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Abstract. In this paper, we introduce n-variables mappings which are cubic in each variable. We

show that such mappings satisfy a functional equation. The main purpose is to extend the appli-
cations of a fixed point method to establish the Hyers-Ulam stability for the multi-cubic mappings.

As a consequence, we prove that a multi-cubic functional equation can be hyperstable.
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1. Introduction

The study of stability problems for functional equations is related to a question
of Ulam [18] concerning the stability of group homomorphisms and affirmatively an-
swered for Banach spaces by Hyers [12]. Later on, various generalizations and exten-
sion of Hyers’ result were ascertained by Aoki [1], Th. M. Rassias [17], J. M. Rassias
[16] and Găvruţa [11] in different versions. Since then, the stability problems have
been extensively investigated for a variety of functional equations and spaces.

Let V be a commutative group, W be a linear space, and n ≥ 2 be an integer.
Recall from [9] that a mapping f : V n −→ W is called multi-additive if it is additive
(satisfies Cauchy’s functional equation A(x+y) = A(x)+A(y)) in each variable. Some
facts on such mappings can be found in [15] and many other sources. In addition, f
is said to be multi-quadratic if it is quadratic (satisfies quadratic functional equation
Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y)) in each variable [10]. In [19], Zhao et al.
proved that the mapping f : V n −→W is multi-quadratic if and only if the following
relation holds∑

t∈{−1,1}n
f(x1 + tx2) = 2n

∑
j1,j2,··· ,jn∈{1,2}

f(x1j1 , x2j2 , · · · , xnjn) (1.1)

where xj = (x1j , x2j , · · · , xnj) ∈ V n with j ∈ {1, 2}. In [9] and [10], Ciepliński studied
the generalized Hyers-Ulam stability of multi-additive and multi-quadratic mappings
in Banach spaces, respectively (see also [19]).
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One of the functional equations in the field of stability of functional equations is
the cubic functional equation

C(x+ 2y)− 3C(x+ y) + 3C(x)− C(x− y) = 6C(y) (1.2)

which is introduced by J. M. Rassias in [16] for the first time. It is easy to see that
the mapping f(x) = ax3 satisfies (1.2). Thus, every solution of the cubic functional
equation (1.2) is said to be a cubic mapping. Rassias established the Ulam-Hyers
stability problem for these cubic mappings. The following alternative cubic functional
equation

C(2x+ y) + C(2x− y) = 2C(x+ y) + 2C(x− y) + 12C(x) (1.3)

has been introduced by Jun and Kim in [14]. They found out the general solution and
proved the Hyers-Ulam stability for functional equation (1.3); for other forms of the
(generalized) cubic functional equations and their stabilities on the various Banach
spaces refer to [3], [4], [5], [13].

In this paper, we define multi-cubic mappings and present a characterization of
such mappings. In other words, we reduce the system of n equations defining the
multi-cubic mappings to obtain a single equation. We also prove the generalized
Hyers-Ulam stability for multi-cubic functional equations by applying the fixed point
method which was introduced and used for the first time by Brzdȩk et al., in [6]; for
more applications of this approach for the satbility of multi-Cauchy-Jensen mappings
in Banach spaces and 2-Banach spaces see [2] and [7], respectively.

2. Characterization of multi-cubic mappings

Throughout this paper, N stands for the set of all positive integers, N0 := N ∪
{0},R+ := [0,∞), n ∈ N. For any l ∈ N0,m ∈ N, t = (t1, · · · , tm) ∈ {−1, 1}m and
x = (x1, · · · , xm) ∈ V m we write lx := (lx1, · · · , lxm) and tx := (t1x1, · · · , tmxm),
where ra stands, as usual, for the rth power of an element a of the commutative
group V .

From now on, let V and W be vector spaces over the rationals, n ∈ N and

xni = (xi1, xi2, · · · , xin) ∈ V n,
where i ∈ {1, 2}. We shall denote xni by xi if there is no risk of ambiguity. Let
x1, x2 ∈ V n and T ∈ N0 with 0 ≤ T ≤ n. Put

Mn = {(N1, N2, · · · , Nn)| Nj ∈ {x1j ± x2j , x1j}} ,
where j ∈ {1, · · · , n}. Consider

Mn
T := {Nn = (N1, N2, · · · , Nn) ∈Mn| Card{Nj : Nj = x1j} = T} .

For r ∈ R, we put rMn
T = {rNn : Nn ∈Mn

T }. We say the mapping f : V n −→ W
is n-multi-cubic or multi-cubic if f is cubic in each variable (see equation (1.3)). For
such mappings, we use the following notations:

f (Mn
T ) :=

∑
Nn∈Mn

T

f(Nn), (2.1)
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f (Mn
T , z) :=

∑
Nn∈Mn

T

f(Nn, z) (z ∈ V ).

Remark 2.1. It is easily verified that if the mapping h satisfies equation (1.3), then

h(2x) = 8h(x). (2.2)

But the converse is not true. Let (A, ‖ · ‖) be a Banach algebra. Fix the vector a0 in
A (not necessarily unit). Define the mapping h : A −→ A by h(a) = ‖a‖3a0 for any
a ∈ A. Clearly, for each x ∈ A, h(2x) = 8h(x) while relation (1.3) does not hold for
h even if we put x = 0 and 0 6= y. Therefore, condition (2.2) does not imply that h
is a cubic mapping.
Proposition 2.2. If the mapping f : V n −→ W is multi-cubic, then f satisfies the
equation ∑

q∈{−1,1}n
f(2x1 + qx2) =

n∑
k=0

2n−k12kf(Mn
k ), (2.3)

where f (Mn
k ) is defined in (2.1).

Proof. We prove f satisfies equation (2.3) by induction on n. For n = 1, it is trivial
that f satisfies equation (1.3). If (2.3) is valid for some positive integer n > 1, then,∑

q∈{−1,1}n+1

f(2xn+1
1 + qxn+1

2 ) = 2
∑

q∈{−1,1}n
f(2xn1 + qxn2 , x1n+1 + x2n+1)

+ 2
∑

q∈{−1,1}n
f(2xn1 + qxn2 , x1n+1 − x2n+1)

+ 12
∑

q∈{−1,1}n
f(2xn1 + qxn2 , x1n+1)

= 2

n∑
k=0

∑
q∈{−1,1}

2n−k12kf(Mn
k , x1n+1 + qx2n+1)

+ 12

n∑
k=0

2n−k12kf(Mn
k , x1n+1)

=
n+1∑
k=0

2n+1−k12kf(Mn+1
k ).

This means that (2.3) holds for n+ 1. �

In the sequel,

(
n
k

)
is the binomial coefficient defined for all n, k ∈ N0 with n ≥ k

by n!/(k!(n− k)!).
We say the mapping f : V n −→W satisfies (has) the r-power condition in the jth

variable if

f(z1, · · · , zj−1, 2zj , zj+1, · · · , zn) = 2rf(z1, · · · , zj−1, zj , zj+1, · · · , zn),
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for all (z1, · · · , zn) ∈ V n. It follows from Remark 2.1 that the 3-power condition does
not imply f is cubic in the jth variable. Using this condition, we show that if f
satisfies equation (2.3), then it is multi-cubic as follows:

Proposition 2.3. If the mapping f : V n −→W satisfies equation (2.3) and 3-power
condition in each variable, then it is multi-cubic.

Proof. Fix j ∈ {1, · · · , n}. Putting x2k = 0 for all k ∈ {1, · · · , n}\{j} in the left side
of (2.3) and using the assumption, we get

2n−1 × 23(n−1)[f (x11, · · · , x1j−1, 2x1j + x2j , x1j+1, · · · , x1n)

+ f (x11, · · · , x1j−1, 2x1j − x2j , x1j+1, · · · , x1n)]

= 2n−1[f (2x11, · · · , 2x1j−1, 2x1j + x2j , 2x1j+1, · · · , 2x1n)

+ f (2x11, · · · , 2x1j−1, 2x1j − x2j , 2x1j+1, · · · , 2x1n)]. (2.4)

Set

f∗(x1j , x2j) : = f (x11, · · · , x1j−1, x1j + x2j , x1j+1, · · · , x1n)

+ f (x11, · · · , x1j−1, x1j − x2j , x1j+1, · · · , x1n) .

By the mentioned replacements in (2.3), it follows from (2.4) that

2n−1 × 23(n−1)[f (x11, · · · , x1j−1, 2x1j + x2j , x1j+1, · · · , x1n)

+ f (x11, · · · , x1j−1, 2x1j − x2j , x1j+1, · · · , x1n)]

= 2n−1 × 2nf∗(x1j , x2j)

+

n−1∑
k=1

[(
n− 1
k − 1

)
22(n−k) × 12k

]
f (x11, · · · , x1n)

+

n−1∑
k=1

[(
n− 1
k

)
22(n−k)−1 × 12k

]
f∗(x1j , x2j)

+ 12nf (x11, · · · , x1n)

=

[
22n−1 +

n−1∑
k=1

(
n− 1
k

)
22(n−k)−1 × 12k

]
f∗(x1j , x2j)

+

[
12n +

n−1∑
k=1

(
n− 1
k − 1

)
22(n−k) × 12k

]
f (x11, · · · , x1n) . (2.5)

On the other hand, we have

22n−1 +

n−1∑
k=1

(
n− 1
k

)
22(n−k)−1 × 12k = 22n−1

(
1 +

n−1∑
k=1

(
n− 1
k

)
3k

)
= 22n−1 (1 + 3)

n−1
= 24n−3. (2.6)
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In addition,

12n +

n−1∑
k=1

(
n− 1
k − 1

)
22(n−k) × 12k = 12n +

n−1∑
k=1

(
n− 1
k − 1

)
22(n−k) × 22k × 3k

= 12n + 3× 22n
n−2∑
k=0

(
n− 1
k − 1

)
3k

= 12n + 3× 22n

(
n−1∑
k=0

[(
n− 1
k − 1

)
3k
]
− 3n−1

)
= 12n + 3× 22n

(
(1 + 3)n−1 − 3n−1

)
= 12n + 3× 22n

(
22(n−1) − 3n−1

)
= 12× 24(n−1). (2.7)

The relations (2.5), (2.6) and (2.7) imply that

f (x11, · · · , x1j−1, 2x1j + x2j , x1j+1, · · · , x1n)

+ f (x11, · · · , x1j−1, 2x1j − x2j , x1j+1, · · · , x1n)

= 2f∗(x1j , x2j) + 12f (x11, · · · , x1n) .

This means that f is cubic in the jth variable. Since j is arbitrary, we obtain the
desired result. �

3. Stability Results for (2.3)

In this section, we prove the generalized Hyers-Ulam stability of equation (2.3) by
a fixed point result (Theorem 3.1) in Banach spaces. Throughout, for two sets X
and Y , the set of all mappings from X to Y is denoted by Y X . We introduce the
upcoming three hypotheses:

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, · · · , gj : S −→ S and
L1, · · · , Lj : S −→ R+,

(A2) T : Y S −→ Y S is an operator satisfying the inequality

‖T λ(x)− T µ(x)‖ ≤
j∑
i=1

Li(x) ‖λ(gi(x))− µ(gi(x))‖ , λ, µ ∈ Y S , x ∈ S,

(A3) Λ : RS+ −→ RS+ is an operator defined through

Λδ(x) :=

j∑
i=1

Li(x)δ(gi(x)) δ ∈ RS+, x ∈ S.

Here, we highlight the following theorem which is a fundamental result in fixed
point theory [6, Theorem 1]. This result plays a key tool to obtain our objective in
this paper.
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Theorem 3.1. Let hypotheses (A1)-(A3) hold and the function θ : S −→ R+ and
the mapping φ : S −→ Y fulfill the following two conditions:

‖T φ(x)− φ(x)‖ ≤ θ(x), θ∗(x) :=

∞∑
l=0

Λlθ(x) <∞ (x ∈ S).

Then, there exists a unique fixed point ψ of T such that

‖φ(x)− ψ(x)‖ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ T lφ(x) for all x ∈ S.
Here and subsequently, for the mapping f : V n −→ W , we consider the difference

operator Df : V n × V n −→W by

Df(x1, x2) :=
∑

q∈{−1,1}n
f(2x1 + qx2)−

n∑
k=0

2n−k12kf (Mn
k ) ,

where f (Mn
k ) is defined in (2.1). With this notation, we have the next stability result

for functional equation (2.3).
Theorem 3.2. Let β ∈ {−1, 1}, V be a linear space and W be a Banach space.
Suppose that φ : V n × V n −→ R+ is a mapping satisfying

lim
l→∞

(
1

23nβ

)l
φ(2βlx1, 2

βlx2) = 0 (3.1)

for all x1, x2 ∈ V n and

Φ(x) =
1

23n
β+1
2 +n

∞∑
l=0

(
1

23nβ

)l
φ
(

2βl+
β−1
2 x, 0

)
<∞ (3.2)

for all x ∈ V n. Assume also f : V n −→W is a mapping satisfying the inequality

‖Df(x1, x2)‖Y 6 φ(x1, x2) (3.3)

for all x1, x2 ∈ V n. Then, there exists a unique solution C : V n −→ W of (2.3) such
that

‖f(x)− C(x)‖ ≤ Φ(x) (3.4)

for all x ∈ V n.

Proof. Putting x = x1 and x2 = 0 in (3.3), we have∥∥∥∥∥2nf(2x)−

(
n∑
k=0

(
n
k

)
22(n−k) × 12k

)
f(x)

∥∥∥∥∥ ≤ φ(x, 0) (3.5)

for all x ∈ V n. By an easy computation, we have
n∑
k=0

(
n
k

)
22(n−k) × 12k = 22n

n∑
k=0

(
n
k

)
3k = 22n(1 + 3)n = 24n. (3.6)

It follows from (3.5) and (3.6) that∥∥f(2x)− 23nf(x)
∥∥ ≤ 1

2n
φ(x, 0) (3.7)
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for all x ∈ V n. Set

ξ(x) :=
1

23n
β+1
2 +n

φ
(

2
β−1
2 x, 0

)
, and T ξ(x) :=

1

23nβ
ξ(2βx) (ξ ∈WV n).

Then, relation (3.7) can be modified as

‖f(x)− T f(x)‖ ≤ ξ(x) (x ∈ V n). (3.8)

Define Λη(x) := 1
23nβ

η(2βx) for all η ∈ RV n+ , x ∈ V n. We now see that Λ has the

form described in (A3) with S = V n, g1(x) = 2βx and L1(x) = 1
23nβ

for all x ∈ V n.

Furthermore, for each λ, µ ∈WV n and x ∈ V n, we get

‖T λ(x)− T µ(x)‖ =

∥∥∥∥ 1

23nβ
[
λ(2βx)− µ(2βx)

]∥∥∥∥ ≤ L1(x) ‖λ(g1(x))− µ(g1(x))‖ .

The above relation shows that the hypotheis (A2) holds. By induction on l, one can
check that for any l ∈ N0 and x ∈ V n,

Λlξ(x) :=

(
1

23nβ

)l
ξ(2βlx) =

1

23n
β+1
2 +n

(
1

23nβ

)l
φ
(

2βl+
β−1
2 x, 0

)
(3.9)

for all x ∈ V n. The relations (3.2) and (3.9) necessitate that all assumptions of
Theorem 3.1 are satisfied. Hence, there exists a unique mapping C : V n −→ W such
that

C(x) = lim
l→∞

(T lf)(x) =
1

23nβ
C(2βx) (x ∈ V n),

and (3.4) holds. We shall to show that

‖D(T lf)(x1, x2)‖ ≤
(

1

23nβ

)l
φ(2βlx1, 2

βlx2) (3.10)

for all x1, x2 ∈ V n and l ∈ N0. We argue by induction on l. It is easily seen that
(3.10) is valid for l = 0 by (3.3). Assume that (3.10) is true for an l ∈ N0. Then

‖D(T l+1f)(x1, x2)‖

=

∥∥∥∥∥∥
∑

q∈{−1,1}n
(T l+1f)(2x1 + qx2)−

n∑
k=0

2n−k12k(T l+1f)(Mn
k )

∥∥∥∥∥∥
=

1

23nβ

∥∥∥∥∥∥
∑

q∈{−1,1}n
(T lf)(2β(2x1 + qx2))−

n∑
k=0

2n−k12k(T lf)(2βMn
k )

∥∥∥∥∥∥
=

1

23nβ
∥∥D(T lf)(2βx1, 2

βx2)
∥∥ ≤ ( 1

23nβ

)l+1

φ(2β(l+1)x1, 2
β(l+1)x2) (3.11)

for all x1, x2 ∈ V n. Letting l → ∞ in (3.10) and applying (3.1), we arrive at
DC(x1, x2) = 0 for all x1, x2 ∈ V n. This means that the mapping C satisfies (2.3). Fi-
nally, assume that C′ : V n −→W is another multi-cubic mapping satisfying equation
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(2.3) and inequality (3.4), and fix x ∈ V n, j ∈ N. Then

‖C(x)− C′(x)‖

=

∥∥∥∥ 1

23nβj
C(2βjx)− 1

23nβj
C′(2βjx)

∥∥∥∥
≤ 1

23nβj
(‖C(2βjx)− f(2βjx)‖+ ‖C′(2βjx)− f(2βjx)‖)

≤ 1

23nβj
2Φ(2βjx)

≤ 2
1

23n
β+1
2 +n

∞∑
l=j

(
1

23nβ

)l
φ
(

2βl+
β−1
2 x, 0

)
.

Consequently, letting j →∞ and using the fact that series (3.2) is convergent for all
x ∈ V n, we obtain C(x) = C′(x) for all x ∈ V n, which finishes the proof. �

Let A be a nonempty set, (X, d) a metric space, ψ ∈ RAn+ , and F1,F2 operators

mapping a nonempty set D ⊂ XA into XAn . We say that operator equation

F1ϕ(a1, · · · , an) = F2ϕ(a1, · · · , an) (3.12)

is ψ-hyperstable provided every ϕ0 ∈ D satisfying inequality

d(F1ϕ0(a1, · · · , an),F2ϕ0(a1, · · · , an)) ≤ ψ(a1, · · · , an), a1, · · · , an ∈ A,

fulfils (3.12); this definition is introduced in [8]. In other words, a functional equation
F is hyperstable if any mapping f satisfying the equation F approximately is a true
solution of F .

Under some conditions the functional equation (2.3) can be hyperstable as follows.
Corollary 3.4. Let δ > 0. Suppose that pij > 0 for i ∈ {1, 2} and j ∈ {1, · · · , n}
fulfill

2∑
i=1

n∑
j=1

pij 6= 3n.

Let V be a normed space and W be a Banach space. If f : V n −→ W is a mapping
satisfying the inequality

‖Df(x1, x2)‖ ≤
2∏
i=1

n∏
j=1

‖xij‖pijδ

for all x1, x2 ∈ V n, then f satisfies (2.3).
In the following corollary, we show that functional equation (2.3) is stable. Since

the proof is routine, we include it without proof.
Corollary 3.5. Given δ > 0 and α ∈ R with α 6= 3n. Let also V be a normed space
and W be a Banach space. If f : V n −→W is a mapping satisfying the inequality

‖Df(x1, x2)‖ ≤
2∑
i=1

n∑
j=1

‖xij‖αδ
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for all x1, x2 ∈ V n, then there exists a unique solution C : V n −→ W of (2.3) such
that

‖f(x)− C(x)‖ ≤



δ

24n − 2α+n

n∑
j=1

‖x1j‖α α < 3n

δ

2α+n − 24n

n∑
j=1

‖x1j‖α α > 3n

for all x ∈ V n.
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