ON AN EQUATION CHARACTERIZING MULTI-CUBIC MAPPINGS AND ITS STABILITY AND HYPERSTABILITY

ABASALT BODAGHI* AND BEHROUZ SHOJAEE**
*Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran E-mail: abasalt.bodaghi@gmail.com
** Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran E-mail: shoujaei@kiau.ac.ir

Abstract

In this paper, we introduce n-variables mappings which are cubic in each variable. We show that such mappings satisfy a functional equation. The main purpose is to extend the applications of a fixed point method to establish the Hyers-Ulam stability for the multi-cubic mappings. As a consequence, we prove that a multi-cubic functional equation can be hyperstable. Key Words and Phrases: Banach space, Hyers-Ulam stability, multi-cubic mapping. 2020 Mathematics Subject Classification: 39B52, 39B82, 39B72, 47H10.

1. Introduction

The study of stability problems for functional equations is related to a question of Ulam [18] concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [12]. Later on, various generalizations and extension of Hyers' result were ascertained by Aoki [1], Th. M. Rassias [17], J. M. Rassias [16] and Găvruţa [11] in different versions. Since then, the stability problems have been extensively investigated for a variety of functional equations and spaces.

Let V be a commutative group, W be a linear space, and $n \geq 2$ be an integer. Recall from [9] that a mapping $f: V^{n} \longrightarrow W$ is called multi-additive if it is additive (satisfies Cauchy's functional equation $A(x+y)=A(x)+A(y))$ in each variable. Some facts on such mappings can be found in [15] and many other sources. In addition, f is said to be multi-quadratic if it is quadratic (satisfies quadratic functional equation $Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y))$ in each variable [10]. In [19], Zhao et al. proved that the mapping $f: V^{n} \longrightarrow W$ is multi-quadratic if and only if the following relation holds

$$
\begin{equation*}
\sum_{t \in\{-1,1\}^{n}} f\left(x_{1}+t x_{2}\right)=2^{n} \sum_{j_{1}, j_{2}, \cdots, j_{n} \in\{1,2\}} f\left(x_{1 j_{1}}, x_{2 j_{2}}, \cdots, x_{n j_{n}}\right) \tag{1.1}
\end{equation*}
$$

where $x_{j}=\left(x_{1 j}, x_{2 j}, \cdots, x_{n j}\right) \in V^{n}$ with $j \in\{1,2\}$. In [9] and [10], Ciepliński studied the generalized Hyers-Ulam stability of multi-additive and multi-quadratic mappings in Banach spaces, respectively (see also [19]).

One of the functional equations in the field of stability of functional equations is the cubic functional equation

$$
\begin{equation*}
C(x+2 y)-3 C(x+y)+3 C(x)-C(x-y)=6 C(y) \tag{1.2}
\end{equation*}
$$

which is introduced by J. M. Rassias in [16] for the first time. It is easy to see that the mapping $f(x)=a x^{3}$ satisfies (1.2). Thus, every solution of the cubic functional equation (1.2) is said to be a cubic mapping. Rassias established the Ulam-Hyers stability problem for these cubic mappings. The following alternative cubic functional equation

$$
\begin{equation*}
\mathfrak{C}(2 x+y)+\mathfrak{C}(2 x-y)=2 \mathfrak{C}(x+y)+2 \mathfrak{C}(x-y)+12 \mathfrak{C}(x) \tag{1.3}
\end{equation*}
$$

has been introduced by Jun and Kim in [14]. They found out the general solution and proved the Hyers-Ulam stability for functional equation (1.3); for other forms of the (generalized) cubic functional equations and their stabilities on the various Banach spaces refer to [3], [4], [5], [13].

In this paper, we define multi-cubic mappings and present a characterization of such mappings. In other words, we reduce the system of n equations defining the multi-cubic mappings to obtain a single equation. We also prove the generalized Hyers-Ulam stability for multi-cubic functional equations by applying the fixed point method which was introduced and used for the first time by Brzdȩk et al., in [6]; for more applications of this approach for the satbility of multi-Cauchy-Jensen mappings in Banach spaces and 2-Banach spaces see [2] and [7], respectively.

2. Characterization of multi-Cubic mappings

Throughout this paper, \mathbb{N} stands for the set of all positive integers, $\mathbb{N}_{0}:=\mathbb{N} \cup$ $\{0\}, \mathbb{R}_{+}:=[0, \infty), n \in \mathbb{N}$. For any $l \in \mathbb{N}_{0}, m \in \mathbb{N}, t=\left(t_{1}, \cdots, t_{m}\right) \in\{-1,1\}^{m}$ and $x=\left(x_{1}, \cdots, x_{m}\right) \in V^{m}$ we write $l x:=\left(l x_{1}, \cdots, l x_{m}\right)$ and $t x:=\left(t_{1} x_{1}, \cdots, t_{m} x_{m}\right)$, where $r a$ stands, as usual, for the r th power of an element a of the commutative group V.

From now on, let V and W be vector spaces over the rationals, $n \in \mathbb{N}$ and

$$
x_{i}^{n}=\left(x_{i 1}, x_{i 2}, \cdots, x_{i n}\right) \in V^{n}
$$

where $i \in\{1,2\}$. We shall denote x_{i}^{n} by x_{i} if there is no risk of ambiguity. Let $x_{1}, x_{2} \in V^{n}$ and $T \in \mathbb{N}_{0}$ with $0 \leq T \leq n$. Put

$$
\mathcal{M}^{n}=\left\{\left(N_{1}, N_{2}, \cdots, N_{n}\right) \mid N_{j} \in\left\{x_{1 j} \pm x_{2 j}, x_{1 j}\right\}\right\}
$$

where $j \in\{1, \cdots, n\}$. Consider

$$
\mathcal{M}_{T}^{n}:=\left\{\mathfrak{N}_{n}=\left(N_{1}, N_{2}, \cdots, N_{n}\right) \in \mathcal{M}^{n} \mid \operatorname{Card}\left\{N_{j}: N_{j}=x_{1 j}\right\}=T\right\}
$$

For $r \in \mathbb{R}$, we put $r \mathcal{M}_{T}^{n}=\left\{r \mathfrak{N}_{n}: \mathfrak{N}_{n} \in \mathcal{M}_{T}^{n}\right\}$. We say the mapping $f: V^{n} \longrightarrow W$ is n-multi-cubic or multi-cubic if f is cubic in each variable (see equation (1.3)). For such mappings, we use the following notations:

$$
\begin{equation*}
f\left(\mathcal{M}_{T}^{n}\right):=\sum_{\mathfrak{N}_{n} \in \mathcal{M}_{T}^{n}} f\left(\mathfrak{N}_{n}\right) \tag{2.1}
\end{equation*}
$$

$$
f\left(\mathcal{M}_{T}^{n}, z\right):=\sum_{\mathfrak{N}_{n} \in \mathcal{M}_{T}^{n}} f\left(\mathfrak{N}_{n}, z\right) \quad(z \in V)
$$

Remark 2.1. It is easily verified that if the mapping h satisfies equation (1.3), then

$$
\begin{equation*}
h(2 x)=8 h(x) . \tag{2.2}
\end{equation*}
$$

But the converse is not true. Let $(\mathcal{A},\|\cdot\|)$ be a Banach algebra. Fix the vector a_{0} in \mathcal{A} (not necessarily unit). Define the mapping $h: \mathcal{A} \longrightarrow \mathcal{A}$ by $h(a)=\|a\|^{3} a_{0}$ for any $a \in \mathcal{A}$. Clearly, for each $x \in \mathcal{A}, h(2 x)=8 h(x)$ while relation (1.3) does not hold for h even if we put $x=0$ and $0 \neq y$. Therefore, condition (2.2) does not imply that h is a cubic mapping.
Proposition 2.2. If the mapping $f: V^{n} \longrightarrow W$ is multi-cubic, then f satisfies the equation

$$
\begin{equation*}
\sum_{q \in\{-1,1\}^{n}} f\left(2 x_{1}+q x_{2}\right)=\sum_{k=0}^{n} 2^{n-k} 12^{k} f\left(\mathcal{M}_{k}^{n}\right) \tag{2.3}
\end{equation*}
$$

where $f\left(\mathcal{M}_{k}^{n}\right)$ is defined in (2.1).
Proof. We prove f satisfies equation (2.3) by induction on n. For $n=1$, it is trivial that f satisfies equation (1.3). If (2.3) is valid for some positive integer $n>1$, then,

$$
\begin{aligned}
\sum_{q \in\{-1,1\}^{n+1}} f\left(2 x_{1}^{n+1}+q x_{2}^{n+1}\right)= & 2 \sum_{q \in\{-1,1\}^{n}} f\left(2 x_{1}^{n}+q x_{2}^{n}, x_{1 n+1}+x_{2 n+1}\right) \\
& +2 \sum_{q \in\{-1,1\}^{n}} f\left(2 x_{1}^{n}+q x_{2}^{n}, x_{1 n+1}-x_{2 n+1}\right) \\
& +12 \sum_{q \in\{-1,1\}^{n}} f\left(2 x_{1}^{n}+q x_{2}^{n}, x_{1 n+1}\right) \\
= & 2 \sum_{k=0}^{n} \sum_{q \in\{-1,1\}} 2^{n-k} 12^{k} f\left(\mathcal{M}_{k}^{n}, x_{1 n+1}+q x_{2 n+1}\right) \\
& +12 \sum_{k=0}^{n} 2^{n-k} 12^{k} f\left(\mathcal{M}_{k}^{n}, x_{1 n+1}\right) \\
= & \sum_{k=0}^{n+1} 2^{n+1-k} 12^{k} f\left(\mathcal{M}_{k}^{n+1}\right) .
\end{aligned}
$$

This means that (2.3) holds for $n+1$.
In the sequel, $\binom{n}{k}$ is the binomial coefficient defined for all $n, k \in \mathbb{N}_{0}$ with $n \geq k$ by $n!/(k!(n-k)!)$.

We say the mapping $f: V^{n} \longrightarrow W$ satisfies (has) the r-power condition in the j th variable if

$$
f\left(z_{1}, \cdots, z_{j-1}, 2 z_{j}, z_{j+1}, \cdots, z_{n}\right)=2^{r} f\left(z_{1}, \cdots, z_{j-1}, z_{j}, z_{j+1}, \cdots, z_{n}\right)
$$

for all $\left(z_{1}, \cdots, z_{n}\right) \in V^{n}$. It follows from Remark 2.1 that the 3 -power condition does not imply f is cubic in the j th variable. Using this condition, we show that if f satisfies equation (2.3), then it is multi-cubic as follows:

Proposition 2.3. If the mapping $f: V^{n} \longrightarrow W$ satisfies equation (2.3) and 3-power condition in each variable, then it is multi-cubic.

Proof. Fix $j \in\{1, \cdots, n\}$. Putting $x_{2 k}=0$ for all $k \in\{1, \cdots, n\} \backslash\{j\}$ in the left side of (2.3) and using the assumption, we get

$$
\begin{align*}
& 2^{n-1} \times 2^{3(n-1)}\left[f\left(x_{11}, \cdots, x_{1 j-1}, 2 x_{1 j}+x_{2 j}, x_{1 j+1}, \cdots, x_{1 n}\right)\right. \\
& \left.+f\left(x_{11}, \cdots, x_{1 j-1}, 2 x_{1 j}-x_{2 j}, x_{1 j+1}, \cdots, x_{1 n}\right)\right] \\
& =2^{n-1}\left[f\left(2 x_{11}, \cdots, 2 x_{1 j-1}, 2 x_{1 j}+x_{2 j}, 2 x_{1 j+1}, \cdots, 2 x_{1 n}\right)\right. \\
& \left.+f\left(2 x_{11}, \cdots, 2 x_{1 j-1}, 2 x_{1 j}-x_{2 j}, 2 x_{1 j+1}, \cdots, 2 x_{1 n}\right)\right] \tag{2.4}
\end{align*}
$$

Set

$$
\begin{aligned}
f^{*}\left(x_{1 j}, x_{2 j}\right): & =f\left(x_{11}, \cdots, x_{1 j-1}, x_{1 j}+x_{2 j}, x_{1 j+1}, \cdots, x_{1 n}\right) \\
& +f\left(x_{11}, \cdots, x_{1 j-1}, x_{1 j}-x_{2 j}, x_{1 j+1}, \cdots, x_{1 n}\right)
\end{aligned}
$$

By the mentioned replacements in (2.3), it follows from (2.4) that

$$
\begin{align*}
& 2^{n-1} \times 2^{3(n-1)}\left[f\left(x_{11}, \cdots, x_{1 j-1}, 2 x_{1 j}+x_{2 j}, x_{1 j+1}, \cdots, x_{1 n}\right)\right. \\
& \left.+f\left(x_{11}, \cdots, x_{1 j-1}, 2 x_{1 j}-x_{2 j}, x_{1 j+1}, \cdots, x_{1 n}\right)\right] \\
& =2^{n-1} \times 2^{n} f^{*}\left(x_{1 j}, x_{2 j}\right) \\
& +\sum_{k=1}^{n-1}\left[\binom{n-1}{k-1} 2^{2(n-k)} \times 12^{k}\right] f\left(x_{11}, \cdots, x_{1 n}\right) \\
& +\sum_{k=1}^{n-1}\left[\binom{n-1}{k} 2^{2(n-k)-1} \times 12^{k}\right] f^{*}\left(x_{1 j}, x_{2 j}\right) \\
& +12^{n} f\left(x_{11}, \cdots, x_{1 n}\right) \\
& =\left[2^{2 n-1}+\sum_{k=1}^{n-1}\binom{n-1}{k} 2^{2(n-k)-1} \times 12^{k}\right] f^{*}\left(x_{1 j}, x_{2 j}\right) \\
& +\left[12^{n}+\sum_{k=1}^{n-1}\binom{n-1}{k-1} 2^{2(n-k)} \times 12^{k}\right] f\left(x_{11}, \cdots, x_{1 n}\right) \tag{2.5}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
2^{2 n-1}+\sum_{k=1}^{n-1}\binom{n-1}{k} 2^{2(n-k)-1} \times 12^{k} & =2^{2 n-1}\left(1+\sum_{k=1}^{n-1}\binom{n-1}{k} 3^{k}\right) \\
& =2^{2 n-1}(1+3)^{n-1}=2^{4 n-3} \tag{2.6}
\end{align*}
$$

In addition,

$$
\begin{align*}
12^{n}+\sum_{k=1}^{n-1}\binom{n-1}{k-1} 2^{2(n-k)} \times 12^{k} & =12^{n}+\sum_{k=1}^{n-1}\binom{n-1}{k-1} 2^{2(n-k)} \times 2^{2 k} \times 3^{k} \\
& =12^{n}+3 \times 2^{2 n} \sum_{k=0}^{n-2}\binom{n-1}{k-1} 3^{k} \\
& =12^{n}+3 \times 2^{2 n}\left(\sum_{k=0}^{n-1}\left[\binom{n-1}{k-1} 3^{k}\right]-3^{n-1}\right) \\
& =12^{n}+3 \times 2^{2 n}\left((1+3)^{n-1}-3^{n-1}\right) \\
& =12^{n}+3 \times 2^{2 n}\left(2^{2(n-1)}-3^{n-1}\right) \\
& =12 \times 2^{4(n-1)} \tag{2.7}
\end{align*}
$$

The relations (2.5), (2.6) and (2.7) imply that

$$
\begin{aligned}
& f\left(x_{11}, \cdots, x_{1 j-1}, 2 x_{1 j}+x_{2 j}, x_{1 j+1}, \cdots, x_{1 n}\right) \\
+ & f\left(x_{11}, \cdots, x_{1 j-1}, 2 x_{1 j}-x_{2 j}, x_{1 j+1}, \cdots, x_{1 n}\right) \\
= & 2 f^{*}\left(x_{1 j}, x_{2 j}\right)+12 f\left(x_{11}, \cdots, x_{1 n}\right) .
\end{aligned}
$$

This means that f is cubic in the j th variable. Since j is arbitrary, we obtain the desired result.

3. Stability Results for (2.3)

In this section, we prove the generalized Hyers-Ulam stability of equation (2.3) by a fixed point result (Theorem 3.1) in Banach spaces. Throughout, for two sets X and Y, the set of all mappings from X to Y is denoted by Y^{X}. We introduce the upcoming three hypotheses:
(A1) Y is a Banach space, \mathcal{S} is a nonempty set, $j \in \mathbb{N}, g_{1}, \cdots, g_{j}: \mathcal{S} \longrightarrow \mathcal{S}$ and $L_{1}, \cdots, L_{j}: \mathcal{S} \longrightarrow \mathbb{R}_{+}$,
(A2) $\mathcal{T}: Y^{\mathcal{S}} \longrightarrow Y^{\mathcal{S}}$ is an operator satisfying the inequality

$$
\|\mathcal{T} \lambda(x)-\mathcal{T} \mu(x)\| \leq \sum_{i=1}^{j} L_{i}(x)\left\|\lambda\left(g_{i}(x)\right)-\mu\left(g_{i}(x)\right)\right\|, \quad \lambda, \mu \in Y^{\mathcal{S}}, x \in \mathcal{S}
$$

$(\mathrm{A} 3) ~ \Lambda: \mathbb{R}_{+}^{\mathcal{S}} \longrightarrow \mathbb{R}_{+}^{\mathcal{S}}$ is an operator defined through

$$
\Lambda \delta(x):=\sum_{i=1}^{j} L_{i}(x) \delta\left(g_{i}(x)\right) \quad \delta \in \mathbb{R}_{+}^{\mathcal{S}}, x \in \mathcal{S}
$$

Here, we highlight the following theorem which is a fundamental result in fixed point theory [6, Theorem 1]. This result plays a key tool to obtain our objective in this paper.

Theorem 3.1. Let hypotheses (A1)-(A3) hold and the function $\theta: \mathcal{S} \longrightarrow \mathbb{R}_{+}$and the mapping $\phi: \mathcal{S} \longrightarrow Y$ fulfill the following two conditions:

$$
\|\mathcal{T} \phi(x)-\phi(x)\| \leq \theta(x), \quad \theta^{*}(x):=\sum_{l=0}^{\infty} \Lambda^{l} \theta(x)<\infty \quad(x \in \mathcal{S})
$$

Then, there exists a unique fixed point ψ of \mathcal{T} such that

$$
\|\phi(x)-\psi(x)\| \leq \theta^{*}(x) \quad(x \in \mathcal{S})
$$

Moreover, $\psi(x)=\lim _{l \rightarrow \infty} \mathcal{T}^{l} \phi(x)$ for all $x \in \mathcal{S}$.
Here and subsequently, for the mapping $f: V^{n} \longrightarrow W$, we consider the difference operator $\mathfrak{D} f: V^{n} \times V^{n} \longrightarrow W$ by

$$
\mathfrak{D} f\left(x_{1}, x_{2}\right):=\sum_{q \in\{-1,1\}^{n}} f\left(2 x_{1}+q x_{2}\right)-\sum_{k=0}^{n} 2^{n-k} 12^{k} f\left(\mathcal{M}_{k}^{n}\right)
$$

where $f\left(\mathcal{M}_{k}^{n}\right)$ is defined in (2.1). With this notation, we have the next stability result for functional equation (2.3).
Theorem 3.2. Let $\beta \in\{-1,1\}, V$ be a linear space and W be a Banach space. Suppose that $\phi: V^{n} \times V^{n} \longrightarrow \mathbb{R}_{+}$is a mapping satisfying

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left(\frac{1}{2^{3 n \beta}}\right)^{l} \phi\left(2^{\beta l} x_{1}, 2^{\beta l} x_{2}\right)=0 \tag{3.1}
\end{equation*}
$$

for all $x_{1}, x_{2} \in V^{n}$ and

$$
\begin{equation*}
\Phi(x)=\frac{1}{2^{3 n \frac{\beta+1}{2}+n}} \sum_{l=0}^{\infty}\left(\frac{1}{2^{3 n \beta}}\right)^{l} \phi\left(2^{\beta l+\frac{\beta-1}{2}} x, 0\right)<\infty \tag{3.2}
\end{equation*}
$$

for all $x \in V^{n}$. Assume also $f: V^{n} \longrightarrow W$ is a mapping satisfying the inequality

$$
\begin{equation*}
\left\|\mathfrak{D} f\left(x_{1}, x_{2}\right)\right\|_{Y} \leqslant \phi\left(x_{1}, x_{2}\right) \tag{3.3}
\end{equation*}
$$

for all $x_{1}, x_{2} \in V^{n}$. Then, there exists a unique solution $\mathcal{C}: V^{n} \longrightarrow W$ of (2.3) such that

$$
\begin{equation*}
\|f(x)-\mathcal{C}(x)\| \leq \Phi(x) \tag{3.4}
\end{equation*}
$$

for all $x \in V^{n}$.
Proof. Putting $x=x_{1}$ and $x_{2}=0$ in (3.3), we have

$$
\begin{equation*}
\left\|2^{n} f(2 x)-\left(\sum_{k=0}^{n}\binom{n}{k} 2^{2(n-k)} \times 12^{k}\right) f(x)\right\| \leq \phi(x, 0) \tag{3.5}
\end{equation*}
$$

for all $x \in V^{n}$. By an easy computation, we have

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} 2^{2(n-k)} \times 12^{k}=2^{2 n} \sum_{k=0}^{n}\binom{n}{k} 3^{k}=2^{2 n}(1+3)^{n}=2^{4 n} \tag{3.6}
\end{equation*}
$$

It follows from (3.5) and (3.6) that

$$
\begin{equation*}
\left\|f(2 x)-2^{3 n} f(x)\right\| \leq \frac{1}{2^{n}} \phi(x, 0) \tag{3.7}
\end{equation*}
$$

for all $x \in V^{n}$. Set

$$
\xi(x):=\frac{1}{2^{3 n \frac{\beta+1}{2}+n}} \phi\left(2^{\frac{\beta-1}{2}} x, 0\right), \text { and } \mathcal{T} \xi(x):=\frac{1}{2^{3 n \beta}} \xi\left(2^{\beta} x\right) \quad\left(\xi \in W^{V^{n}}\right)
$$

Then, relation (3.7) can be modified as

$$
\begin{equation*}
\|f(x)-\mathcal{T} f(x)\| \leq \xi(x) \quad\left(x \in V^{n}\right) \tag{3.8}
\end{equation*}
$$

Define $\Lambda \eta(x):=\frac{1}{2^{3 n \beta}} \eta\left(2^{\beta} x\right)$ for all $\eta \in \mathbb{R}_{+}^{V^{n}}, x \in V^{n}$. We now see that Λ has the form described in (A3) with $\mathcal{S}=V^{n}, g_{1}(x)=2^{\beta} x$ and $L_{1}(x)=\frac{1}{2^{3 n \beta}}$ for all $x \in V^{n}$. Furthermore, for each $\lambda, \mu \in W^{V^{n}}$ and $x \in V^{n}$, we get

$$
\|\mathcal{T} \lambda(x)-\mathcal{T} \mu(x)\|=\left\|\frac{1}{2^{3 n \beta}}\left[\lambda\left(2^{\beta} x\right)-\mu\left(2^{\beta} x\right)\right]\right\| \leq L_{1}(x)\left\|\lambda\left(g_{1}(x)\right)-\mu\left(g_{1}(x)\right)\right\|
$$

The above relation shows that the hypotheis (A2) holds. By induction on l, one can check that for any $l \in \mathbb{N}_{0}$ and $x \in V^{n}$,

$$
\begin{equation*}
\Lambda^{l} \xi(x):=\left(\frac{1}{2^{3 n \beta}}\right)^{l} \xi\left(2^{\beta l} x\right)=\frac{1}{2^{3 n \frac{\beta+1}{2}+n}}\left(\frac{1}{2^{3 n \beta}}\right)^{l} \phi\left(2^{\beta l+\frac{\beta-1}{2}} x, 0\right) \tag{3.9}
\end{equation*}
$$

for all $x \in V^{n}$. The relations (3.2) and (3.9) necessitate that all assumptions of Theorem 3.1 are satisfied. Hence, there exists a unique mapping $\mathcal{C}: V^{n} \longrightarrow W$ such that

$$
\mathcal{C}(x)=\lim _{l \rightarrow \infty}\left(\mathcal{T}^{l} f\right)(x)=\frac{1}{2^{3 n \beta}} \mathcal{C}\left(2^{\beta} x\right) \quad\left(x \in V^{n}\right)
$$

and (3.4) holds. We shall to show that

$$
\begin{equation*}
\left\|\mathfrak{D}\left(\mathcal{T}^{l} f\right)\left(x_{1}, x_{2}\right)\right\| \leq\left(\frac{1}{2^{3 n \beta}}\right)^{l} \phi\left(2^{\beta l} x_{1}, 2^{\beta l} x_{2}\right) \tag{3.10}
\end{equation*}
$$

for all $x_{1}, x_{2} \in V^{n}$ and $l \in \mathbb{N}_{0}$. We argue by induction on l. It is easily seen that (3.10) is valid for $l=0$ by (3.3). Assume that (3.10) is true for an $l \in \mathbb{N}_{0}$. Then

$$
\begin{align*}
& \left\|\mathfrak{D}\left(\mathcal{T}^{l+1} f\right)\left(x_{1}, x_{2}\right)\right\| \\
= & \left\|\sum_{q \in\{-1,1\}^{n}}\left(\mathcal{T}^{l+1} f\right)\left(2 x_{1}+q x_{2}\right)-\sum_{k=0}^{n} 2^{n-k} 12^{k}\left(\mathcal{T}^{l+1} f\right)\left(\mathcal{M}_{k}^{n}\right)\right\| \\
= & \frac{1}{2^{3 n \beta}}\left\|\sum_{q \in\{-1,1\}^{n}}\left(\mathcal{T}^{l} f\right)\left(2^{\beta}\left(2 x_{1}+q x_{2}\right)\right)-\sum_{k=0}^{n} 2^{n-k} 12^{k}\left(\mathcal{T}^{l} f\right)\left(2^{\beta} \mathcal{M}_{k}^{n}\right)\right\| \\
= & \frac{1}{2^{3 n \beta}}\left\|\mathfrak{D}\left(\mathcal{T}^{l} f\right)\left(2^{\beta} x_{1}, 2^{\beta} x_{2}\right)\right\| \leq\left(\frac{1}{2^{3 n \beta}}\right)^{l+1} \phi\left(2^{\beta(l+1)} x_{1}, 2^{\beta(l+1)} x_{2}\right) \tag{3.11}
\end{align*}
$$

for all $x_{1}, x_{2} \in V^{n}$. Letting $l \rightarrow \infty$ in (3.10) and applying (3.1), we arrive at $\mathfrak{D C}\left(x_{1}, x_{2}\right)=0$ for all $x_{1}, x_{2} \in V^{n}$. This means that the mapping \mathcal{C} satisfies (2.3). Finally, assume that $\mathcal{C}^{\prime}: V^{n} \longrightarrow W$ is another multi-cubic mapping satisfying equation
(2.3) and inequality (3.4), and fix $x \in V^{n}, j \in \mathbb{N}$. Then

$$
\begin{aligned}
& \left\|\mathcal{C}(x)-\mathcal{C}^{\prime}(x)\right\| \\
= & \left\|\frac{1}{2^{3 n \beta j}} \mathcal{C}\left(2^{\beta j} x\right)-\frac{1}{2^{3 n \beta j}} \mathcal{C}^{\prime}\left(2^{\beta j} x\right)\right\| \\
\leq & \frac{1}{2^{3 n \beta j}}\left(\left\|\mathcal{C}\left(2^{\beta j} x\right)-f\left(2^{\beta j} x\right)\right\|+\left\|\mathcal{C}^{\prime}\left(2^{\beta j} x\right)-f\left(2^{\beta j} x\right)\right\|\right) \\
\leq & \frac{1}{2^{3 n \beta j}} 2 \Phi\left(2^{\beta j} x\right) \\
\leq & 2 \frac{1}{2^{3 n \frac{\beta+1}{2}+n}} \sum_{l=j}^{\infty}\left(\frac{1}{2^{3 n \beta}}\right)^{l} \phi\left(2^{\beta l+\frac{\beta-1}{2}} x, 0\right) .
\end{aligned}
$$

Consequently, letting $j \rightarrow \infty$ and using the fact that series (3.2) is convergent for all $x \in V^{n}$, we obtain $\mathcal{C}(x)=\mathcal{C}^{\prime}(x)$ for all $x \in V^{n}$, which finishes the proof.

Let A be a nonempty set, (X, d) a metric space, $\psi \in \mathbb{R}_{+}^{A^{n}}$, and $\mathcal{F}_{1}, \mathcal{F}_{2}$ operators mapping a nonempty set $D \subset X^{A}$ into $X^{A^{n}}$. We say that operator equation

$$
\begin{equation*}
\mathcal{F}_{1} \varphi\left(a_{1}, \cdots, a_{n}\right)=\mathcal{F}_{2} \varphi\left(a_{1}, \cdots, a_{n}\right) \tag{3.12}
\end{equation*}
$$

is ψ-hyperstable provided every $\varphi_{0} \in D$ satisfying inequality

$$
d\left(\mathcal{F}_{1} \varphi_{0}\left(a_{1}, \cdots, a_{n}\right), \mathcal{F}_{2} \varphi_{0}\left(a_{1}, \cdots, a_{n}\right)\right) \leq \psi\left(a_{1}, \cdots, a_{n}\right), \quad a_{1}, \cdots, a_{n} \in A
$$

fulfils (3.12); this definition is introduced in [8]. In other words, a functional equation \mathcal{F} is hyperstable if any mapping f satisfying the equation \mathcal{F} approximately is a true solution of \mathcal{F}.

Under some conditions the functional equation (2.3) can be hyperstable as follows. Corollary 3.4. Let $\delta>0$. Suppose that $p_{i j}>0$ for $i \in\{1,2\}$ and $j \in\{1, \cdots, n\}$ fulfill

$$
\sum_{i=1}^{2} \sum_{j=1}^{n} p_{i j} \neq 3 n .
$$

Let V be a normed space and W be a Banach space. If $f: V^{n} \longrightarrow W$ is a mapping satisfying the inequality

$$
\left\|\mathfrak{D} f\left(x_{1}, x_{2}\right)\right\| \leq \prod_{i=1}^{2} \prod_{j=1}^{n}\left\|x_{i j}\right\|^{p_{i j}} \delta
$$

for all $x_{1}, x_{2} \in V^{n}$, then f satisfies (2.3).
In the following corollary, we show that functional equation (2.3) is stable. Since the proof is routine, we include it without proof.
Corollary 3.5. Given $\delta>0$ and $\alpha \in \mathbb{R}$ with $\alpha \neq 3 n$. Let also V be a normed space and W be a Banach space. If $f: V^{n} \longrightarrow W$ is a mapping satisfying the inequality

$$
\left\|\mathfrak{D} f\left(x_{1}, x_{2}\right)\right\| \leq \sum_{i=1}^{2} \sum_{j=1}^{n}\left\|x_{i j}\right\|^{\alpha} \delta
$$

for all $x_{1}, x_{2} \in V^{n}$, then there exists a unique solution $\mathcal{C}: V^{n} \longrightarrow W$ of (2.3) such that

$$
\|f(x)-\mathcal{C}(x)\| \leq \begin{cases}\frac{\delta}{2^{4 n}-2^{\alpha+n}} \sum_{j=1}^{n}\left\|x_{1 j}\right\|^{\alpha} & \alpha<3 n \\ \frac{\delta}{2^{\alpha+n}-2^{4 n}} \sum_{j=1}^{n}\left\|x_{1 j}\right\|^{\alpha} & \alpha>3 n\end{cases}
$$

for all $x \in V^{n}$.
Acknowledgements. The authors sincerely appreciate the anonymous reviewer for her/his careful reading, constructive comments and fruitful suggestions to improve the paper.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan., 2(1950), 64-66.
[2] A. Bahyrycz, K. Ciepliński, J. Olko, On an equation characterizing multi Cauchy-Jensen mappings and its Hyers-Ulam stability, Acta Math. Sci. Ser. B Engl. Ed., 35(2015), 1349-1358.
[3] A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst., 30(2016), 2309-2317.
[4] A. Bodaghi, Cubic derivations on Banach algebras, Acta Math. Vietnam., 38(2013), no. 4, 517-528.
[5] A. Bodaghi, S.M. Moosavi, H. Rahimi, The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara, 59(2013), 235-250.
[6] J. Brzdȩk, J. Chudziak, Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal., 74(2011), 6728-6732.
[7] J. Brzdȩk, K. Ciepliński, On a fixed point theorem in 2-Banach spaces and some of its applications, Acta Math. Sci. Ser. B Engl. Ed., 38(2018), 377-390.
[8] J. Brzdȩk, K. Ciepliński, Hyperstability and Superstability, Abstr. Appl. Anal., 2013, art. ID 401756, 13 pp.
[9] K. Ciepliński, Generalized stability of multi-additive mappings, Appl. Math. Lett., 23(2010), 1291-1294.
[10] K. Ciepliński, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl., 62(2011), 3418-3426.
[11] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[12] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., U.S.A., 27 (1941), 222-224.
[13] K.W. Jun, H.M. Kim, On the Hyers-Ulam-Rassias stability of a general cubic functional equation, Math. Ineq. Appl., 6(2003), no. 2, 289-302.
[14] K.W. Jun, H.M. Kim, The generalized Hyers-Ulam-Russias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2002), no. 2, 267-278.
[15] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Birkhäuser Verlag, Basel, 2009.
[16] J.M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Matematicki, Serija III, 36(2001), no. 1, 63-72.
[17] Th.M. Rassias, On the stability of the linear mapping in Banach Space, Proc. Amer. Math. Soc., 72(1978), no. 2, 297-300.
[18] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.
[19] X. Zhao, X. Yang, C.-T. Pang, Solution and stability of the multiquadratic functional equation, Abstr. Appl. Anal., (2013), art. ID 415053, 8 pp.

Received: February 14, 2019; Accepted: July 25, 2019.

