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1. Introduction

In recent years there has been growing interest in the study of the split common
fixed-point problem (SCFP) because of its various applications in signal processing
and image reconstruction [7, 14, 21]. More specifically, the SCFP consists in finding
x̄ ∈ H1 satisfying

x̄ ∈ F (U), s.t. Ax̄ ∈ F (T ), (1.1)

where F (U) and F (T ) stand for the fixed point sets of mappings U : H1 → H1 and
T : H2 → H2, respectively, and A : H1 → H2 is a bounded linear mapping. Here H1

and H2 are two Hilbert spaces. Let C and Q be two nonempty closed convex subsets
of H1 and H2, respectively. It is trivial to see that C = F (PC) and Q = F (PQ),
where PC and PQ denote the metric projections onto C and Q, respectively. Thus, if
we let U = PC and T = PQ in (1.1), then it is reduced to

x̄ ∈ C, s.t. Ax̄ ∈ Q, (1.2)

which is known as the split feasibility problem (SFP); see e.g. [9, 19, 20].
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In [10], Censor and Segal introduced an algorithm for solving the SCFP. More
specifically, their algorithm is defined as:

xk+1 = U(xk − τA∗(I − T )Axk), (1.3)

where I stands for the identity mapping, A∗ is the adjoint mapping of A, and the
step-size τ is chosen such that

0 < τ <
2

‖A‖2
. (1.4)

If U and T are firmly quasi-nonexpansive mappings, then the Censor-Segal algorithm
converges weakly to a solution of (1.1). Subsequently, this algorithm was further
extended to the case of quasi-nonexpansive mappings [15], demicontractive mappings
[16]; see [3, 13, 18] for other variants of method (1.3).

In particular, if we let U = PC and T = PQ in (1.3), then it is reduced to

xk+1 = PC(xk − τA∗(I − PQ)Axk), (1.5)

which is Byrne’s CQ algorithm for solving the SFP. The inertial technique recently
developed by Alvarez and Attouch [1] is a novel way to speed up the convergence
of various algorithms; see also [5, 4]. To improve its performance, Dang et al. [12]
recently applied the inertial technique to (1.5) and proposed the inertial CQ algorithm:[

wk = xk + θk(xk − xk−1)
xk+1 = PC(xk − τkA∗(I − PQ)Axk),

(1.6)

where 0 ≤ θk < θ < 1 and

0 < τ <
2

‖A‖2
. (1.7)

It was shown that the inertial CQ algorithm with (1.7) converges weakly to a solution
of the SFP provided that

∞∑
k=1

θk‖xk − xk−1‖2 <∞.

In this paper, we continue to study the SCFP. To speed up its convergence, we
propose an inertial Censor-Segal algorithm that can improve the performance of the
original algorithm. Moreover, the step-size in our algorithm is independent of the
norm of the given linear mapping. Under some mild conditions, we establish two
weak convergence theorems of the proposed algorithm.

2. Preliminaries

In this section, we assume that “⇀” stands for weak convergence, H is a Hilbert
space and C is a nonempty closed convex subset in H.
Definition 2.1 Let T be a mapping from C into H.

(i) T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C;
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(ii) T is firmly nonexpansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.
Definition 2.2 Let T : C → H be a mapping with F (T ) 6= ∅.

(i) T is quasi-nonexpansive if

‖Tx− z‖ ≤ ‖x− z‖, ∀x ∈ C, y ∈ F (T );

(ii) T is firmly quasi-nonexpansive if

‖Tx− z‖2 ≤ ‖x− z‖2 − ‖(I − T )x‖2, ∀x ∈ C, y ∈ F (T ).

Definition 2.3 Let T : C → H be a mapping with F (T ) 6= ∅. Then I − T is said to
be demiclosed at 0, if, for any {xk} in H, there holds the following implication:

xk ⇀ x
(I − T )xk → 0

]
⇒ x ∈ F (T ).

It is well known that if T is a nonexpansive mapping, then I − T is demiclosed at 0.
Clearly, such a property is also shared by firmly nonexpansive mappings.
Lemma 2.4 Let T : C → H be a mapping with F (T ) 6= ∅. Then the following are
equivalent.

(i) T is a firmly quasi-nonexpansive mapping;
(ii) 〈Tx− z, (I − T )x〉 ≥ 0, ∀ z ∈ F (T ), x ∈ C;

(iii) 〈x− z, (I − T )x〉 ≥ ‖(I − T )x‖2, ∀ z ∈ F (T ), x ∈ C.
Typical examples of firmly quasi-nonexpansive mappings include subgradient pro-

jections and orthogonal projections; see [2].
Lemma 2.5 [2] Assume that {xk} is a sequence in H such that

(i) for each z ∈ C, the limit of sequence {‖xk − z‖} exists;
(ii) any weak cluster point of sequence {xk} belongs to C.

Then the sequence {xk} is weakly convergent to an element z in C.

Lemma 2.6 [1] Let {φk} and {δk} be two nonnegative real sequences such that

φk+1 − φk ≤ θk(φk − φk−1) + δk,

∞∑
k=0

δk <∞,

where {θk} ⊂ [0, θ] with 0 < θ < 1. Then the sequence {φk} is convergent.

Lemma 2.7 [2] Let s, t ∈ R and x, y ∈ H. It then follows that

‖tx+ sy‖2 = t(t+ s)‖x‖2 + s(t+ s)‖y‖2 − ts‖x− y‖2.

3. The proposed algorithms

In this section, we propose an inertial Censor-Segal algorithm for split common
fixed-point problems. We need the following basic assumption of the SCFP:

(i) The solution set S of the SCFP is nonempty;
(ii) U : H1 → H1 is firmly quasi-nonexpansive such that I−U is demiclosed at 0;

(iii) T : H2 → H2 is firmly quasi-nonexpansive such that I −T is demiclosed at 0.
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Algorithm 1 Let x0, x1 be arbitrary. Given xk, xk−1, update the next iteration via[
wk = xk + θk(xk − xk−1)
xk+1 = U(wk − τkA∗(I − T )Awk),

(3.1)

where 0 < ρk < 2, 0 ≤ θk < θ < 1, and

τk =

 ρk
‖(I − T )Awk‖2

‖A∗(I − T )Awk‖2
, ‖A∗(I − T )Awk‖ 6= 0,

0, ‖A∗(I − T )Awk‖ = 0.

(3.2)

Remark 3.1 In comparison with (1.4), our step-size (3.2) is independent of the norm
‖A‖, so that the calculation or estimation of ‖A‖ is avoided.
Lemma 3.2 Assume that the sequence {wk} is generated by Algorithm 1. Then,
‖A∗(I − T )Awk‖ = 0 if and only if ‖(I − T )Awk‖ = 0.
Proof. It is easy to see that ‖A∗(I − T )Awk‖ = 0 if ‖(I − T )Awk‖ = 0. To see the
converse, let ‖A∗(I − T )Awk‖ = 0 and z ∈ S. It then follows from Lemma 2 that

‖(I − T )Awk‖2 ≤ 〈(I − T )Awk, Awk −Az〉

= 〈A∗(I − T )Awk, wk − z〉

= ‖A∗(I − T )Awk‖‖wk − z‖.

This yields ‖(I − T )Awk‖ = 0. Hence the proof is complete.
Lemma 3.3 Let {xk} and {wk} be the sequences generated by Algorithm 1. Then,
for any τ ∈ [0, 1] and z ∈ S, it follows that

‖xk+1 − z‖2 ≤ ‖wk − z‖2 − (1− τ)‖wk − xk+1‖2 − ρk
(

2− ρk
τ

)
δk, (3.3)

where

δk =


0, ‖A∗(I − T )Awk‖ = 0,

‖(I − T )Awk‖4

‖A∗(I − T )Awk‖2
, ‖A∗(I − T )Awk‖ 6= 0.

(3.4)

Proof. Since U is firmly quasi-nonexpansive, we have

‖xk+1 − z‖2 = ‖U(wk − τkA∗(I − T )Awk)− Uz‖2

≤ ‖(wk − z)− τkA∗(I − T )Awk‖2 − ‖(wk − xk+1)− τkA∗(I − T )Awk‖2

= ‖wk − z‖2 − ‖wk − xk+1‖2 − 2τk〈A∗(I − T )Awk, wk − z〉

+ 2τk〈A∗(I − T )Awk, wk − xk+1〉.

It then follows from Lemma 2 that

2τk〈A∗(I − T )Awk, wk − z〉 = 2τk〈(I − T )Awk − (I − T )Az,Awk −Az〉

≥ 2τk‖(I − T )Awk‖2.
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By Young’s inequality, we have

2τk|〈A∗(I − T )Awk, wk − xk+1〉| ≤ 2τk‖A∗(I − T )Awk‖‖wk − xk+1‖

≤ τ‖wk − xk+1‖2 +
τ2k
τ
‖A∗(I − T )Awk‖2.

If ‖A∗(I − T )Awk‖ = 0, then τk = 0, so that

‖xk+1 − z‖2 ≤ ‖wk − z‖2 − (1− τ)‖wk − xk+1‖2.
Otherwise, if ‖A∗(I − T )Awk‖ 6= 0, we have

‖xk+1 − z‖2

≤ ‖wk − z‖2 − (1− τ)‖wk − xk+1‖2 +
τ2k
τ
‖A∗(I − T )Awk‖2 − 2τk‖(I − T )Awk‖2

= ‖wk − z‖2 − (1− τ)‖wk − xk+1‖2 +
ρ2k
τ

‖(I−T )Awk‖4

‖A∗(I−T )Awk‖2
− 2ρk

‖(I−T )Awk‖4

‖A∗(I−T )Awk‖2

= ‖wk − z‖2 − (1− τ)‖wk − xk+1‖2 − ρk(2− ρk
τ

)
‖(I − T )Awk‖4

‖A∗(I − T )Awk‖2
.

Hence the desired inequality (3.3) follows.
Lemma 3.4 Let {xk} and {wk} be the sequences generated by Algorithm 1. Assume
that {xk} and {wk} are bounded such that

lim
k→∞

δk = lim
k→∞

‖xk − wk‖ = lim
k→∞

‖xk+1 − wk‖ = 0, (3.5)

where δk is defined as in (3.4). Then each weak cluster point of {xk} belongs to S.
Proof. Let x̄ be any weak cluster point of {xk}. Thus, there exists a subsequence
{xki} of {xk} such that {xki} is weakly convergent to x̄. In view of (3.5), {wki} is
also weakly convergent to x̄, which implies that {Awki} weakly converges to Ax̄.
We first show x̄ ∈ F (U). To see this, let yk = wk − τkA∗(I − T )Awk. We have

‖yk − wk‖ = τk‖A∗(I − T )Awk‖

= ρk
√
δk ≤ 2

√
δk.

Hence, by (3.5), limk→∞ ‖yk−wk‖ = 0, which yields that {yki} also weakly converges
to x̄. Moreover, it follows again from (3.5) that

‖(I − U)yk‖ = ‖yk − xk+1‖

≤ ‖yk − wk‖+ ‖wk − xk+1‖ → 0.

Since I − U is demiclosed at 0, we have x̄ ∈ F (U).
We next show Ax̄ ∈ F (T ). Indeed, if ‖A∗(I − T )Awk‖ 6= 0, then

‖(I − T )Awk‖2 =
‖(I − T )Awk‖4

‖(I − T )Awk‖2
≤ ‖A‖2

‖(I − T )Awk‖4

‖A∗(I − T )Awk‖2
.

Hence, by (3.5), we have

‖(I − T )Awk‖2 ≤ ‖A‖2δk → 0.

Since Awki ⇀ Ax̄ and I − T is demiclosed at 0, we have Ax̄ ∈ F (T ).
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Altogether, x̄ is a solution of the SFP. This ends the proof.

4. Convergence analysis

In this section, we will establish the convergence of the proposed algorithm. We
first study the convergence of Algorithm 1 under the condition:

∞∑
k=1

θk‖xk − xk−1‖2 <∞. (a1)

It is readily seen that condition (a1) indicates

lim
k→∞

θk‖xk − xk−1‖2 = 0. (4.1)

Theorem 4.1 Assume that lim inf
k→∞

ρk(2 − ρk) > 0 and θk satisfies condition (a1).

Then the sequence {xk} generated by Algorithm 1 weakly converges to a solution of
SCFP (1.1).
Proof. We first show, for any z ∈ S, the sequence {‖xk − z‖} is convergent. To see
this, it suffices to show the following inequality:

φk+1 − φk ≤ θk(φk − φk−1) + 2θk‖xk − xk−1‖2 − ρk(2− ρk)δk, (4.2)

where φk = ‖xk − z‖2 and δk is defined as in (3.4). Indeed, by applying Lemma 3.3
with τ = 1, we have

‖xk+1 − z‖2 ≤ ‖wk − z‖2 − ρk(2− ρk)δk. (4.3)

On the other hand, we deduce from Lemma 2 that

‖wk − z‖2 = ‖(1 + θk)(xk − z)− θk(xk−1 − z)‖2

= (1 + θk)‖xk − z‖2 − θk‖xk−1 − z‖2 + θk(1 + θk)‖xk − xk−1‖2 (4.4)

≤ (1 + θk)‖xk − z‖2 − θk‖xk−1 − z‖2 + 2θk‖xk − xk−1‖2. (4.5)

Combining (4.3) and (4.5) at once yields (4.2) as desired. Note that by (a1)
∞∑
k=1

2θk‖xk − xk−1‖2 <∞.

By Lemma 2, the limit of {φk} exists. That is, the sequence {‖xk−z‖} is convergent.
We next show that each weak cluster point of {xk} belongs to S. By Lemma 3.4,
it suffices to show that condition (3.5) holds true. Since {φk} is convergent, {xk}
is bounded. By inequality (4.5), the sequence {wk} is also bounded. Thus, we may
assume that for all k ≥ 0, there is M > 0 such that

4‖xk − z‖+ ‖A‖2‖wk − z‖ ≤M.

By passing to the limit in (4.2) and our hypothesis on ρk, we have

lim
k→∞

δk = 0. (4.6)

Moreover, by (4.1) we have

lim
k→∞

‖wk − xk‖2 = lim
k→∞

θk‖xk − xk−1‖2 = 0. (4.7)
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On the other hand, by Lemma 2, we have

〈wk − τkA∗(I − T )Awk − xk+1, xk+1 − z〉 ≥ 0,

which at once yields

〈xk+1 − wk, xk+1 − z〉 ≤ −τk〈A∗(I − T )Awk, xk+1 − z〉.

From this inequality it then follows that

‖xk+1 − wk‖2 = (‖wk − z‖2 − ‖xk+1 − z‖2) + 2〈xk+1 − wk, xk+1 − z〉

≤ (‖wk − z‖2 − ‖xk+1 − z‖2)− 2τk〈A∗(I − T )Awk, xk+1 − z〉

≤ (‖wk − z‖2 − ‖xk+1 − z‖2) + 2τk‖A∗(I − T )Awk‖‖xk+1 − z‖

= (‖wk − z‖2 − ‖xk+1 − z‖2) + 2ρk
√
δk‖xk+1 − z‖

≤ (‖wk − z‖2 − ‖xk+1 − z‖2) + 4
√
δk‖xk+1 − z‖

≤ (‖wk − z‖2 − ‖xk+1 − z‖2) +M
√
δk.

Thanks to (4.6) and (4.7), limk→∞ ‖xk+1 − wk‖ = 0. By Lemma 3.4, we conclude
that each weak cluster point of {xk} belongs to S.
Finally, by Lemma 2, the sequence {xk} converges weakly to a solution of SCFP (1.1).
Remark 4.2 For some θ ∈ (0, 1) let us define a sequence {θk} as

θk =

 min

(
θ,

1

(k + 1)2‖xk − xk−1‖2

)
, xk 6= xk−1,

θ, xk = xk−1.

It is clear that such a {θk} fulfills condition (a1).
We next study the convergence of Algorithm 1 under the condition:

θk ↑ θ ∈ [0,
√

5− 2); (a2)

namely, the sequence {θk} is nondecreasing and converges to θ ∈ [0,
√

5− 2).
Theorem 4.3 Assume that lim inf

k→∞
ρk(1 − ρk) > 0 and θk satisfies condition (a2).

Then the sequence {xk} generated by Algorithm 1 weakly converges to a solution of
SCFP (1.1).
Proof. We first show, for each z ∈ S, the following inequality:

φk − φk+1 ≥
1

2
(1− 4θk+1 − θ2k+1)‖xk − xk+1‖2 + 2ρk(1− ρk)δk, (4.8)

where δk is defined as in (3.4) and

φk = ‖xk − z‖2 − θk‖xk−1 − z‖2 +
θk
2

(3 + θk)‖xk − xk−1‖2. (4.9)
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Indeed, it follows from the Cauchy-Schwartz inequality that

‖wk − xk+1‖2 = ‖xk − xk+1 + θk(xk − xk−1)‖2

= ‖xk − xk+1‖2 + θ2k‖xk − xk−1‖2 + 2θk〈xk − xk+1, xk − xk−1〉

≥ ‖xk − xk+1‖2 + θ2k‖xk − xk−1‖2 − 2θk‖xk − xk+1‖‖xk − xk−1‖

≥ ‖xk − xk+1‖2 + θ2k‖xk − xk−1‖2 − θk(‖xk − xk+1‖2 + ‖xk − xk−1‖2)

= (1− θk)‖xk − xk+1‖2 − θk(1− θk)‖xk − xk−1‖2. (4.10)

Applying Lemma 2 with τ = 1/2, we have

‖xk+1 − z‖2 ≤ ‖wk − z‖2 − 1

2
‖wk − xk+1‖2 − 2ρk(1− ρk)δk. (4.11)

Combining (4.10) and (4.11) yields

‖xk+1 − z‖2 ≤ ‖wk − z‖2 − 2ρk(1− ρk)δk

− 1

2
(1− θk)‖xk − xk+1‖2 +

θk
2

(1− θk)‖xk − xk−1‖2

= (1 + θk)‖xk − z‖2 − θk‖xk−1 − z‖2 + θk(1 + θk)‖xk − xk−1‖2

− 1

2
(1− θk)‖xk − xk+1‖2 +

θk
2

(1− θk)‖xk − xk−1‖2 − 2ρk(1− ρk)δk

= (1 + θk)‖xk − z‖2 − θk‖xk−1 − z‖2 +
θk
2

(3 + θk)‖xk − xk−1‖2

− 1

2
(1− θk)‖xk − xk+1‖2 − 2ρk(1− ρk)δk

≤ (1 + θk+1)‖xk − z‖2 − θk‖xk−1 − z‖2 +
θk
2

(3 + θk)‖xk − xk−1‖2

− 1

2
(1− θk+1)‖xk − xk+1‖2 − 2ρk(1− ρk)δk,

where the first equality follows from (4.4) and the last inequality follows from the
monotone property of θk. By the definition of φk and our hypothesis on θk, we get
inequality (4.8) as desired.
We next show that each weak cluster point of {xk} belongs to S. Indeed, by (4.8)
the sequence {φk} is clearly nonincreasing. On the other hand,

‖xk − z‖2 ≤ θk‖xk−1 − z‖2 + φk ≤ θ‖xk−1 − z‖2 + φk,

which by induction yields

‖xk − z‖2 ≤ ‖x0 − z‖2 +
φ1

1− θ
.

Thus {xk} is bounded, and so is the sequence {wk} by (4.10). It then follows from
the definition of φk that

φk+1 ≥ −θk+1‖xk − z‖2 ≥ −‖xk − z‖2

≥ −‖x0 − z‖2 − φ1
1− θ

.
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This implies that {φk} is bounded from below, and thus {φk} is a convergent sequence.
Passing to the limit in (4.8) yields

lim
k→∞

δk = lim
k→∞

(1− 4θk+1 − θ2k+1)‖xk+1 − xk‖2 = 0.

However, from (a2) we have 1− 4θk+1 − θ2k+1 ≥ 1− 4θ − θ2 > 0, which yields

lim
k→∞

‖xk+1 − xk‖ = 0. (4.12)

This together with (5.2) yields

‖xk − wk‖ = θk‖xk−1 − xk‖ ≤ ‖xk−1 − xk‖ → 0,

and

‖xk+1 − wk‖ ≤ ‖xk+1 − xk‖+ ‖xk − wk‖ → 0.

Thus, condition (3.5) holds true. By Lemma 3.4, the desired assertion follows.
Finally, we show that the sequence {xk} converges weakly to a solution of SCFP (1.1).
By Lemma 2, it suffices to show the convergence of {‖xk − z‖}. Thanks to (4.9), we
have

‖xk − z‖2 =
1

1− θk

(
φk + θk(‖xk−1 − z‖2 − ‖xk − z‖2)− θk(3 + θk)

2
‖xk − xk−1‖2

)
.

Since

θk
∣∣‖xk−1 − z‖2 − ‖xk − z‖2∣∣

= θk
∣∣‖xk−1 − z‖ − ‖xk − z‖∣∣ (‖xk−1 − z‖+ ‖xk − z‖)

≤ θ‖xk−1 − xk‖(‖xk−1 − z‖+ ‖xk − z‖),

it follows from (4.12) that

lim
k→∞

θk(‖xk−1 − z‖2 − ‖xk − z‖2) = 0.

Consequently, {‖xk − z‖} is convergent, which ends the proof.

5. An application

In statistics and machine learning, the elastic net is a regression analysis method
that performs both variable selection and regularization in order to enhance the pre-
diction accuracy and interpretability of the statistical model it produces. It is a
regularized regression method that linearly combines the L1 and L2 penalties of the
LASSO and ridge methods. Here the L1 penalty is defined as

‖x‖1 =

n∑
i=1

|xi|,

and the L2 penalty is defined as

‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

.
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The elastic net requires to solve the problem:

min
x∈Rn

1

2
‖Ax− y‖22,

s.t. (1− λ)‖x‖1 + λ‖x‖22 ≤ t,
(5.1)

where λ is a positive parameter, A ∈ Rm×n, y ∈ Rm and t > 0 is a constant. This
problem is a specific SCFP. To see this, it suffices to let Tz = y,∀z ∈ Rm and U = PC

with
C = {x ∈ Rn | (1− λ)‖x‖1 + λ‖x‖22 ≤ t}.

By applying Algorithm 1, we get an algorithm for solving problem (5.1). Let x0, x1

be arbitrary. Given xk, xk−1, update the next iteration via[
wk = xk + θk(xk − xk−1)
xk+1 = U(wk − τkA∗(Awk − y)),

(5.2)

where 0 < ρk < 2, 0 ≤ θk < θ < 1, and

τk =

 ρk
‖Awk − y‖2

‖A∗(Awk − y)‖2
, ‖A∗(Awk − y)‖ 6= 0,

0, ‖A∗(Awk − y)‖ = 0.

(5.3)
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