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1. Introduction

Many of real life problems such as the system of linear or algebraic equations,
ordinary or partial differential equations, etc can be framed as linear or nonlinear
equations of the form Tx = x. In this case x ∈ X is called fixed point of T . The fixed
point theorems for contraction mappings on the complete metric spaces are well known
and a number of generalizations of these results have been proved. Nadler [15] proved
an extension of the fixed point theorem for multifunction contraction. We noted that
x is said to be a fixed point of T : X → 2X when x ∈ Tx. Several classes of problems
like equilibrium problems [5], optimization problems [14], differential inclusions [4]
can be modeled and solved using fixed point theorems of multifunctions. But not
all maps or multifunctions have fixed point. In this case, one tries to determine an
approximate solution x (subject to the condition) that the distance between x and
Tx be minimum. Indeed, best proximity point theorems examine the existence of
such optimal approximate solutions, known as best proximity points of a map or
multifunction. Thus x is the best proximity point of T : A → B or T : A → 2B if
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d(x, Tx) = d(A,B). So, a best proximity point theorem is concerned with the global
minimazition of the mapping f(x) = d(x, Tx).
We mention that the best proximity point theory is closely related to the following
classical result in the best approximation theory.
Theorem 1.1 ([9]) If A is a nonempty compact convex subset of a Hausdorff locally
convex topological vector space B and T : A → B is a continuous mapping, then
there exists an element x ∈ A such that d(x, Tx) = d(Tx,A).
References [3], [7], [8] and [17] have analyzed several classes of contractions for the
existence of best the proximity point. Further, best proximity theorems for multifunc-
tions have been proved in [12], [13], [16], [22]. In [18] Sadiq Basha defined proximal
contraction mappings and proved the best proximity point for these mappings. Later,
it was continued in numerous articles(for example see [1], [20], [21]).
In this paper we prove the best proximity point theorems for some multifunctions we
call proximal multifunctions.
Let (X, d) be a metric space and Y ⊆ X. We refer to the family of all nonempty
closed and bounded subsets of Y as CB(Y ). Let us assume throughout this section
that A and B are nonempty subsets of a metric space (X, d). We recall the following
notations which will be used in the sequel.

d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B},

A0 := {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 := {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

Also if A and B are closed, The Hausdorff metric is defined as:

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}.

Since in sequel we always assume that A0 is a nonempty set, we need to point out
that in [13] sufficient conditions are provided to guarantee that A0 be a nonempty
set.
Definition 1.1 ([18]) The set B is said to be approximatively compact with respect
to A if every sequence {yn} of B satisfying the condition that d(x, yn)→ d(x,B), for
some x ∈ A has a convergent subsequence.
We note that every set is approximatively compact with respect to itself, and that
every compact set is approximatively compact.
Definition 1.2 ([18]) A point x∗ ∈ A is said to be the best proximity point of the
multifunction T : A→ 2B when d(x∗, Tx∗) = d(A,B).
Definition 1.3 ([21]) Given a sequence {xn} in A and a sequence {yn} in B, the
sequence {(xn, yn)} in A×B is said to be a cyclically Cauchy sequence if and only if
for every ε > 0, there exists a positive integer N such that d(xm, yn) < d(A,B) + ε,
for all m,n ≥ N .
We note that the sequence {xn} in A is a Cauchy sequence if and only if the sequence
{(xn, xn)} is a cyclically Cauchy sequence in A×A.
Definition 1.4 ([21]) Given a sequence {xn} in A and a sequence {yn} in B, the
sequence {(xn, yn)} in A×B is said to be a fairly Cauchy sequence if and only if the
following conditions are satisfied:
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(i) {(xn, yn)} is a cyclically Cauchy sequence;
(ii) {xn} and {yn} are Cauchy sequences.

Definition 1.5 ([21]) The pair (A,B) is called a fairly complete space if and only if
for every fairly Cauchy sequence {(xn, yn)} in A × B, the sequences {xn} and {yn}
are convergent in A and B, respectively.
Definition 1.6 ([19]) A is said to have uniform approximation in B if and only if,
given ε > 0, there exists δ > 0 such that

d(x1, y1) = d(x2, y2) = d(A,B), d(x1, x2) < δ ⇒ d(y1, y2) < ε

for all x1, x2 ∈ A and y1, y2 ∈ B.
Definition 1.7 A multifunction T : A→ 2B is said to have uniform T− approxima-
tion in B if, given ε > 0, there exists δ > 0 such that

d(u1, Tx1) = d(u2, Tx2) = d(A,B), d(u1, u2) < δ ⇒ H(Tx1, Tx2) < ε

for all x1, x2, u1, u2 ∈ A.
Definition 1.8 A multifunction T : A→ 2B is said to be proximal contraction of the
first kind if there exists a non-negative number α < 1 such that

d(u1, Tx1) = d(u2, Tx2) = d(A,B)⇒ d(u1, u2) ≤ αd(x1, x2)

for all x1, x2, u1, u2 ∈ A.
Definition 1.9 A multifunction T : A → 2B is said to be a proximal contraction of
the second kind if and only if there exists a non-negative number α < 1 such that

d(u1, Tx1) = d(u2, Tx2) = d(A,B)⇒ H(Tu1, Tu2) ≤ αH(Tx1, Tx2)

for all x1, x2, u1, u2 ∈ A.
Definition 1.10 A multifunction T : A → 2B is said to be a proximally quasi-
continuous if

d(un, Txn) = d(u, Tx) = d(A,B), xn → x⇒ unk
→ u

for all sequences {un} , {xn} in A, for x, u ∈ A and for some subsequence {unk
} of

{un}.
Definition 1.11 A multifunction T : A → 2B is said to be a strong proximal con-
traction of the second kind if and only if the following conditions are satisfied:

(a) T is proximally quasi-continuous,
(b) T is a proximal contraction of the second kind.

2. Main results

Lemma 2.1 Let A and B be nonempty subsets of a metric space such that A0

and B0 are nonempty and T : A → 2B is a multifunction. Also assume that for any
x ∈ A0 we have T (x) ∩ B0 6= ∅. Then there exists sequence {xn} in A0 and {yn} in
Txn ∩B0 such that for all n ∈ N, d(xn+1, Txn) = d(A,B) = d(xn+1, yn).
Proof. Let x0 ∈ A0. By assumption T (x0) ∩ B0 6= ∅, we obtain that, for any
y ∈ T (x0) ∩ B0 there exists x ∈ A such that d(x, y) = d(A,B). We claim that there
exists x1 ∈ A0 such that d(x1, Tx0) = d(A,B). To prove it, we know that for any
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x ∈ A we have d(A,B) ≤ d(x, Tx0). Now let y0 ∈ T (x0) ∩ B0. Then there exists
x1 ∈ A such that d(x1, y0) = d(A,B) and we can deduce that

d(x1, Tx0) ≤ d(x1, y0) = d(A,B) ≤ d(x1, Tx0).

Thus d(x1, Tx0) = d(A,B) = d(x1, y0). From d(x1, y0) = d(A,B) we get x1 ∈ A0. By
repeating the same process we can make sequence {xn} in A0 and {yn} in Txn ∩B0

such that, for all n ∈ N, d(xn+1, Txn) = d(A,B) = d(xn+1, yn).
Theorem 2.2 Consider (X, d) to be a complete metric space and

(i) A,B are nonempty subsets of X and A is closed;
(ii) B is approximatively compact with respect to A;
(iii) A0, B0 are nonempty;
(iv) T : A→ 2B is a proximal contraction of the first kind;
(v) for any x ∈ A0 we have T (x) ∩B0 6= ∅.

Then there exists a unique x ∈ A such that d(x, Tx) = d(A,B). Further, for any
fixed x0 ∈ A0, the sequence {xn} defined by d(xn+1, Txn) = d(A,B) is convergent to
x.
Proof. Let x0 ∈ A0. By using the lemma 2.1 we get sequence {xn} in A0 such that

d(xn+1, Txn) = d(xn+2, Txn+1) = d(A,B).

By (iv) , for any n ∈ N, we get d(xn+2, xn+1) ≤ αd(xn+1, xn). So we can deduce
that d(xn+2, xn+1) ≤ αn+1d(x1, x0). Therefore {xn} is a Cauchy sequence. Since X
is complete and A is closed then there exists x ∈ A such that xn → x as n → ∞.
Further, it is easy to prove that

d(x,B) ≤ d(x, Txn) ≤ d(x, xn+1) + d(xn+1, Txn)

= d(x, xn+1) + d(A,B) (2.1)

≤ d(x, xn+1) + d(x,B).

for any n ∈ N. Thus d(x, Txn) → d(x,B) as n → ∞. Then we may select yn ∈ Txn
such that d(x, yn)→ d(x,B) as n→∞. To prove this, since d(x, Txn)→ d(x,B) we
have

lim
n→∞

inf
y∈Txn

d(x, y) = d(x,B).

Now for ε > 0 there exists N ∈ N such that for any n ≥ N we get

| inf
y∈Txn

d(x, y)− d(x,B)| < ε.

Then for some m ≥ N there exists no y ∈ Txm such that |d(x, y) − d(x,B)| < ε.
Otherwise, for each y ∈ Txm we have |d(x, y)−d(x,B)| ≥ ε. By taking infimum from
the both side of the last inequality with respect to y we get

| inf
y∈Txm

d(x, y)− d(x,B)| ≥ ε.

That is a contradiction. Thus d(x, yn) → d(x,B) and by (ii) there exists y ∈ B
such that some subsequence of {yn} is convergent to y ∈ B. Then d(x, y) = d(x,B).
Further, by (2.1) we get

d(x,B) ≤ d(x, xn+1) + d(A,B) ≤ d(x, xn+1) + d(x,B).
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Then d(x, y) = d(A,B) and we can write x ∈ A0. By (v) and lemma 2.1 there exists
z ∈ A such that d(z, Tx) = d(A,B). Thus for any n ∈ N we have

d(xn+1, Txn) = d(z, Tx) = d(A,B).

By (iv) , for any n ∈ N, we get d(xn+1, z) ≤ αd(xn, x). Since xn → x we get
xn+1 → z. Thus z = x and we get d(x, Tx) = d(A,B). Also if x∗ is the other best
proximity point of T we get

d(x, Tx) = d(x∗, Tx∗) = d(A,B).

Then by (iv) we get d(x, x∗) ≤ αd(x, x∗). Thus d(x, x∗) = 0 and x = x∗.
Example 2.1 Consider the Euclidean space R2. Let us define

A := {(0, y) | 0 ≤ y ≤ 1}, B := {(2, y) | 0 ≤ y ≤ 1}.
Consider a multifunction T : A→ 2B is defined as follow

T (0, y) = {(2, a) | 0 ≤ a ≤ y

2
}.

It is clear that A0 = A,B0 = B and T (A0) ⊆ B0. Assume that

d(u1, T v1) = d(u2, T v2) = d(A,B) = 2,

where u1, u2, v1, v2 ∈ A. Then we have

d(u1, u2) = d

(
1

2
v1,

1

2
v2

)
=

1

2
d(v1, v2).

Thus T is the proximal contraction of the first kind. Since A,B are compact then
B is approximatively compact with respect to A. (0, 0) is the unique best proximity
point of T .
Example 2.2 Consider the Euclidean space R2. Let us define

A := {(0, y) | 0 ≤ y ≤ 1}, B := {(x, y) | 2 ≤ x ≤ 3, 0 ≤ y ≤ 1}.
Consider a multifunction T : A→ 2B is defined as follows

T (0, y) =
{

(x, a) | 2 ≤ x ≤ 3, 0 ≤ a ≤ y

2

}
.

It is easy to prove that A0 = A,B0 = {(2, y) | 0 ≤ y ≤ 1}. Moreover for any x ∈ A0

we have Tx ∩B0 6= ∅ and T (A0) * B0. Assume that

d(u1, T v1) = d(u2, T v2) = d(A,B) = 2,

where u1, u2, v1, v2 ∈ A. Then we have

d(u1, u2) = d

(
1

2
v1,

1

2
v2

)
=

1

2
d(v1, v2).

Thus T is proximal contraction of the first kind. Since A,B are compact, B is
approximatively compact with respect to A. (0, 0) is the unique best proximity point
of T .
Example 2.3 Consider the metric space (X, d) where X = l∞ is the space of essential
bounded sequence (with respect the essential norm) and d = d∞ is the metric that is
induced by essential norm([2]). Let us define

x1 = (6, 2, 2, 2, 2, 2, 2, · · · ), x2 = (2, 2, 6, 2, 2, 2, 2, · · · ),
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u1 = (2, 2, 2, 4, 2, 2, 2, · · · ), u2 = (2, 2, 2, 2, 4, 2, 2, · · · )
and

A = {x1, x2, u1, u2}.
Consider B as the set of all sequences such that all its elements, except for a finite
number of them, are zero and the opposite zero elements are equal to 2. For example;
(0, 2, 0, 0, 2, 0, · · · , 0, · · · ) is a member of B. Then we get d(A,B) = 2. Let’s define a
mapping T : A→ B as follows:

Tx1 = (0, 2, 0, 2, 0, 2, 0, 0, · · · ), Tx2 = (0, 2, 0, 0, 2, 2, 0, 0, · · · ),

Tu1 = (2, 0, 2, 0, 0, 2, 0, 0, · · · ), Tu2 = (0, 2, 2, 0, 0, 2, 0, 0, · · · ).
So we have d(u1, Tx1) = d(u2, Tx2) = d(A,B) = 2.
By d(u1, u2) = 2 and d(x1, x2) = 4 we get d(u1, u2) ≤ αd(x1, x2) where α = 1

2 . Thus
T is the proximal contraction of the first kind. It is easy to prove that A0 = {u1, u2}.
Since B0 = B, for any x ∈ A, we get T (x) ∈ B0 . Also A is a closed subset of X. But
B is not approximatively compact with respect to A. To prove it, let us define

yn = (2, 2, 2, 2, 2, · · · , 2︸ ︷︷ ︸
n

, 0, 0, · · · ).

It is obvious that ||u1 − yn||∞ → d(u1, B) as n → ∞. But {yn} has no convergence
subsequence. We note that (X, d) is not a complete metric space and T doesn’t have
a best proximity point.
Theorem 2.3 Consider (X, d) to be a complete metric space and

(i) A,B are nonempty subsets of X and B is closed;
(ii) A is approximatively compact with respect to B;
(iii) A0, B0 are nonempty;
(iv) T : A→ 2B is a strong proximal contraction of the second kind;
(v) for any x ∈ A0 we have T (x) ∩B0 6= ∅.

Then there exists x ∈ A such that d(x, Tx) = d(A,B). Further, for any fixed x0 ∈ A0,
the sequence {xn} defined by d(xn+1, Txn) = d(A,B) is convergent to x.
Proof. Let x0 ∈ A1. By using the lemma 2.1 we get sequence {xn} in A0 such that

d(xn+1, Txn) = d(xn+2, Txn+1) = d(A,B).

By (iv) , for any n ∈ N, we get H(Txn+2, Txn+1) ≤ αH(Txn+1, Txn) and we can
deduce that H(Txn+2, Txn+1) ≤ αn+1H(Tx1, Tx0). By the definition of Hausdorff
metric, for any n ∈ N, there exists yn ∈ Txn such that

d(yn, yn+1) ≤ αn+1H(Tx1, Tx0) + kn

for some fixed k ∈ (0, 1). Thus {yn} is a Cauchy sequence. Since X is complete and
B is closed, then there exists y ∈ B such that yn → y as n →∞. Further, it is easy
to prove that

d(yn+1, Txn) ≤ H(Txn+1, Txn) ≤ αn+1H(Tx1, Tx0).

Thus we get

lim
n→∞

d(yn+1, Txn) = lim
n→∞

d(y, Txn) = 0. (2.2)
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Also, we can prove that

d(y,A) ≤ d(y, xn+1) ≤ d(y, Txn) + d(xn+1, Txn)

= d(y, Txn) + d(A,B) (2.3)

≤ d(y, Txn) + d(y,A).

Therefore d(y, xn+1) → d(y,A) as n → ∞ and by (ii), {xn} has a convergent subse-
quence to x ∈ A. Then d(x, y) = d(A, y). By (2.3) we have

d(A,B) ≤ d(y,A) ≤ d(y, xn+1) ≤ d(y, Txn) + d(xn+1, Txn).

Then

d(A,B) ≤ d(y, xn+1) ≤ d(y, Txn) + d(A,B).

Thus d(x, y) = d(A,B) and so we have x ∈ A0. Since Tx ∩ B0 6= ∅, there exists
z ∈ A such that d(z, Tx) = d(A,B). Moreover {xn} has a convergent subsequence
like {xnk

} such that xnk
→ x as k →∞. So we have

d(xnk+1, Txnk
) = d(z, Tx) = d(A,B)

and by (iv), {xnk
}k has convergence subsequence to z. Thus z = x and we get

d(x, Tx) = d(A,B).
Example 2.4 Consider the Euclidean space R2. Let us define

A := {(−1, y) | − 1 ≤ y ≤ 1}, B := {(x, y) | 1 ≤ x ≤ 2, −1 ≤ y ≤ 1}.
Let a multifunction T : A→ 2B be defined as follows

T (−1, y) =

{
{(x, 1) | 1 ≤ x ≤ 2}, y is rational

{(x,−1) | 1 ≤ x ≤ 2}, y is not rational.

It is clear that A0 = A,B0 = {(1, y) | − 1 ≤ y ≤ 1}. Moreover for any x ∈ A0

we have T (x) ∩ B0 6= ∅. Assume that d(u1, T v1) = d(u2, T v2) = d(A,B) = 2 when
u1, u2, v1, v2 ∈ A. We consider the following cases :
Case 1. v1 = (−1, y1) and v2 = (−1, y2) such that y1, y2 are rational. In this case
we should have u1 = u2 = (−1, 1). Then H(Tu1, Tu2) = 0 and d(u1, u2) = 0.
Case 2. v1 = (−1, y1) and v2 = (−1, y2) such that y1 is rational and y2 is not rational.
In this case we should have u1 = (−1, 1) and u2 = (−1,−1). Then H(Tu1, Tu2) = 0
and d(u1, u2) = 2.
Case 3. v1 = (−1, y1) and v2 = (−1, y2) such that y1, y2 are not rational. In this
case we should have u1 = u2 = (−1,−1). Then H(Tu1, Tu2) = 0 and d(u1, u2) = 0.
Thus T is a proximal contraction of the second kind. Case 2 shows that T is not a
proximal contraction of the first kind. Since A,B are compact then B is approxima-
tively compact with respect to A. (−1, 1) is the best proximity point of T .
Theorem 2.4 Consider (X, d) to be a complete metric space and

(i) A,B are nonempty closed subsets of X;
(ii) A0, B0 are nonempty;
(iii) T : A→ 2B is a proximal contraction of the first and second kind;
(iv) for any x ∈ A0 we have T (x) ∩B0 6= ∅.

Then there exists x ∈ A such that d(x, Tx) = d(A,B). Further, for any fixed x0 ∈ A0,
the sequence {xn} defined by d(xn+1, Txn) = d(A,B) is convergent to x.
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Proof. Let x0 ∈ A1. By using the lemma 2.1 we get the sequence {xn} in A0 such
that

d(xn+1, Txn) = d(xn+2, Txn+1) = d(A,B).

Similar to the theorem 2.3, it can be shown that, {xn} ⊆ A is a Cauchy sequence
and since X is complete and A is closed then there exists x ∈ A such that xn → x
as n → ∞. Also, there exists yn ∈ Txn such that {yn} ⊆ B is a Cauchy sequence
and there exists y ∈ B such that yn → y as n → ∞. By (2.1) of theorem 2.3 we
get d(x, Txn) → d(x,B) , d(x, Txn) → d(A,B) and By (2.2) of theorem 2.3 we get
d(yn+1, Txn)→ 0, d(y, Txn)→ 0. Also, it is easy to prove that

d(A,B) ≤ d(xn+1, yn) ≤ d(xn+1, Txn) + d(yn+1, Txn)

and so

d(A,B) ≤ d(xn+1, yn) ≤ d(A,B) + d(yn+1, Txn).

Then d(xn+1, yn) → d(x, y) = d(A,B) as n → ∞. Thus x ∈ A0 and there exists
z ∈ B0 such that

d(z, Tx) = d(xn+1, Txn) = d(A,B).

Since T is the proximal contraction of the first kind we have d(z, xn+1) ≤ αd(xn, x).
So xn → z as n→∞. Thus we get z = x and the proof is complete.
Example 2.5 Consider the Euclidean space R2. Let us define

A := {(0, y)| 0 ≤ y ≤ 1}.
For y ∈ [0, 1] ∩Q let us define

By := {(x, y) | 1 ≤ x ≤ 2},
and for y ∈ [0, 1] ∩Qc

Bc
y := {(x, y) | 1 < x ≤ 2}.

Also let us consider

B1 =
⋃

y∈[0,1]∩Q

By, B2 =
⋃

y∈[0,1]∩Qc

Bc
y, B = B1 ∪B2.

Let a multifunction T : A→ 2B be defined as follows

T (0, y) =

{ {
(x, y2 ) | 1 ≤ x ≤ 2

}
, y is rational

(x, y2 ) | 1 < x ≤ 2}, y is not rational.

We can easily prove that A0 = {(0, y) | y ∈ [0, 1] ∩Q}, B0 = {(1, y) | y ∈ [0, 1] ∩Q}.
Moreover for any x ∈ A0 we have T (x) ∩ B0 6= ∅. Also it is easy to check that T is
the proximal contraction of the first and second kind. But B is not approximatively
compact with respect to A. (0, 0) is the best proximity point of T .
Example 2.6 Consider the Euclidean space R2. Let us define

A1 := {an = (
1

n
, 1)}n, A2 := ([0, 1] ∩Qc)× {1}, A3 = {(0, 1)},

B1 := (Q ∩ [0, 1])× [−1,−2], B2 := (Qc ∩ [0, 1])× (−1,−2], B3 := (2, 4)× [−1,−2]

and

A := A1 ∪A2 ∪A3, B := B1 ∪B2 ∪B3.
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Let a multifunction T : A→ 2B be defined as follows

T (x, 1) =


{

1√
2n

}
× (−1,−2], x = 1

n

{2x+ 2} × [−1,−2], x is not rational

{0} × [−1,−2], x = 0.

It’s clear that A0 = A1 ∪A3 , B0 = {( 1
n ,−1)}n ∪ {(0,−1)}. A, B are not closed.

We have

d

((
1√
2
, 1

)
, (bn,−1)

)
→ d

((
1√
2
, 1

)
, B

)
.

where {bn}n ⊆ (0, 1) is a sequence with rational elements such that it is convergent to
1√
2

as n→∞. But {(bn,−1)}n has no convergence subsequence in B. Thus B is not

approximatively compact with respect to A. Now assume that x1 = a4 and x2 = a2.
We have

Tx1 =

{
1

4
√

2

}
× (−1,−2] and Tx2 =

{
1

2
√

2

}
× (−1,−2].

So for u1 =
(

1
4
√
2
, 1
)

and u2 =
(

1
2
√
2
, 1
)

in A we have

d(u1, Tx1) = d(u2, Tx2) = d(A,B) = 2.

But it is easy to check that H(Tx1, Tx2) = 1
4 and H(Tu1, Tu2) = 1

2
√
2
. Then T is

not proximal contraction of the second kind. It is easy to check that T is proximal
contraction of the first kind. Also for any x ∈ A0 we have T (x)∩B0 6= ∅. (0, 1) is the
best proximity point of T .
In next theorems we replace approximatively compact condition with others condi-
tions.
Theorem 2.5 Consider (X, d) to be a complete metric space and

(i) A,B are nonempty closed subsets of X;
(ii) A0, B0 are nonempty;
(iii) (A,B) is a fairly complete space;
(iv) A has uniform T−approximation in B;
(v) T : A→ CB(B) is a proximal contraction of the first kind;
(vi) for any x ∈ A0 we have T (x) ∩B0 6= ∅.

Then there exists x ∈ A such that d(x, Tx) = d(A,B). Further, for any fixed x0 ∈ A0,
the sequence {xn} defined by d(xn+1, Txn) = d(A,B) is convergent to x.
Proof. Let x0 ∈ A1. By using the proof of lemma 2.1 we get sequences {xn} in A0

and {yn} in B0 (yn ∈ Txn) such that

d(xn+1, yn) = d(xn+1, Txn) = d(A,B)

and

d(xn+1, Txn) = d(xn+2, Txn+1) = d(A,B).

for any n ∈ N. Thus by (v), for any n ∈ N, we get d(xn+2, xn+1) ≤ αd(xn+1, xn) and
so we can deduce that

d(xn+2, xn+1) ≤ αn+1d(x1, x0). (2.4)
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Thus {xn} is a Cauchy sequence. By (2.4) and (iv), for given ε > 0, there exists δ > 0
such that

d(xn+1, yn) = d(xn+2, yn+1) = d(A,B), d(xn+1, xn+2) < δ

=⇒ H(Txn, Txn+1) < ε.

Considering the fact that the values of T are nonempty, closed and bounded subsets
of B and by the definition of Hausdorff metric we can write

d(yn, yn+1) ≤ d(yn, Txn+1) +H(Txn, Txn+1) + d(yn+1, Txn) ≤ 3ε.

Then {yn} is a Cauchy sequence. Also we have

d(yn, xn) ≤ d(yn, xn+1) + d(xn+1, xn)

≤ d(A,B) + αnd(x1, x0).

On the other hand, For m,n > N , we have

d(xm, yn) ≤ d(xm, xn) + d(xn, yn).

Therefore, (xn, yn) is a cyclically Cauchy sequence. By (iii) there exists x ∈ A and
y ∈ B such that xn → x and yn → y as n→∞. Thus we have

d(x, y) = lim
n→∞

d(xn+1, yn) = d(A,B).

Then x ∈ A0 and by (vi) there exists z ∈ A such that d(z, Tx) = d(A,B).
Also for any n ∈ N we have d(xn+1, Txn) = d(A,B). By (v) we can deduce that
d(xn+1, z) ≤ αd(xn, z). So xn → z as n → ∞. Thus we get z = x and the proof is
complete.
Theorem 2.6 Consider (X, d) to be a complete metric space and

(i) A,B are nonempty closed subsets of X;
(ii) A0, B0 are nonempty;
(iii) (A,B) is a fairly complete space;
(iv) B has uniform approximation in A;
(v) T : A→ CB(B) is a strong proximal contraction of the second kind;
(vi) for any x ∈ A0 we have T (x) ∩B0 6= ∅.

Then there exists x ∈ A such that d(x, Tx) = d(A,B). Further, for any fixed x0 ∈ A0,
the sequence {xn} defined by d(xn+1, Txn) = d(A,B) is convergent to x.
Proof. Let x0 ∈ A1. By using the proof of lemma 2.1 we get sequences {xn} in A0

and {yn} in B0 (yn ∈ Txn) such that

d(xn+1, yn) = d(xn+1, Txn) = d(A,B)

and

d(xn+1, Txn) = d(xn+2, Txn+1) = d(A,B).

for any n ∈ N. Thus by (v) , for any n ∈ N, we get

H(Txn+2, Txn+1) ≤ αd(Txn+1, Txn)

and so we can deduce that

H(Txn+2, Txn+1) ≤ αn+1H(Tx1, Tx0). (2.5)
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Considering the fact that the values of T are nonempty, closed and bounded subsets
of B, the definition of Hausdorff metric and (2.5) we can write

d(yn, yn+1) ≤ d(yn, Txn+1) +H(Txn, Txn+1) + d(yn+1, Txn) ≤ 3ε. (2.6)

By (2.5) and (iv) for given ε > 0, there exists δ > 0 such that

d(xn+1, yn) = d(xn+2, yn+1) = d(A,B), d(yn, yn+1) < δ =⇒ d(xn, xn+1) < ε.

So {xn} is a Cauchy sequence. Also by (2.5) we get

d(yn, xn) ≤ d(xn, Txn−1) + d(Txn−1, yn)

≤ d(A,B) +H(Txn−1, Txn)

≤ d(A,B) + αnH(Tx1, Tx0).

On the other hand for m,n > N we have

d(xm, yn) ≤ d(xm, xn) + d(xn, yn).

Thus, (xn, yn) is a cyclically Cauchy sequence. Also by (2.6) we can deduce that {yn}
is a Cauchy sequence. Therefore by (iii) there exists x ∈ A and y ∈ B such that
xn → x and yn → y as n→∞. Thus we have

d(x, y) = lim
n→∞

d(xn+1, yn) = d(A,B).

Then x ∈ A0 and by (vi) there exists z ∈ A such that d(z, Tx) = d(A,B). Also for any
n ∈ N we have d(xn+1, Txn) = d(A,B). By (v), T is proximally quasi-continuous and
we have xn → x (as n → ∞). Then there exists the subsequence {xnk+1} of {xn+1}
such that xnk+1 → z as k →∞. Thus we get z = x and the proof is complete.
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