continuous, we
have

lim
n→∞

‖xn − T (xn)‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ q.
From (3.9) we have ‖xnk

− T (xnk
)‖ → 0 as k →∞ and hence q ∈ (∩Ni=1F (Ti)).

From (3.3) we can write

lim
n→∞

‖Jzn − Jxn‖ = 0.

Here, we prove that q ∈ ∩Mj=1GMEP (Θj). For this reason, consider that

zn = ResfΘM ,ϕM ,ΨM
◦ . . . ◦ResfΘ2,ϕ2,Ψ2

◦ResfΘ1,ϕ1,Ψ1
(xn),

so we have

Θj(zn, z) + 〈Ψjxn, z − zn〉+ ϕj(z) + 〈Jzn − Jxn, z − zn〉 ≥ ϕj(zn),

for all j ∈ {1, 2, . . . ,M} and z ∈ C.
From (A2), we have

Θj(z, zn) ≤ −Θj(zn, z) ≤ 〈Ψjxn, z − zn〉+ ϕj(z)− ϕj(zn) + 〈Jzn − Jxn, z − zn〉,

for all j ∈ {1, 2, . . . ,M} and z ∈ C.
Hence,

Θj(z, zni) ≤ 〈Ψjxni , z − zni〉+ ϕj(z)− ϕj(zni) + 〈Jzni − Jxni , z − zni〉,
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for all j ∈ {1, 2, . . . ,M} and z ∈ C.
Since zni ⇀ q, from continuity of Ψ and weak lower semicontinuity of ϕ and Θ(x, y)
in the second variable y, we also have

Θj(z, q) + 〈Ψjq, q − z〉+ ϕj(q)− ϕj(z) ≤ 0,

for all j ∈ {1, 2, . . . ,M} and z ∈ C.
For t with 0 ≤ t ≤ 1 and z ∈ C, let zt = tz+ (1− t)q. Since z ∈ C and q ∈ C we have
zt ∈ C and hence Θj(zt, q) + 〈Ψjq, q − zt〉+ ϕj(q)− ϕj(zt) ≤ 0. So, we have

0 = Θj(zt, zt) + 〈Ψjq, zt − zt〉+ ϕj(zt)− ϕj(zt)
≤ tΘj(zt, z) + (1− t)Θj(zt, q) + t〈Ψjq, z − zt〉+ (1− t)〈Ψjq, q − zt〉

+tϕj(z) + (1− t)ϕj(q)− ϕj(zt)
≤ t[Θj(zt, z) + 〈Ψjq, z − zt〉+ ϕj(z)− ϕj(zt)].

Therefore, Θj(zt, z) + 〈Ψjq, z − zt〉+ ϕj(z)− ϕj(zt) ≥ 0. Then, we have

Θj(q, z) + 〈Ψjq, z − q〉+ ϕj(z)− ϕj(q) ≥ 0,

for all j ∈ {1, 2, . . . ,M} and z ∈ C.
Hence we have q ∈ ∩Mj=1GMEP (Θj). We showed that

q ∈ (∩Ni=1F (Ti)) ∩
(
∩Mj=1GMEP (Θj)

)
.

Since E is reflexive and {xn} is bounded, there exists a subsequence {xnk
} of {xn}

such that {xnk
}⇀ q ∈ C and

lim sup
n→∞

〈∇f(xn)−∇f(p), xn − p〉 = 〈∇f(xn)−∇f(p), q − p〉.

On the other hand, since ‖xnk
− Txnk

‖ → 0 as k →∞, we have q ∈ (∩Ni=1F (Ti)). It
follows from the definition of the Bregman projection that

lim sup
n→∞

〈∇f(xn)−∇f(p), xn − p〉 = 〈∇f(xn)−∇f(p), q − p〉 ≤ 0. (3.14)

From (2.3), we obtain

Df (p, xn+1) = Df (p, projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn))))

≤ Df (p,∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn))))

= Vf (p, αn∇f(xn) + (1− αn)∇f(T (yn)))

≤ Vf (p, αn∇f(xn) + (1− αn)∇f(T (yn))− αn(∇f(xn)−∇f(p)))

+〈αn(∇f(xn)−∇f(p)), xn+1 − p〉
= Vf (p, αn∇f(p) + (1− αn)∇f(T (yn)

+αn〈∇f(xn)−∇f(p), xn+1 − p〉
≤ αnVf (p,∇f(p)) + (1− αn)Vf (p,∇f(T (yn)))

+αn〈∇f(xn)−∇f(p), xn+1 − p〉
= (1− αn)Df (p, T (yn)) + αn〈∇f(xn)−∇f(p), xn+1 − p〉
≤ (1− αn)Df (p, xn) + αn〈∇f(xn)−∇f(p), xn+1 − p〉.
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By Lemma 2.16 and (3.14), we can conclude that

lim
n→∞

Df (p, xn) = 0.

Therefore, by Lemma 2.5, xn → p. This completes the proof. �

4. Examples and numerical results

Example 4.1. Consider the following problem: Find an element

x∗ ∈ S = (∩Ni=1F (Ti)) ∩ (∩Mj=1GMEP (Θj)),

where

Ti(x) =
1

i
sin ix for all i = 1, 2, ..., 100,

Θj(x, y) = j(y2 − x2),

ϕj(x) = x2

and
Ψj(x) = jx for all j = 1, 2, ..., 50 and for all x, y ∈ R.

We can see that Θj satisfies the conditions (A1)-(A4), ϕj is a continuous convex
function, Ψj is a continuous monotone mapping for all j = 1, 2, ..., 50 and Ti is a
Bregman strongly nonexpansive mapping with

F (Ti) = F̂ (Ti) = {0}.
It is easy to see that S = {0}.
Now, with f(x) =

1

2
x2, from the definition of ResfΘj ,ϕj ,Ψj

, for each x ∈ R, we have

ResfΘj ,ϕj ,Ψj
(x) = {z ∈ R : j(y2− z2) + y2 + jx(y− z) + (z−x)(y− z) ≥ z2, ∀y ∈ R}.

Hence, we obtain that

ResfΘj ,ϕj ,Ψj
(x) =

j − 1

2j + 3
x,

for all j = 1, 2, ..., 50.
Now, apply iterative method (3.1) with x1 = 5, βn = 1/2 and αn = 1/n for all n ≥ 1,
we obtain the following table of numerical results:

TOL ‖xn − x∗‖ n xn ‖xn − x∗‖ n xn

βn = 1/2 and αn = 1/n βn = 1/2 and αn = 1/n0.5

10−6 9.70× 10−7 20 9.70× 10−7 6.83× 10−7 28 6.83× 10−7

10−7 7.22× 10−8 24 7.22× 10−8 8.31× 10−8 32 8.31× 10−8

10−8 5.23× 10−9 28 5.23× 10−9 9.74× 10−9 36 9.74× 10−9

10−9 7.22× 10−10 31 7.22× 10−10 6.40× 10−10 41 6.40× 10−10

10−10 9.87× 10−11 34 9.87× 10−11 7.03× 10−11 45 7.03× 10−11

Table 1. Table of numerical results

The strong convergence of the iterative method (3.1) for the Example 4.1 is also
described in Fig. 1.
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Figure 1

Example 4.2. Consider the following problem: Find an element

x∗ ∈ S = (∩Ni=1Ci) ∩ (∩Mj=1GMEP (Θj)),

where Θj(x, y) = j(‖y‖2−‖x‖2), ϕj(x) = ‖x‖2 and Ψj(x) = jx for all j = 1, 2, . . . , 50
and for all x, y ∈ R and

Ci =

{
x = (x1, x2, x3) ∈ R3 :

(
x1 −

1

i

)2

+ x2
2 +

(
x3 +

1

i

)2

≤ 4

}
,

for all i = 1, 2, ..., 100.
We can see that Θj satisfies the conditions (A1)-(A4), ϕj is a continuous convex

function, Ψj is a continuous monotone mapping for all j = 1, 2, . . . , 50. Let Ti = PCi
,

then we have Ti is a Bregman strongly nonexpansive mapping with F (Ti) = F̂ (Ti) =
Ci, for all j = 1, 2, ..., 100.

It is easy to see that S = {(0, 0, 0)}.
Now, with f(x) =

1

2
‖x‖2, from the definition of ResfΘj ,ϕj ,Ψj

, for each x ∈ R3, we

have

ResfΘj ,ϕj ,Ψj
(x) = {z ∈ R3 : j(‖y‖2 − ‖z‖2) + ‖y‖2 + j〈x, y − z〉

+ 〈z − x, y − z〉 ≥ ‖z‖2, ∀y ∈ R3}.

Hence, we obtain that

ResfΘj ,ϕj ,Ψj
(x) =

j − 1

2j + 3
x,
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for all x ∈ R3 and for all j = 1, 2, ..., 50. Now, apply iterative method (3.1) with
x1 = (1, 2, 3), βn = 1/2 and αn = 1/n1/2 for all n ≥ 1, we obtain the following table
of numerical results:

TOL ‖xn − x∗‖ n xn

βn = 1/2 and αn = 1/n
10−6 7.08× 10−7 27 (2.08× 10−7, 4.17× 10−7, 6.25× 10−7)
10−7 5.57× 10−8 31 (1.49× 10−8, 2.98× 10−8, 4.47× 10−8)
10−8 7.62× 10−9 34 (2.03× 10−9, 4.07× 10−9, 6.11× 10−9)
10−9 5.30× 10−10 38 (1.41× 10−10, 2.83× 10−10, 4.25× 10−10)
10−10 7.14× 10−11 41 (1.90× 10−11, 3.81× 10−11, 5.72× 10−11)
βn = 1/2 and αn = 1/n0.5

10−6 7.92× 10−7 35 (2.11× 10−7, 4.23× 10−7, 6.35× 10−7)
10−7 9.07× 10−8 39 (2.42× 10−8, 4.85× 10−8, 7.27× 10−8)
10−8 5.81× 10−9 44 (1.55× 10−9, 3.10× 10−9, 4.66× 10−9)
10−9 6.28× 10−10 48 (1.67× 10−10, 3.35× 10−10, 5.03× 10−10)
10−10 6.64× 10−11 52 (1.77× 10−11, 3.55× 10−11, 5.33× 10−11)

Table 2. Table of numerical results

The strong convergence of the iterative method (3.1) for the Example 4.2 is also
described in Fig. 2.

Figure 2
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