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1. Introduction and Preliminaries

There are various approaches to generalize the known fixed-point results. One of
these approaches is to generalize the used metric spaces such as a quasi-metric space.

First, we remind the reader of the definition of a metric space.

Definition 1.1 Let X be a nonempty set. A mapping d : X × X → [0,∞) is said to
be a metric on X if for all x, y, z ∈ X , it satisfies the following conditions:
(d1) x = y if and only if d(x, y) = 0;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, z) + d(z, y).
In this case, the pair (X , d) is called a metric space.

In quasi-metric spaces, the symmetry condition is dropped.

Definition 1.2 Let X be a nonempty set. A mapping q : X × X → [0,∞) is said to
be a quasi-metric on X if for all x, y, z ∈ X , it satisfies the following conditions:
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(q1) x = y if and only if q(x, y) = 0;
(q2) q(x, y) ≤ q(x, z) + q(z, y).
In this case, the pair (X , q) is called a quasi-metric space.

Notice that every metric is a quasi-metric, but there exist some examples of a quasi-
metric which is not a metric (see [12] and [21] for some examples). On the other hand,
there are some advantages of quasi-metric spaces with respect to metric spaces as tools
in program verification (see [23] and the references therein). So, studying on a quasi-
metric space is important for the context of fixed-point theory and generalizations.
For more details, we refer the readers to [1, 2, 3, 4, 5, 9]. Throughout this paper,
we denote by R the set of all real numbers, and N represents the set of all positive
integers.

Example 1.3 Let X = l1 be defined by

l1 =

{
{ξn}n≥1 ⊂ R :

∞∑
n=1

|ξn| <∞

}
.

Consider q : X × X → [0,∞) such that

q(η, ξ) =

∞∑
n=1

(ξn − ηn)+,

where α+ := max{α, 0} denotes the positive part of a number α ∈ R, ξ = {ξn} and
η = {ηn} are in X . Note that, (X , q) is a quasi-metric space. For the topological
properties of this space one can consult [11].

Now, we mention the some topological notions related to quasi-metric spaces. We
recall convergence and completeness on a quasi-metric space.

Definition 1.4 Let (X , q) be a quasi-metric space, {ξn} be a sequence in X and
ξ ∈ X . The sequence {ξn} converges to ξ if and only if

lim
n→∞

q(ξn, ξ) = lim
n→∞

q(ξ, ξn) = 0. (1.1)

Remark 1.5 In a quasi-metric space (X , q), the limit for a convergent sequence is
unique. Also, if ξn → ξ, we have for all y ∈ X

lim
n→∞

q(ξn, η) = q(ξ, η) and lim
n→∞

q(η, ξn) = q(η, ξ).

In fact, ξn → ξ and ηn → η ⇒ q(ξn, ηn)→ q(ξ, η).

Definition 1.6 [22] Let (X , q) be a quasi-metric space and {ξn} be a sequence in
X . We say that {ξn} is right K-Cauchy if and only if for every ε > 0, there exists a
positive integer N = N(ε) such that q(ξn, ξm) < ε for all n ≥ m > N .

Definition 1.7 [22] Let (X , q) be a quasi-metric space and {ξn} be a sequence in X .
We say that {ξn} is left K-Cauchy if and only if for every ε > 0, there exists a positive
integer N = N(ε) such that q(ξn, ξm) < ε for all m ≥ n > N .

Definition 1.8 Let (X , q) be a quasi-metric space and {ξn} be a sequence in X . We
say that {ξn} is Cauchy if and only if for every ε > 0, there exists a positive integer
N = N(ε) such that q(ξn, ξm) < ε for all m,n > N .
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Remark 1.9 A sequence {ξn} in a quasi-metric space is Cauchy if and only if it is
right K-Cauchy and left K-Cauchy.

Definition 1.10 [24] Let (X , q) be a quasi-metric space.
(1) (X , q) is said left-complete if and only if each left K-Cauchy sequence in X is
convergent.
(2) (X , q) is said right-complete if and only if each right K-Cauchy sequence in X is
convergent.
(3) (X , q) is said complete if and only if each Cauchy sequence in X is convergent.

Remark 1.11 If q is a quasi-metric on X, then q(x, y) = q(y, x) for all x, y ∈ X is
another quasi-metric, called the conjugate of q and qs(x, y) = max{q(x, y), q(x, y)}
for all x, y ∈ X is a metric on X. Moreover, we have

(1) ξn →q ξ ⇔ limn→∞ q(ξ, ξn) = 0;
(2) ξn →q ξ ⇔ limn→∞ q(ξ, ξn) = 0 ⇔ limn→∞ q(ξn, ξ) = 0.

Also, note that

ξn →qs ξ ⇔ lim
n→∞

q(ξ, ξn) = 0 and lim
n→∞

q(ξn, ξ) = 0

⇔ ξn →q ξ and ξn →q ξ.

Hence, ξn →q ξ implies ξn →qs ξ.

Lemma 1.12 Let (X , q) be a quasi-metric space and T : X → X be a self-mapping.
Suppose that T is continuous at ξ ∈ X . Then for each sequence {ξn} in X such that
ξn → ξ, we have Tξn → Tξ, that is,

lim
n→∞

q(Tξn, T ξ) = lim
n→∞

q(Tξ, Tξn) = 0.

Using the above notions, it has been studied several fixed-point theorems using
various approaches and techniques (see [10], [12], [21], [23], [28] and the references
therein).

In this paper, we provide some results on fixed-discs for different contractive map-
pings in the class of quasi-metric spaces. To do this, we use some new techniques and
modify some known contractive conditions. As an application, we give a common
fixed-disc theorem. The obtained results are supported by several examples.

2. Main results

A recent approach used to generalize the known fixed-point results is to consider the
geometric properties of fixed points when the number of fixed points is not unique. In
this context, a new approach, the so called the fixed-circle problem, has been studied
in metric spaces via different contractive conditions (see [15], [18], [19], [20] and [25]
for more details). In some of these studies, fixed-disc results have been appeared
simultaneously (see [6], and [17]).

At first, we recall the following definitions from [10].
Let (X, q) be a quasi-metric space, x0 ∈ X and r > 0. The upper closed ball of

radius r centered x0 and the lower closed ball of radius r centered x0 are defined by,

B+(x0, r) = {x ∈ X : q(x, x0) ≤ r}
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and

B−(x0, r) = {x ∈ X : q(x0, x) ≤ r} ,

respectively. Now, we define the notions of a circle and a disc on a quasi-metric space
(X, q) as follows: Let r ≥ 0 and x0 ∈ X. The circle Cqx0,r and the disc Dq

x0,r are

Cqx0,r = {x ∈ X : q(x0, x) = q(x, x0) = r}
and

Dq
x0,r = B+(x0, r) ∩B−(x0, r) = {x ∈ X : q(x0, x) ≤ r and q(x, x0) ≤ r} .

We note that the disc Dq
x0,r is, in fact, the closed ball with respect to the associated

metric qs. Indeed, we have

q(x0, x) ≤ r and q(x, x0) ≤ r ⇔ max {q(x0, x), q(x, x0)} ≤ r ⇔ qs(x, x0) ≤ r.
Let (X, q) be a quasi-metric space and T be a self-mapping on X. To obtain some
fixed-disc results, we define new contractive conditions using the following number

r = inf{q(x, Tx) | x ∈ X, Tx 6= x}. (2.1)

2.1. Quasi-type Fq-contractions. In [27], Wardowski defined a new class of func-
tions as follows.

Definition 2.1 [27] Let F be the family of all functions F : (0,∞)→ R such that
(F1) F is strictly increasing;
(F2) For each sequence {αn} in (0,∞), the following holds

lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Using this class of functions, we give the following definition.

Definition 2.2 Let (X, q) be a quasi-metric space, T a self-mapping on X and F ∈ F.
Then T is said to be a quasi-Fq-contraction if there exist t > 0 and x0 ∈ X such that

q(x, Tx) > 0⇒ t+ F (q(x, Tx)) ≤ F (q(x0, x)), (2.2)

for each x ∈ X.

Let Fix(T ) be the fixed-point set of T . In the following theorem, we see that
Fix(T ) contains a disc.

Theorem 2.3 Let (X, q) be a quasi-metric space, T be a quasi-Fq-contraction with

x0 ∈ X on X and r defined as in (2.1). Then we have B−(x0, r) ⊆ Fix(T ), in
particular T fixes the disc Dq

x0,r.

Proof. At first, we show that x0 is a fixed point of T . Assume that q(x0, Tx0) > 0.
By the quasi-Fq-contractive property of T we deduce that

t+ F (q(x0, Tx0)) ≤ F (q(x0, x0)),

whence F (q(x0, Tx0)) < F (0), which leads to a contradiction given the fact that F is
strictly increasing. Thus, we get Tx0 = x0.
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If r = 0 then we get B−(x0, r) = Dq
x0,r = {x0} and clearly, T fixes the center of

the disc Dq
x0,r and the whole disc Dq

x0,r.

Let r > 0 and x ∈ B−(x0, r) with Tx 6= x. By the definition of r, we have
r ≤ q(x, Tx). Because of the quasi-Fq-contractive property, there exist F ∈ F, t > 0
and x0 ∈ X such that

t+ F (q(x, Tx)) ≤ F (q(x0, x)) ≤ F (r) ≤ F (q(x, Tx)),

for all x ∈ X. This is a contradiction with t > 0. Hence it should be Tx = x, hence
B−(x0, r) ⊆ Fix(T ), in particular T fixes the disc Dq

x0,r.

Now, we introduce a new rational type contractive condition.

Definition 2.4 Let (X, q) be a quasi-metric space, T a self-mapping on X and F ∈ F.
Then T is said to be quasi-Fq-rational contraction if there exist t > 0 and x0 ∈ X
such that

q(x, Tx) > 0⇒ t+ F (q(x, Tx)) ≤ F (Mq
R(x0, x)), (2.3)

for all x ∈ X, where

Mq
R(x, y) = max


q(x, y), q(x, Tx), q(y, Ty),

q(x, Tx)q(y, Ty)

1 + q(x, y)
,
q(x, Tx)q(y, Ty)

1 + q(Tx, Ty)

 .

Theorem 2.5 Let (X, q) be a quasi-metric space, T a quasi-Fq-rational contraction
self-mapping with x0 ∈ X on X, Tx0 = x0 and r defined as in (2.1). Then we have

B−(x0, r) ⊆ Fix(T ), in particular T fixes the disc Dq
x0,r.

Proof. Suppose that r = 0. So we have B−(x0, r) = Dq
x0,r = {x0}. Using the

hypothesis Tx0 = x0, T fixes the disc Dq
x0,r.

Let r > 0 and x ∈ B−(x0, r) with Tx 6= x. By the definition of r, we have
r ≤ q(x, Tx). Because of the quasi-Fq-rational contractive property, there exist F ∈ F,
t > 0 and x0 ∈ X such that

t+ F (q(x, Tx)) ≤ F (Mq
R(x0, x)),

for all x ∈ X. Then we get

t+ F (q(x, Tx)) ≤ F (Mq
R(x0, x))

= F

max


q(x0, x), q(x0, Tx0), q(x, Tx),

q(x0, Tx0)q(x, Tx)

1 + q(x0, x)
,
q(x0, Tx0)q(x, Tx)

1 + q(Tx0, Tx)




≤ F (max{r, q(x, Tx)}) = F (q(x, Tx)),

a contradiction. Hence it should be Tx = x. Consequently, B−(x0, r) ⊆ Fix(T ), in
particular T fixes the disc Dq

x0,r.
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2.2. Quasi-α-x0-contractive type mappings. First, we present the definition of
an x0-contractive mapping in quasi-metric spaces.

Definition 2.6 Let (X, q) be a quasi-metric space, T a self-mapping on X and 0 <
k < 1. Then T is said to be a quasi-x0-contractive mapping if there exist x0 ∈ X
such that

q(x, Tx) ≤ kq(x0, x), (2.4)

for every x ∈ X.

Clearly, x0 is always a fixed point of T in Definition 2.6. Now, we show that if T
is a quasi-x0-contractive mapping, then Fix(T ) contains a disc.

Theorem 2.7 Let (X, q) be a quasi-metric space, T a quasi-x0-contractive self-

mapping with x0 ∈ X on X and r defined as in (2.1). Then we have B−(x0, r) ⊆
Fix(T ), in particular T fixes the disc Dq

x0,r.

Proof. In the case r = 0, it is clear that B−(x0, r) = Dq
x0,r = {x0} is a fixed disc of

T .
Suppose that r > 0. Let x ∈ B−(x0, r) be such that Tx 6= x. By the definition of

r, we have r ≤ q(x, Tx). On the other hand, using the quasi-x0-contractive property
of T , we obtain

0 < q(x, Tx) ≤ kq(x0, x) ≤ kr < r,

which leads us to a contradiction. Thus, Tx = x for every x ∈ B−(x0, r), that is,

B−(x0, r) ⊆ Fix(T ). In particular, T fixes the disc Dq
x0,r.

Now, we define the concept of quasi-α-x0-contractive self-mappings in a quasi-
metric spaces.

Definition 2.8 Let T be a self mapping on a quasi-metric space (X, q). Then T is
said to be a quasi-α-x0-contractive self-mapping if there exist a function α : X×X →
(0,∞), 0 < k < 1 and x0 ∈ X such that

α(x0, Tx)q(x, Tx) ≤ kq(x0, x), (2.5)

for all x ∈ X.

We recall α-x0-admissible maps as follows:

Definition 2.9 [6] Let X be a non-empty set. Given a function α : X ×X → (0,∞)
and x0 ∈ X. Then T is said to be an α-x0-admissible if for every x ∈ X,

α(x0, x) ≥ 1 ⇒ α(x0, Tx) ≥ 1.

Theorem 2.10 Let (X, q) be a quasi-metric space, T a quasi-α-x0-contractive self-
mapping with x0 ∈ X on X and r defined as in (2.1). Assume that T is α-x0-

admissible and α(x0, x) ≥ 1 for all x ∈ B−(x0, r). Then we have B−(x0, r) ⊆ Fix(T ),
in particular T fixes the disc Dq

x0,r.

Proof. By the definition of a quasi-α-x0-contractive self-mapping, it is easy to see
that x0 is always a fixed point of T . Therefore, if r = 0 then we have B−(x0, r) =
Dq
x0,r = {x0} and the proof follows.



FIXED DISCS IN QUASI-METRIC SPACES 65

Suppose that r > 0. Let x ∈ B−(x0, r) such that Tx 6= x. By the definition
of r, we have r ≤ q(x, Tx). On the other hand, we have α(x0, x) ≥ 1. Using the
α-x0-admissible property and the quasi-α-x0-contractive property of T , we find

0 < q(x, Tx) ≤ α(x0, Tx)q(x, Tx) ≤ kq(x0, x) ≤ kr < r,

which leads us to a contradiction. Thus, B−(x0, r) ⊆ Fix(T ), in particular T fixes
the disc Dq

x0,r.

The concept of a quasi-Fαq -contractive mapping is defined as follows.

Definition 2.11 Let (X, q) be a quasi-metric space, T a self-mapping on X and
F ∈ F. Then T is called a quasi-Fαq -contraction if there exist t > 0, a function
α : X ×X → (0,∞) and x0 ∈ X such that

q(x, Tx) > 0⇒ t+ α(x0, Tx)F (q(x, Tx)) ≤ F (q(x0, x)), (2.6)

for all x ∈ X.

Theorem 2.12 Let (X, q) be a quasi-metric space, T a quasi-Fαq -contractive self-
mapping with x0 ∈ X and r defined as in (2.1). Suppose that T is α-x0-admissible

and α(x0, x) ≥ 1 for all x ∈ B−(x0, r). Then we have B−(x0, r) ⊆ Fix(T ), in
particular T fixes the disc Dq

x0,r.

Proof. At first, using the quasi-Fαq -contractive property, one can easily deduce that

Tx0 = x0. Hence we have B−(x0, r) = Dq
x0,r = {x0} if r = 0. Clearly, T fixes the

disc Dq
x0,r.

Assume that r > 0. Let x ∈ B−(x0, r) where Tx 6= x. Therefore, by the definition
of r, we have r ≤ q(x, Tx). On the other hand, we have α(x0, x) ≥ 1 and T is
α-x0-admissible. So, using the quasi-Fαq -contractive property of T , we deduce

F (q(x, Tx)) < t+ α(x0, Tx)F (q(x, Tx)) ≤ F (q(x0, x)) ≤ F (r) ≤ F (q(x, Tx)).

Thus, by the fact that F is strictly increasing and t > 0 we get a contradiction. Hence,
we have B−(x0, r) ⊆ Fix(T ), in particular T fixes the disc Dq

x0,r.

Definition 2.13 Let (X, q) be a quasi-metric space, T a self-mapping on X and

F ∈ F. Then T is called a Ćirić type quasi-Fq-contraction if there exist t > 0 and
x0 ∈ X such that

q(x, Tx) > 0 =⇒ t+ α(x0, Tx)F (q(x, Tx)) ≤ F (Mq
C(x0, x)), (2.7)

for all x ∈ X, where

Mq
C(x, y) = max

{
q(x, y), q(x, Tx), q(y, Ty),

q(x, Ty) + q(y, Tx)

2

}
. (2.8)

Proposition 2.14 Let (X, q) be a metric space. If T is a Ćirić type quasi-Fq-
contraction with x0 ∈ X such that α(x0, Tx0) ≥ 1, then we have Tx0 = x0.
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Proof. Assume that Tx0 6= x0. From the definition of a Ćirić type quasi-Fq-
contraction, we get

q(x0, Tx0) > 0 =⇒ t+ α(x0, Tx0)F (q(x0, Tx0)) ≤ F (Mq
C(x0, x0))

= F

max


q(x0, x0), q(x0, Tx0), q(x0, Tx0),

q(x0, Tx0) + q(x0, Tx0)

2




= F (q(x0, Tx0)),

which is a contradiction since t > 0. Then we have Tx0 = x0.

We give a generalization of Theorem 2.12.

Theorem 2.15 Let (X, q) be a quasi-metric space, T a Ćirić type quasi-Fq-contraction
with x0 ∈ X and r defined as in (2.1). Assume that T is α-x0-admissible and if for
every x ∈ Dq

x0,r, we have q(x0, Tx) ≤ r. Then T fixes the disc Dq
x0,r.

Proof. If r = 0, clearly Dq
x0,r = {x0} is a fixed-disc (point) by Proposition 2.14.

Assume that r > 0. Let x ∈ Dq
x0,r. By the definition of r, we have q(x, Tx) ≥ r.

So using the Ćirić type quasi-Fq-contractive property and the fact that T is α-x0-
admissible and F is increasing, we get

F (q(x, Tx)) < α(x0, Tx)F (q(x, Tx)) + t ≤ F (Mq
C(x0, x))

= F

(
max

{
q(x0, x), q(x0, Tx0), q(x, Tx),

q(x0, Tx) + q(x, Tx0)

2

})
≤ F (max {r, q(x, Tx), 0, r}) ≤ F (q(x, Tx)),

which leads to a contradiction. Therefore, q(x, Tx) = 0 and so Tx = x. Hence, T
fixes the disc Dq

x0,r.

2.3. Quasi-α-ϕ-x0-contractive type mappings. At first, we recall the notion of a
(c)-comparison functions [8] (see also [13]).

Definition 2.16 [8] A function ϕ : R+ → R+ is called a (c)-comparison function if
(i)ϕ ϕ is increasing;
(ii)ϕ There exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms

∞∑
k=1

υk such that

ϕk+1(t) ≤ aϕk(t) + υk,

for k ≥ k0 and any t ∈ R+.

The class of (c)-comparison functions will be denoted by Ψc.

Lemma 2.17 [8] If ϕ : R+ → R+ is a (c)-comparison function, then the followings
hold:

(i) ϕ is a comparison function;
(ii) ϕ(t) < t for any t ∈ R+;
(iii) ϕ is continuous at 0;

(iv) the series
∞∑
k=0

ϕk(t) converges for any t ∈ R+.
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Now, using Definition 2.16 and Lemma 2.17, we introduce two new contractions
and obtain two new fixed-disc theorems as follows:

Definition 2.18 Let (X, q) be a quasi-metric space and T a self-mapping on X. Then
T is said to be a quasi-α-ϕ-x0-contraction if there exist α : X ×X → (0,∞), ϕ ∈ Ψc

and x0 ∈ X such that

q(x, Tx) > 0 =⇒ α(x0, Tx)q(x, Tx) ≤ ϕ (q(x0, Tx)) ,

for each x ∈ X.

Theorem 2.19 Let (X, q) be a quasi-metric space, T a quasi-α-ϕ-x0-contractive self-
mapping with x0 ∈ X and r defined as in (2.1). Assume that T is α-x0-admissible. If

α(x0, x) ≥ 1 for x ∈ B−(x0, r) and 0 < q(x0, Tx) ≤ r for x ∈ B−(x0, r)− {x0}, then

we have B−(x0, r) ⊆ Fix(T ), in particular T fixes the disc Dq
x0,r.

Proof. Using the quasi-α-ϕ-x0-contractive property, we have Tx0 = x0. Indeed, we
assume Tx0 6= x0, that is, q(x0, Tx0) > 0. Then using the condition (ii) in Lemma
2.17 and α-x0-admissibility, we get

α(x0, Tx0)q(x0, Tx0) ≤ ϕ (q(x0, Tx0)) < q(x0, Tx0),

a contradiction. It should be Tx0 = x0.
Suppose that r = 0. In this case, B−(x0, r) = Dq

x0,r = {x0} and the proof follows.

Now we suppose that r > 0 and x ∈ B−(x0, r) − {x0} such that x 6= Tx. Using
the definition of r, we have r ≤ q(x, Tx). By the hypothesis, we known α(x0, x) ≥ 1.
From the quasi-α-ϕ-x0-contractive property and α-x0-admissibility, we get

α(x0, Tx)q(x, Tx) ≤ ϕ (q(x0, Tx)) < q(x0, Tx) ≤ r,

a contradiction. Therefore, Tx = x, that is, B−(x0, r) ⊆ Fix(T ), in particular T fixes
the disc Dq

x0,r.

Using the number Mq
C(x, y) defined as in (2.8), we define the following new con-

traction.

Definition 2.20 Let (X, q) be a quasi-metric space and T a self-mapping on X. Then

T is said to be a Ćirić type quasi-α-ϕ-x0-contraction if there exist α : X×X → (0,∞),
ϕ ∈ Ψc and x0 ∈ X such that

q(x, Tx) > 0 =⇒ α(x0, Tx)q(x, Tx) ≤ ϕ (Mq
C(x0, x)) ,

for each x ∈ X.

Theorem 2.21 Let (X, q) be a quasi-metric space, T a Ćirić type quasi-α-ϕ-x0-
contractive self-mapping with x0 ∈ X and r defined as in (2.1). Assume that T is
α-x0-admissible. If α(x0, x) ≥ 1 and q(x0, Tx) ≤ r for x ∈ Dq

x0,r, then T fixes the
disc Dq

x0,r.

Proof. Using the hypothesis, we have Tx0 = x0. Indeed, we assume Tx0 6= x0, that is,
q(x0, Tx0) > 0. Then using the condition (ii) in Lemma 2.17 and α-x0-admissibility,
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we get

Mq
C(x0, x0) = max


q(x0, x0), q(x0, Tx0), q(x0, Tx0),

q(x0, Tx0) + q(x0, Tx0)

2

 = q(x0, Tx0)

and
α(x0, Tx0)q(x0, Tx0) ≤ ϕ (Mq

C(x0, x0)) < q(x0, Tx0),

a contradiction. It should be Tx0 = x0.
Let r = 0. In this case, we have Dq

x0,r = {x0}.
Now we suppose that r > 0 and x ∈ Dq

x0,r − {x0} such that x 6= Tx. Using the
definition of r, we have r ≤ q(x, Tx). By the hypothesis, we known α(x0, x) ≥ 1. By

the Ćirić type quasi-α-ϕ-x0-contractive property and α-x0-admissibility, we get

Mq
C(x0, x) = max


q(x0, x), q(x0, Tx0), q(x, Tx),

q(x0, Tx) + q(x, Tx0)

2

 ≤ q(x, Tx)

and
α(x0, Tx)q(x, Tx) ≤ ϕ (Mq

C(x, x0)) < q(x, Tx),

a contradiction. Therefore, Tx = x, that is, Dq
x0,r is a fixed disc of T .

2.4. Quasi-α-ψ-ϕ-x0-contractive type mappings. We recall the notion of an al-
tering distance function.

Definition 2.22 [14] A function ψ : [0,∞) → [0,∞) is called an altering distance
function if the followings hold:

(i) ψ is continuous and nondecreasing;
(ii) ψ(t) = 0 if and only if t = 0.

Using this definition, we present two new contractive conditions and two new fixed-
disc results.

Definition 2.23 Let (X, q) be a quasi-metric space and T a self-mapping on X. Then
T is said to be a quasi-α-ψ-ϕ-x0-contraction if there exist α : X ×X → (0,∞), two
altering distance functions ψ, ϕ and x0 ∈ X such that

q(x, Tx) > 0 =⇒ α(x0, Tx)ψ (q(x, Tx)) ≤ ψ (q(x0, x))− ϕ (q(x0, x)) ,

for each x ∈ X.

Theorem 2.24 Let (X, q) be a quasi-metric space, T a quasi-α-ψ-ϕ-x0-contractive
self-mapping with x0 ∈ X and r defined as in (2.1). Assume that T is α-x0-admissible.

If α(x0, x) ≥ 1 for x ∈ B−(x0, r), then we have B−(x0, r) ⊆ Fix(T ), in particular T
fixes the disc Dq

x0,r.

Proof. Using the quasi-α-ψ-ϕ-x0-contractive property, we have Tx0 = x0. Indeed, we
assume Tx0 6= x0, that is, q(x0, Tx0) > 0. Then using the condition (ii) in Definition
2.22 and α-x0-admissibility, we get

α(x0, Tx0)ψ (q(x0, Tx0)) ≤ ψ (q(x0, x0))− ϕ (q(x0, x0))

= ψ(0)− ϕ(0) = 0,
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a contradiction. It should be Tx0 = x0.
Suppose that r = 0. In this case, we get B−(x0, r) = Dq

x0,r = {x0}.
Now, we suppose that r > 0 and x ∈ B−(x0, r) − {x0} such that x 6= Tx. Using

the definition of r, we have r ≤ q(x, Tx). By the hypothesis, we know α(x0, x) ≥ 1.
By the quasi-α-ψ-ϕ-x0-contractive property and α-x0-admissibility, we get

α(x0, Tx)ψ (q(x, Tx)) ≤ ψ (q(x0, x))− ϕ (q(x0, x))

= ψ(r)− ϕ(r) < ψ(r),

a contradiction. Therefore Tx = x, that is, B−(x0, r) ⊆ Fix(T ). In particular, T
fixes the disc Dq

x0,r.

We define the following contraction using the number Mq
C(x, y) defined as in (2.8).

Definition 2.25 Let (X, q) be a quasi-metric space and T a self-mapping on X. Then

T is said to be a Ćirić type quasi-α-ψ-ϕ-x0-contraction if there exist α : X × X →
(0,∞), two altering distance functions ψ, ϕ and x0 ∈ X such that

q(x, Tx) > 0 =⇒ α(x0, Tx)ψ (q(x, Tx)) ≤ ψ (Mq
C(x0, x))− ϕ (Mq

C(x0, x)) ,

for each x ∈ X.

Theorem 2.26 Let (X, q) be a quasi-metric space, T a Ćirić type quasi-α-ψ-ϕ-x0-
contractive self-mapping with x0 ∈ X and r defined as in (2.1). Assume that T is
α-x0-admissible. If α(x0, x) ≥ 1 and q(x0, Tx) ≤ r for x ∈ Dq

x0,r, then T fixes the
disc Dq

x0,r.

Proof. Using the hypothesis, we have Tx0 = x0. Indeed, we assume Tx0 6= x0, that
is, q(x0, Tx0) > 0 and we get

α(x0, Tx0)ψ (q(x0, Tx0)) ≤ ψ (Mq
C(x0, x0))− ϕ (Mq

C(x0, x0))

= ψ (q(x0, Tx0))− ϕ (q(x0, Tx0))

< ψ (q(x0, Tx0)) ,

a contradiction. It should be Tx0 = x0.
Let r = 0. In this case, we have Dq

x0,r = {x0} and the proof follows.
Now, we suppose that r > 0 and x ∈ Dq

x0,r − {x0} such that x 6= Tx. Using the
definition of r, we have r ≤ q(x, Tx). By the hypothesis, we know that α(x0, x) ≥ 1.

From the Ćirić type quasi-α-ψ-ϕ-x0-contractive property and α-x0-admissibility, we
get

α(x0, Tx)ψ (q(x, Tx)) ≤ ψ (Mq
C(x0, x))− ϕ (Mq

C(x0, x))

< ψ (q(x, Tx)) ,

a contradiction. Therefore, Tx = x, that is, Dq
x0,r is a fixed disc of T .
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2.5. Some comparisons and remarks. In this section, we give some relationships
between the above contractions. We also provide some illustrative examples.

Let us take the function α : X ×X → (0,∞) as α(x, y) = 1 for all (x, y) ∈ X ×X
in Definition 2.8 and Definition 2.11. Then the notions of a quasi-x0-contraction and
a quasi-α-x0-contraction coincide. Similarly, the concepts of a quasi-Fd-contraction
and a quasi-Fαd -contraction coincide.

Now if we consider the function α : X × X → (0,∞) as α(x, y) ∈ (0, 1] for all
(x, y) ∈ X ×X, then every quasi-x0-contraction is a quasi-α-x0-contraction. Indeed,
we get

q(x, Tx) > 0 =⇒ α(x0, Tx)q(x, Tx) ≤ q(x, Tx) ≤ kq(x0, x),

for each x ∈ X. On the other hand, if we take the function α : X × X → (0,∞)
as α(x, y) ∈ [1,∞) for all (x, y) ∈ X × X, then every quasi-α-x0-contraction is a
quasi-x0-contraction. Indeed, we have

q(x, Tx) > 0 =⇒ q(x, Tx) ≤ α(x0, Tx)q(x, Tx) ≤ kq(x0, x),

for each x ∈ X.
Using the above approach, we see that if we consider the function α : X × X →

(0,∞) as α(x, y) ∈ (0, 1] for all (x, y) ∈ X × X, then every quasi-Fd-contraction
is a quasi-Fαd -contraction. Also, if we take the function α : X × X → (0,∞) as
α(x, y) ∈ [1,∞) for all (x, y) ∈ X × X, then every quasi-Fαd -contraction is a quasi-
Fd-contraction.

Notice that the radius r of the fixed disc is independent from the choice of the
center x0 in all of the obtained theorems (see the following examples). Moreover, all
of the proved fixed-disc results can be considered as fixed-circle results.

The defined contractive conditions in previous subsections are modified from some
classical contractions used to obtain fixed-point theorems on metric or some gener-
alized metric spaces. For example, the notion of a quasi-x0-contractive mapping is
given by modifying the Banach’s contraction principle [7]. For an another example,
the notion of a quasi-Fd-contraction is modified using the notion of an F -contraction
[27].

Now, we give some examples to show the validity of our obtained results.
Consider X = {0, 1, 2}. Given the function q : X ×X → [0,∞) as

x / y 0 1 2
0 0 1 2
1 2 0 1
2 2 1 0

.

Then the function q is a quasi-metric, but it is not a metric because of q(0, 1) = 1 6=
q(1, 0) = 2. Let us define the self-mapping T : X → X by

T :

(
0 1 2
1 1 2

)
.

We obtain

r = inf{q(x, Tx) | Tx 6= x, x ∈ X} = 1
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and the disc

Dq
1,1 = {x ∈ X : q(x, 1) ≤ 1 and q(1, x) ≤ 1} = {1, 2} .

• The self-mapping T is a quasi-Fd-contraction with t = ln 2, F = lnx and x0 = 1.
Then T satisfies the conditions of Theorem 2.3.
• The self-mapping T is a quasi-Fd-rational contraction with t = ln 2, F = lnx

and x0 = 1. Then T satisfies the conditions of Theorem 2.5.
• The self-mapping T is a quasi-x0-contractive mapping with k = 1

2 and x0 = 1.
Then T satisfies the conditions of Theorem 2.7.
• The self-mapping T is a quasi-α-x0-contraction with k = 1

2 , α(x, y) = 1 and
x0 = 1. Then T satisfies the conditions of Theorem 2.10.
• The self-mapping T is a quasi-Fαd -contraction with t = ln 2, F = lnx, α(x, y) = 1

and x0 = 1. Then T satisfies the conditions of Theorem 2.12.
• The self-mapping T is a Ćirić type quasi-Fd-contraction with t = ln 2, F = lnx,

α(x, y) = 4 and x0 = 1. Then T satisfies the conditions of Theorem 2.15.

• The self-mapping T is a Ćirić type quasi-α-ϕ-x0-contraction with ϕ(t) = t
2 (t ≥

0), α(x, y) = 1 and x0 = 1. Then T satisfies the conditions of Theorem 2.21.

• The self-mapping T is a quasi-α-ψ-ϕ-x0-contraction and a Ćirić type quasi-α-ψ-
ϕ-x0-contraction with α(x, y) = 1, x0 = 1, ψ(t) = t and

ϕ(t) =


t
√
t

1 +
√
t

, t ∈ [0, 1]

t

2
, t > 1,

where ψ and ϕ are two altering distance functions given in [16]. Then T satisfies the
conditions of Theorem 2.24 and Theorem 2.26.

Consequently, T fixes the disc Dq
1,1.

Let us define the self-mapping S : X → X as

S :

(
0 1 2
0 2 2

)
.

We obtain

r = inf{q(x, Sx) | Sx 6= x, x ∈ X} = 1

and the disc

Dq
0,1 = {x ∈ X : q(x, 0) ≤ 1 and q(0, x) ≤ 1} = {0} .

The self-mapping S is a quasi-α-ϕ-x0-contraction with ϕ(t) = t
2 (t ≥ 0), α(x, y) = 1

and x0 = 1. Then S satisfies the conditions of Theorem 2.19. Hence S fixes the disc
Dq

0,1.
Finally, we note that the converse statements of the obtained theorems are not true

everwhen. To obtain an example of this situation for Theorem 2.3, let us consider the
quasi-metric q(x, y) defined by

q(x, y) =

{
x− y ; x ≥ y

1 ; x < y,
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for all x, y ∈ X = R given in [12]. If we consider the self-mapping H : R→ R defined
by

Hx =

{
x+ 3 ; |x| > 2
x ; |x| ≤ 2,

H is not a quasi-Fd-contraction for any F ∈ F, t > 0 and x0 = 0. But, the disc
Dq

0,1 = [−1, 1] is fixed by H.

3. An application: A common fixed-disc theorem

Let (X, q) be a quasi-metric space, T, S : X → X be two self-mappings and Dq
x0,r

be a disc on X. If Tx = Sx = x for all x ∈ Dq
x0,r, then the disc Dq

x0,r is called as the
common fixed disc of the pair (T, S).

Following [17] and [26], we modify the number Mq
C(x, y) defined in (2.8) as follows:

Mq
T,S(x, y) = max

{
q(Tx, Sy), q(Tx, Sx), q(Ty, Sy),

q(Tx, Sy) + q(Ty, Sx)

2

}
.

To obtain a common fixed-disc theorem, we define the following number:

µq = inf {q(Tx, Sx) : x ∈ X,Tx 6= Sx} .

In the following theorem, we use the numbers Mq
T,S(x, y), r which is defined in (2.1),

µq and ρ defined by

ρ = min{r, µq}.

Theorem 3.1 Let (X, q) be a quasi-metric space, T, S : X → X two self-mappings
and T an α-x0-admissible map. Assume that there exist F ∈ F, t > 0 and x0 ∈ X
such that

q(Tx, Sx) > 0 =⇒ t+ α(x0, Tx)F (q(Tx, Sx)) ≤ F (Mq
T,S(x, x0)),

for each x ∈ X and

α(x0, x) ≥ 1, q(Tx, x0) ≤ ρ, q(x0, Sx) ≤ ρ,

for each x ∈ Dq
x0,ρ. If T is a quasi-Fq-contraction with x0 ∈ X and r (or S is a

quasi-Fq-contraction with x0 ∈ X and r), then Dq
x0,ρ is a common fixed disc of the

pair (T, S) in X.

Proof. Let x = x0. If q(Tx0, Sx0) > 0 then we have

Mq
T,S(x0, x0) = max


q(Tx0, Sx0), q(Tx0, Sx0), q(Tx0, Sx0),

q(Tx0, Sx0) + q(Tx0, Sx0)

2

 = q(Tx0, Sx0)

and

t+ α(x0, Tx0)F (q(Tx0, Sx0)) ≤ F (Mq
T,S(x0, x0)) = F (q(Tx0, Sx0))

=⇒ t ≤ (1− α(x0, Tx0))F (q(Tx0, Sx0)),

a contradiction with t > 0. Therefore Tx0 = Sx0, that is, x0 is a coincidence point
of the pair (T, S). If T is a quasi-Fq-contraction (or S is a quasi-Fq-contraction) then
using Theorem 2.3, we have Tx0 = x0 (or Sx0 = x0) and hence Tx0 = Sx0 = x0.
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Now if ρ = 0, then clearly Dq
x0,ρ = {x0} and this disc is a common fixed disc of

the pair (T, S).
Let ρ > 0 and x ∈ Dq

x0,ρ. Assume that Tx 6= Sx, that is, q(Tx, Sx) > 0. Using the
hypothesis, α-x0-admissibility of T and the definition of ρ, we get

Mq
T,S(x, x0) = max

{
q(Tx, Sx0), q(Tx, Sx), q(Tx0, Sx0),

q(Tx, Sx0) + q(Tx0, Sx)

2

}
= max

{
q(Tx, x0), q(Tx, Sx),

q(Tx, x0) + q(x0, Sx)

2

}
≤ q(Tx, Sx)

and so

t+ α(x0, Tx)F (q(Tx, Sx)) ≤ F (Mq
T,S(x, x0)) ≤ F (q(Tx, Sx))

=⇒ t ≤ (1− α(x0, Tx))F (q(Tx, Sx)),

a contradiction with t > 0. We have found that x is a coincidence point of the pair
(T, S), that is, Tx = Sx. If T (or S) is a quasi-Fq-contraction, then by Theorem 2.3,
we have Tx = x (or Sx = x) and hence Tx = Sx = x. Consequently, Dq

x0,ρ is a
common fixed disc of the pair (T, S).
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