
Fixed Point Theory, 21(2020), No. 2, 819-832

DOI: 10.24193/fpt-ro.2020.2.58

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

MODIFIED RELAXED CQ ALGORITHMS FOR SPLIT

FEASIBILITY AND SPLIT EQUALITY PROBLEMS IN

HILBERT SPACES

HAI YU AND FENGHUI WANG

Department of Mathematics, Luoyang Normal University

Luoyang 471022, China

Abstract. In this paper, we investigate the split feasibility problem (SFP) and the split equality
problem (SEP) in Hilbert spaces. Motivated by the technique of relaxed projections, we respectively

propose a modified relaxed CQ algorithm for the SFP and a modified relaxed alternating CQ al-

gorithm for the SEP. Under standard assumptions, we show that the proposed algorithms converge
weakly to a solution of the SFP and the SEP, respectively. Finally, we conduct some numerical

experiments to demonstrate the advantage of our proposed algorithms.

Key Words and Phrases: Split feasibility problem, split equality problem, CQ algorithm, projec-
tion.

2010 Mathematics Subject Classification: 47J25, 47J20, 47H10, 49N45, 65J15.

1. Introduction

Let C and Q be two nonempty closed convex subsets of the real Hilbert spaces H1

and H2, respectively. The split feasibility problem (SFP) is formulated as finding a
point x∗ ∈ H1 with the property:

x∗ ∈ C and Ax∗ ∈ Q, (1.1)

where A : H1 → H2 is a bounded linear operator. The SFP was first introduced
by Censor and Elfving [5] and has received much attention due to its applications
in signal processing and image reconstruction [14]. To solve the SFP, Censor and
Elfving [5] proposed an iterative algorithm based on the multidistance idea. But
their algorithm requires the calculation of matrix inverses at each iteration. Later, in
[3, 4], Byrne introduced a projection method called the CQ algorithm that does not
involve matrix inverses. More specifically, the CQ algorithm is defined as follows:

xn+1 = PC(xn − γA∗(I − PQ)Axn),

where γ ∈ (0, 2
‖A‖2), A∗ is the corresponding adjoint operator of A, and PC and PQ

stand for the projections onto C and Q, respectively.
In the CQ algorithm, Byrne assumed that the projections PC and PQ are easily

calculated. However, in many cases it is impossible or needs too much work to exactly

819

820 HAI YU AND FENGHUI WANG

compute the projection (see [1, 9, 11]). To overcome this difficulty, the relaxed pro-
jection method was adopted in some literatures [10, 12, 13, 18, 20, 21, 22, 23, 24, 25].
Yang [26] presented a relaxed CQ algorithm, in which C and Q are level sets of convex
functions c : H1 → R and q : H2 → R, respectively. The relaxed CQ algorithm is
given as follows:

xn+1 = PCn(xn − γA∗(I − PQn)Axn), (1.2)

where γ ∈ (0, 2
‖A‖2) and

Cn = {x ∈ H1 | c(xn) + 〈ξn, x− xn〉 ≤ 0}, ξn ∈ ∂c(xn), (1.3)

Qn = {y ∈ H2 | q(Axn) + 〈ηn, y −Axn〉 ≤ 0}, ηn ∈ ∂q(Axn), (1.4)

where ∂c(xn) is the subdifferential of c at xn (see Definition 2.3).
In the relaxed CQ algorithm (1.2), since Cn and Qn are both halfspaces, the

projections PCn
and PQn

have closed-form expressions. Thus they are easily to be
computed. Some relaxed CQ algorithms have been considered by many authors, see,
e.g., [17, 14, 22, 8, 27]. Among these works, López et al. [14] improved Yang’s relaxed
CQ algorithm as follows:

xn+1 = PCn
(xn − τnA∗(I − PQn

)Axn), (1.5)

where

τn :=
ρn‖(I − PQn)Axn‖2

2‖A∗(I − PQn
)Axn‖2

, 0 < ρn < 4. (1.6)

It is readily seen that this algorithm has no need of any prior information of the norm
‖A‖.

Recently, Moudafi [15] introduced the following split equality problem (SEP):

Find x ∈ C, y ∈ Q such that Ax = By, (1.7)

where H1, H2, H3 are real Hilbert spaces, C ⊆ H1, Q ⊆ H2 are two nonempty, closed
and convex subsets, and A : H1 → H3, B : H2 → H3 are two bounded linear operators.
Obviously, if B = I and H3 = H2, then (1.7) reduces to (1.1). In order to solve the
SEP (1.7), Moudafi [15] introduced the following alternating CQ algorithm (ACQA):{

xn+1 = PC(xn − γnA∗(Axn −Byn)),
yn+1 = PQ(yn + γnB

∗(Axn+1 −Byn)).

Similarly, the ACQA involves two projections PC and PQ and might be hard to be
implemented. To overcome this difficulty, Moudafi [16] presented the following relaxed
alternating CQ algorithm (RACQA):{

xn+1 = PCn
(xn − γA∗(Axn −Byn)),

yn+1 = PQn
(yn + γB∗(Axn+1 −Byn)),

(1.8)

where γ > 0, Cn is given as in (1.3) and Qn is given by

Qn = {y ∈ H2 | q(yn) + 〈ηn, y − yn〉 ≤ 0}, ηn ∈ ∂q(yn). (1.9)

Under suitable conditions, Moudafi [16] proved that the sequence {(xn, yn)} generated
by the RACQA converges weakly to a solution of (1.7).

MODIFIED RELAXED CQ ALGORITHMS 821

As we see from the above, the halfspace Cn is constructed via xn, and xn+1 is thus
defined as the projection of yn := xn−τnA∗(I−PQn)Axn onto Cn. However, it seems
that yn is much better than xn since yn has been updated, so it is natural to directly
construct a halfspace via yn instead of xn. On the other hand, the denominator of
the stepsize τn in (1.5) may be zero in a certain iteration. To ensure the stepsize
well defined, we also modified τn. In this paper, we introduce a modified relaxed
CQ algorithm for the SFP (1.1) by constructing a halfspace in yn rather than in
xn. Moreover, for the SEP (1.7), we also propose a modified relaxed alternating CQ
algorithm. To illustrate our algorithm’s efficiency, we present a comparison with the
existing relaxed CQ algorithms.

2. Preliminaries

Throughout this paper, we denote by H a Hilbert space and by I the identity
operator on H. For a differentiable functional f , denote by ∇f the gradient of f .
Given a sequence {xn} in H, ωw(xn) (resp., ω(xn)) stands for the set of cluster
points in the weak (resp., strong) topology. ‘xn ⇀ x’ (resp.,‘xn → x’) means the
weak (resp., strong) convergence of {xn} to x.

Definition 2.1. [2, 4] Let D be a nonempty subset of H and let T : D → H. Then
T is

(1) nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ D;

(2) firmly nonexpansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T)x− (I − T)y‖2, ∀x, y ∈ D;

(3) ν-inverse strongly monotone (ν-ism) if there is ν > 0 such that

〈Tx− Ty, x− y〉 ≥ ν‖Tx− Ty‖2, ∀x, y ∈ D.

For any x ∈ H, the projection onto a nonempty closed convex subset C is defined as

PCx = argmin{‖y − x‖ | y ∈ C}.

The projection PC has the following well-known properties.

Lemma 2.2. [2, 4] Let C ⊆ H be a nonempty closed convex subset. Then for all
x, y ∈ H and z ∈ C,

(1) 〈x− PCx, z − PCx〉 ≤ 0;
(2) PC and I − PC are both nonexpansive;
(3) PC and I − PC are both 1-ism;
(4) PC and I − PC are both firmly nonexpansive.

The following will be used in our convergence analysis.

Definition 2.3. Let λ ∈ (0, 1) and f : H → (−∞,+∞] be a proper function.

(i) f is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),∀x, y ∈ H.

822 HAI YU AND FENGHUI WANG

(ii) A vector u ∈ H is a subgradient of f at a point x if

f(y) ≥ f(x) + 〈u, y − x〉, ∀y ∈ H.
(iii) The set of all subgradients of f at x, denoted by ∂f(x), is called the subdiffer-

ential of f .

Lemma 2.4. [2] Suppose that H is finite-dimensional and let f : H → R be a convex
function. Then

(i) The function f is continuous;
(ii) The function f is subdifferentiable everywhere;

(iii) The subdifferentials of f are uniformly bounded on any bounded subset.

Lemma 2.5. [4, 14] Let f : H → (−∞,+∞] be defined by

f(x) =
1

2
‖(I − PQ)Ax‖2.

Then

(i) f is convex and differential.
(ii) ∇f(x) = A∗(I − PQ)Ax, x ∈ H.

(iii) f is weakly lower semi-continuous on H.
(iv) ∇f is ‖A‖2-Lipschitz:

‖∇f(x)−∇f(y)‖ ≤ ‖A‖2‖x− y‖, x, y ∈ H.
The convergence analysis of the proposed algorithm is based on Fejér monotonicity.

Definition 2.6. Let C be a nonempty closed convex subset in H. A sequence {xn}
in H is said to be Fejér monotone with respect to C if

‖xn+1 − z‖ ≤ ‖xn − z‖, ∀n ≥ 1, ∀z ∈ C.
Lemma 2.7. [6] Let C be a nonempty closed convex subset in H. If the sequence
{xn} is Fejér monotone with respect to C, then the following hold:

(i) xn ⇀ x∗ ∈ C if and only if ωw(xn) ⊆ C;
(ii) the sequence {PCxn} converges strongly;

(iii) if xn ⇀ x∗ ∈ C, then x∗ = lim
n→∞

PCxn.

3. A modified relaxed CQ algorithm
for the split feasibility problem

In this section, we will propose a modified relaxed CQ algorithm for the SFP (1.1),
in which the closed convex subsets C and Q satisfy the following assumptions.

(A1) The solution set S = {x ∈ C | Ax ∈ Q} is nonempty.
(A2) The sets C and Q are given by

C = {x ∈ H1 | c(x) ≤ 0}, (3.1)

and

Q = {y ∈ H2 | q(y) ≤ 0}, (3.2)

where c : H1 → R and q : H2 → R are two lower semicontinuous convex
functions on H1 and H2, respectively.

MODIFIED RELAXED CQ ALGORITHMS 823

(A3) For any x ∈ H1 and y ∈ H2, at least one subgradient ξ ∈ ∂c(x) and η ∈
∂q(y) can be calculated, respectively. We assume also that the subdifferential
operators ∂c and ∂q are bounded on bounded sets.

It is worth noting that every convex function defined on a finite dimensional Hilbert
space satisfies conditions (A2) and (A3) by Lemma 2.4. In what follows, we define

fn(x) =
1

2
‖(I − PQn

)Ax‖2, n ≥ 0,

where Qn is given as in (1.4). By Lemma 2.5, we have

∇fn(x) = A∗(I − PQn
)Ax.

We are now in position to introduce the following modified relaxed CQ-algorithm
for solving the SFP (1.1), where C and Q are given in (3.1) and (3.2), respectively.

Algorithm 3.1. Let x0 be arbitrary. Given xn, construct xn+1 via the formula{
yn = xn − τn∇fn(xn),
xn+1 = PC′n

(yn),
(3.3)

where C ′n and τn are respectively defined as follows:

C ′n = {x ∈ H1 | c(yn) + 〈ξn, x− yn〉 ≤ 0}, ξn ∈ ∂c(yn),

and

τn =
ρnfn(xn)

(‖∇fn(xn)‖+ ε)2
, (3.4)

where 0 < ρn < 4 and ε > 0 is a small enough number. If xn+1 = yn = xn, then stop;
otherwise, set n := n+ 1 and go to (3.3) to compute the next iterate xn+2.

Remark 3.2. (1) It is obvious that C ⊆ C ′n. Since C ′n is a halfspace, the projection
PC′n

has a closed-form expression, which indicates that our algorithm is also easily
implemented.

(2) In our algorithm, we construct the halfspace C ′n via yn instead of xn.
(3) Compared with (1.6), in (3.4), we add the item ε so that the stepsize is well

defined.

Theorem 3.3. In Algorithm 3.1, if xn+1 = yn = xn for some n ≥ 0, then xn is a
solution of the SFP (1.1).

Proof. From (3.3), if xn+1 = yn, then yn ∈ C ′n. This implies that c(yn) ≤ 0. Since
yn = xn, we have xn ∈ C and τn∇fn(xn) = 0. This implies that (I − PQn

)Axn = 0,
i.e. Axn ∈ Qn. Thus we have q(Axn) ≤ 0 from (1.4). Therefore Axn ∈ Q and the
proof is complete. �

By Theorem 3.3, we see that if Algorithm 3.1 terminates in a finite (say n) step
of iterations, then xn is a solution of the SFP. Thus in the rest of this section, we
assume that Algorithm 3.1 does not terminate in a finite number of iterations, and
hence generates an infinite sequence {xn}. The convergence of Algorithm 3.1 is proved
below.

824 HAI YU AND FENGHUI WANG

Theorem 3.4. Assume that inf
n
ρn(4 − ρn) > 0. Then the sequence {xn} generated

by Algorithm 3.1 converges weakly to a solution of the SFP (1.1).

Proof. Let x∗ ∈ S. Since PC′n
is firmly nonexpansive, we have

‖xn+1 − x∗‖2 = ‖PC′n
(xn − τn∇fn(xn))− x∗‖2

≤ ‖(xn − x∗)− τn∇fn(xn)‖2 − ‖(I − PC′n
)yn‖2

= ‖xn − x∗‖2 − 2τn〈∇fn(xn), xn − x∗〉
+ (τn‖∇fn(xn)‖)2 − ‖(I − PC′n

)yn‖2.

Note that I − PQn
is 1-ism from Lemma 2.2. This implies that

〈∇fn(xn), xn − x∗〉 = 〈(I − PQn)Axn, Axn −Ax∗〉
= 〈(I − PQn

)Axn − (I − PQn
)Ax∗, Axn −Ax∗〉

≥ ‖(I − PQn
)Axn‖2

= 2fn(xn).

Hence

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − 4τnfn(xn) + τ2n(‖∇fn(xn)‖+ ε)2 − ‖(I − PC′n
)yn‖2

= ‖xn − x∗‖2 − ρn(4− ρn)
f2n(xn)

(‖∇fn(xn)‖+ ε)2
− ‖(I − PC′n

)yn‖2.

(3.5)

Since inf
n
ρn(4−ρn) > 0, the sequence {xn} is Fejér monotone with respect to S. This

implies that the sequence {‖xn − x∗‖} is convergent and hence {xn} is a bounded
sequence. Furthermore, from (3.5) and the assumption on ρn, we can immediately
get that

∞∑
n=0

‖(I − PC′n
)yn‖2 <∞,

and
∞∑

n=0

f2n(xn)

(‖∇fn(xn)‖+ ε)2
<∞.

In particular, we have

lim
n→∞

‖(I − PC′n
)yn‖ = 0.

and

lim
n→∞

fn(xn)

‖∇fn(xn)‖+ ε
= 0. (3.6)

By the Lipschitz continuity of ∇fn(x), we have

‖∇fn(xn)‖+ ε = ‖∇fn(xn)−∇fn(x∗)‖+ ε ≤ ‖A‖2‖xn − x∗‖+ ε.

This implies that {‖∇fn(xn)‖ + ε} is bounded. It then follows from (3.6) that
fn(xn)→ 0, namely ‖(I − PQn

)Axn‖ → 0, as n→∞.

MODIFIED RELAXED CQ ALGORITHMS 825

By Lemma 2.7, to show the weak convergence of {xn} to a solution of the SFP
(1.1), it suffices to show that ωw(xn) ⊆ S, since {xn} is Fejér monotone with respect
to S. Now let x̄ ∈ ωw(xn) and {xnk

} be a subsequence of {xn} such that xnk
⇀ x̄. In

the following, we show that x̄ is a solution of the SFP (1.1). First we show Ax̄ ∈ Q.
Since ∂q is bounded on bounded sets, there is a constant δ1 > 0 such that ‖ηn‖ ≤ δ1
for all n ≥ 0. From (1.4) and the fact that PQn

(Axn) ∈ Qn, it follows that

q(Axn) ≤ 〈ηn, Axn − PQn(Axn)〉 ≤ δ1‖(I − PQn)Axn‖. (3.7)

The weakly lower semicontinuity of q and (3.7) imply that

q(Ax̄) ≤ lim inf
k→∞

q(Axnk
) ≤ lim

k→∞
δ1‖(I − PQnk

)Axnk
‖ = 0.

It turns out that Ax̄ ∈ Q.
We next turn to prove x̄ ∈ C. It is easily seen that

‖yn − xn‖ = τn‖∇fn(xn)‖ ≤ ρnfn(xn)

‖∇fn(xn)‖+ ε
→ 0.

This implies that the sequence {yn} is bounded and ynk
⇀ x̄, since {xn} is bounded

and xnk
⇀ x̄. Since ∂c is bounded on bounded sets, there is a constant δ2 > 0 such

that ‖ξn‖ ≤ δ2 for all n ≥ 0. By the definition of C ′n and the fact that PC′n
(yn) ∈ C ′n,

we obtain

c(yn) ≤ 〈ξn, yn − PC′n
yn〉 ≤ δ2‖(I − PC′n

)yn‖. (3.8)

Again, the weakly lower semicontinuity of c and (3.8) imply that

c(x̄) ≤ lim inf
k→∞

c(ynk
) ≤ lim

k→∞
δ2‖(I − PC′nk

)ynk
‖ = 0.

Consequently, x̄ ∈ C. Altogether we conclude that x̄ is a solution of the SFP. This
completes the proof. �

4. A modified relaxed alternating CQ algorithm
for the split equality problem

For problem (1.7), we always assume that the following assumption holds:
(A4) The solution set S = {x ∈ C, y ∈ Q | Ax = By} is nonempty.
In what follows, we will treat problem (1.7) under the assumptions (A2), (A3)

and (A4). Let us now introduce a modified relaxed alternating CQ algorithm for the
SEP (1.7).

Algorithm 4.1. Let (x0, y0) be arbitrary. Given (xn, yn), construct (xn+1, yn+1) via
the formula 

un = xn − γA∗(Axn −Byn),
xn+1 = PC′′n

(un);
vn = yn + γB∗(Axn+1 −Byn),
yn+1 = PQ′′n

(vn),

(4.1)

where γ ∈ (0,min(1
‖A‖2 ,

1
‖B‖2)), C ′′n and Q′′n are respectively defined as follows:

C ′′n = {x ∈ H1 | c(un) + 〈ξn, x− un〉 ≤ 0}, ξn ∈ ∂c(un), (4.2)

826 HAI YU AND FENGHUI WANG

and

Q′′n = {y ∈ H2 | q(vn) + 〈ηn, y − vn〉 ≤ 0}, ηn ∈ ∂q(vn). (4.3)

Remark 4.2. It is obvious that C ⊆ C ′′n and Q ⊆ Q′′n. Since C ′′n and Q′′n are also
halfspaces, the proposed algorithm is easily implemented.

Theorem 4.3. Let {(xn, yn)} be the sequence generated by Algorithm 4.1. Then
{(xn, yn)} converges weakly to a solution of the SEP (1.7).

Proof. Let (x∗, y∗) ∈ S be arbitrarily chosen. Then x∗ ∈ C (and thus x∗ ∈ C ′′n); y∗ ∈
Q (and thus y∗ ∈ Q′′n), Ax∗ = By∗. Using the fact that PC′′n

is firmly nonexpansive,
the first equality of the algorithm 4.1 gives

‖xn+1 − x∗‖2 = ‖xn − x∗ − γA∗(Axn −Byn)‖2 − ‖(I − PC′′n
)un‖2

≤ ‖xn − x∗‖2 − 2γ〈Axn −Byn, Axn −Ax∗〉
+γ2‖A‖2‖Axn −Byn‖2 − ‖(I − PC′′n

)un‖2.
(4.4)

Similarly, the second equality of the algorithm 4.1 leads to

‖yn+1 − y∗‖2 = ‖yn − y∗ + γB∗(Axn+1 −Byn)‖2 − ‖(I − PQ′′n
)vn‖2

≤ ‖yn − y∗‖2 + 2γ〈Axn+1 −Byn, Byn −By∗〉
+γ2‖B‖2‖Axn+1 −Byn‖2 − ‖(I − PQ′′n

)vn‖2.
(4.5)

On the other hand, we have

2〈Axn −Byn, Axn −Ax∗〉 = ‖Axn −Byn‖2 + ‖Axn −Ax∗‖2 − ‖Byn −Ax∗‖2
= ‖Axn −Byn‖2 + ‖Axn −Ax∗‖2 − ‖Byn −By∗‖2

(4.6)

and

2〈Axn+1 −Byn, Byn −By∗〉 = −‖Axn+1 −Byn‖2 − ‖Byn −By∗‖2
+‖Axn+1 −By∗‖2

= −‖Axn+1 −Byn‖2 − ‖Byn −By∗‖2
+‖Axn+1 −Ax∗‖2.

(4.7)

It follows from (4.4)-(4.7) that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − γ(1− γ‖A‖2)‖Axn −Byn‖2

− γ‖Axn −Ax∗‖2 + γ‖Byn −By∗‖2 − ‖(I − PC′′n
)un‖2.

and

‖yn+1 − y∗‖2 ≤ ‖yn − y∗‖2 − γ(1− γ‖B‖2)‖Axn+1 −Byn‖2

− γ‖Byn −By∗‖2 + γ‖Axn+1 −Ax∗‖2 − ‖(I − PQ′′n
)vn‖2.

Adding the two last inequalities, we obtain

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2
≤ ‖xn − x∗‖2 + ‖yn − y∗‖2 − γ‖Axn −Ax∗‖2 + γ‖Axn+1 −Ax∗‖2
−γ(1− γ‖A‖2)‖Axn −Byn‖2 − ‖(I − PC′′n

)un‖2
−γ(1− γ‖B‖2)‖Axn+1 −Byn‖2 − ‖(I − PQ′′n

)vn‖2.

(4.8)

MODIFIED RELAXED CQ ALGORITHMS 827

Let

Γn(x∗, y∗) = ‖xn − x∗‖2 + ‖yn − y∗‖2 − γ‖Axn −Ax∗‖2. (4.9)

We note that

γ‖Axn −Ax∗‖2 ≤ γ‖A‖2‖xn − x∗‖2.
Therefore

Γn(x∗, y∗) ≥ (1− γ‖A‖2)‖xn − x∗‖2 + ‖yn − y∗‖2 ≥ 0. (4.10)

In view of (4.8), we obtain the following inequality

Γn+1(x∗, y∗) ≤ Γn(x∗, y∗)− γ(1− γ‖A‖2)‖Axn −Byn‖2 − ‖(I − PC′′n
)un‖2

−γ(1− γ‖B‖2)‖Axn+1 −Byn‖2 − ‖(I − PQ′′n)vn‖2.
(4.11)

This together with (4.10) implies that the sequence {Γn(x∗, y∗)} is decreasing and
lower bounded by 0. Consequently the sequence {Γn(x∗, y∗)} is bounded and con-
verges to some finite limit γ(x∗, y∗). By passing to the limit in (4.11) and by taking
into account the assumption on γ, we finally obtain that

lim
n→+∞

‖Axn −Byn‖ = lim
n→+∞

‖(I − PC′′n
)un‖ = 0,

and

lim
n→+∞

‖Axn+1 −Byn‖ = lim
n→+∞

‖(I − PQ′′n
)vn‖ = 0.

Since {Γn(x∗, y∗)} is bounded, in view of (4.10), the sequences {xn} and {yn} are
also bounded. Let x̄ and ȳ be respectively weak cluster points of the sequences {xn}
and {yn}. Without loss of generality, we can assume that xn ⇀ x̄ and yn ⇀ ȳ. By
the definitions of un and vn, it follows that

‖un − xn‖ = γ‖A∗(Axn −Byn)‖ ≤ γ‖A‖‖Axn −Byn‖ → 0,

and
‖vn − yn‖ = γ‖B∗(Axn+1 −Byn)‖ ≤ γ‖B‖‖Axn+1 −Byn‖ → 0.

This implies that un ⇀ x̄ and vn ⇀ ȳ.
Since ∂c is bounded on bounded sets, there is a constant δ1 > 0 such that ‖ξn‖ ≤ δ1
for all n ≥ 0. From (4.2) and the fact that PC′′n

(un) ∈ C ′′n , it follows that

c(un) ≤ 〈ξn, (I − PC′′n
)un〉 ≤ δ1‖(I − PC′′n

)un‖. (4.12)

The weakly lower semicontinuity of c and (4.12) imply that

c(x̄) ≤ lim inf
n→∞

c(un) ≤ lim
n→∞

δ1‖(I − PC′′n
)un‖ = 0.

It turns out that x̄ ∈ C. Likewise, Since ∂q is bounded on bounded sets, there is
a constant δ2 > 0 such that ‖ηn‖ ≤ δ2 for all n ≥ 0. From (4.3) and the fact that
PQ′′n

(un) ∈ Q′′n, it follows that

q(vn) ≤ 〈ηn, (I − PQ′′n
)vn〉 ≤ δ2‖(I − PQ′′n

)vn‖.
Again, the weakly lower semicontinuity of q leads to

q(ȳ) ≤ lim inf
n→∞

q(vn) ≤ lim
n→∞

δ2‖(I − PQ′′n
)vn‖ = 0.

828 HAI YU AND FENGHUI WANG

Therefore ȳ ∈ Q. Furthermore, the weak convergence of {Axn − Byn} to Ax̄ − Bȳ
and the weakly lower semicontinuity of the squared norm imply

‖Ax̄−Bȳ‖2 ≤ lim inf
n→+∞

‖Axn −Byn‖2 = 0.

Hence (x̄, ȳ) ∈ S.
We next turn to show the uniqueness of the weak cluster point. Let x̂ and ŷ be

other weak cluster points of {xn} and {yn}, respectively. By the definition of Γn, we
have

Γn(x̄, ȳ) = Γn(x̂, ŷ) + ‖x̄− x̂‖2 + ‖ȳ − ŷ‖2 − γ‖Ax̄−Ax̂‖2

+ 2〈xn − x̂, x̂− x̄〉+ 2〈yn − ŷ, ŷ − ȳ〉 − 2γ〈Axn −Ax̂,Ax̂−Ax̄〉.

By passing to the limit in the above relation, we obtain

γ(x̄, ȳ) = γ(x̂, ŷ) + ‖x̄− x̂‖2 + ‖ȳ − ŷ‖2 − γ‖Ax̄−Ax̂‖2.

Reversing the role of (x̄, ȳ) and (x̂, ŷ), we also have

γ(x̂, ŷ) = γ(x̄, ȳ) + ‖x̄− x̂‖2 + ‖ȳ − ŷ‖2 − γ‖Ax̄−Ax̂‖2.

By adding the two last equalities, we obtain

(1− γ‖A‖2)‖x̄− x̂‖2 + ‖ȳ − ŷ‖2 ≤ 0.

Since 1 − γ‖A‖2 > 0, we obtain x̄ = x̂ and ȳ = ŷ, which implies that the whole
sequence {(xn, yn)} converges weakly to a solution of problem (1.7). This completes
the proof. �

5. Numerical experiments

In this section, we present two numerical experiments, to illustrate the performance
of the proposed algorithms. For simplicity, we denote Yang’s relaxed CQ algorithm
(1.2), López’s relaxed CQ algorithm (1.5) and Moudafi’s relaxed alternating CQ al-
gorithm (1.8) by Yang’s algorithm, López’s algorithm and Moudafi’s algorithm, re-
spectively. These algorithms are coded in MATLAB 2012b on a 4 GB RAM, 3.30
GHz, Intel(R) Core(TM) i5-4590 personal computer. In what follows, Iter. denotes
the numbers of iterations, and CPU denotes the computing time.
Example 1. In this example, we apply Algorithm 3.1 to solve the LASSO problem.
Let us first recall the LASSO problem [19] which is given as follows:

min
x∈Rn

1
2‖Ax− b‖

2,

s.t. ‖x‖1 ≤ t,
(5.1)

where A ∈ Rm×n, b ∈ Rm and t > 0 is a given constant. Let C = {x | c(x) ≤ 0},
where c(x) = ‖x‖1 − t and Q = {b}, then problem (5.1) can be seen as an SFP (1.1).
In this example, the vector x ∈ Rn is a K-sparse signal that is generated from uniform
distribution in the interval [−2, 2] with K non-zero elements. The matrix A ∈ Rm×n

is generated from a normal distribution with mean zero and one variance. The vector
b is taken as equal to Ax, so no noise is assumed. The goal is then to recover the
K-sparse signal x by solving the LASSO problem (5.1).

MODIFIED RELAXED CQ ALGORITHMS 829

Throughout the experiment, the parameters used in these algorithms are set with
t = K, ε = 10−6, γ = 1

‖A‖2 , ρn = 2. The stopping criteria is that ‖xn+1 − xn‖ ≤ ε.

The results are reported in Table 1 and Table 2.

Table 1. Numerical results for Example 1 when m = 120, n = 512

K-sparse signal
Yang’s algorithm López’s algorithm Algorithm 3.1
iter. CPU (s) iter. CPU (s) iter. CPU (s)

K = 10 736 0.1937 571 0.1592 396 0.1124
K = 20 1706 0.4282 1395 0.3249 835 0.2088
K = 30 8368 1.7704 7440 1.6380 4245 0.8920

Table 2. Numerical results for Example 1 when m = 240, n = 1024

K-sparse signal
Yang’s algorithm López’s algorithm Algorithm 3.1
iter. CPU (s) iter. CPU (s) iter. CPU (s)

K = 20 1269 2.6727 1124 2.3923 670 1.4781
K = 30 2150 4.5455 1868 3.9673 1135 2.3790
K = 40 8821 18.4178 7985 16.4961 4923 10.1224

From Tables 1-2, our algorithm demonstrates better performance compared with
Yang’s algorithm and López’s algorithm, in terms of cpu time and the numbers of
iterations.
Example 2. Let

C =

{
x ∈ Rn |

n∑
i=1

10
i−1
n−1x2i ≤ 1

}
,

Q =

{
y ∈ Rm |

m∑
i=1

10
i−1
m−1 y2i ≤ 1

}
.

The matrices A = (aij)p×n, aij ∈ [0, 10] and B = (bij)p×m, bij ∈ [0, 10] are generated
randomly. In this example, we apply Algorithm 4.1 to solve the split equality problem:

Find x ∈ C, y ∈ Q such that Ax = By.

It is obvious that C and Q are both ellipsoids [7]. Let

c(x) =

n∑
i=1

10
i−1
n−1x2i − 1 and q(y) =

m∑
i=1

10
i−1
m−1 y2i − 1,

then C = {x ∈ Rn | c(x) ≤ 0} and Q = {y ∈ Rm | q(y) ≤ 0}.
Throughout the experiment, the parameters used in these algorithms are set with

n = m = p = 10, ε = 10−6, γ = 0.9×min

(
1

‖A‖2
,

1

‖B‖2

)
.

The stopping criteria is that ‖xn+1−xn‖2 +‖yn+1−yn‖2 ≤ ε2. The numerical results
are reported in Table 3 using different initial points.

830 HAI YU AND FENGHUI WANG

Table 3. Numerical results for Example 2

Initial points
Moudafi’s algorithm Algorithm 4.1
iter. CPU (s) iter. CPU (s)

x0 = (1, 1, · · · , 1)T 125 0.0194 116 0.0149
y0 = (1, 1, · · · , 1)T

x0 = (10, 10, · · · , 10)T 176 0.0263 157 0.0152
y0 = (10, 10, · · · , 10)T

x0 = (100, 100, · · · , 100)T 188 0.0234 163 0.0153
y0 = (100, 100, · · · , 100)T

x0 = (1, 2, · · · , n)T 164 0.0183 148 0.0139
y0 = (1, 2, · · · ,m)T

From Tables 3, our algorithm demonstrates better performance than Moudafi’s algo-
rithm, in terms of cpu time and the numbers of iterations.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No. 11971216) and Foundation of He’nan Educational Committee
(No. 20A110029, 16A520064, 15A520087).

References

[1] H.H. Bauschke, J.M. Borwein, On projection algorithms for solving convex feasibility problems,
SIAM Rev., 38(1996), 367-426.

[2] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Space, Springer-Verlag, 2011.

[3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse

Probl., 18(2002), 441-453.
[4] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image

reconstruction, Inverse Probl., 20(2004), 103-120.

[5] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in product space,
Numer. Algor., 8(1994), 221-239.

[6] P.L. Combettes, Quasi-Fejérian analysis of some optimization algorithms, In: D. Butnariu,

Y. Censor, S. Reich (eds.), Inherently Parallel Algorithms in Feasibility and Optimization and
Their Applications, Elsevier, New York, 2001, 115-152.

[7] Y.H. Dai, Fast algorithms for projection on an ellipsoid, SIAM J. Optim., 16(2006), 986-1006.

[8] Q. Dong, Y. Yao, S. He, Weak convergence theorems of the modified relaxed projection algo-
rithms for the split feasibility problem in Hilbert spaces, Optimization Lett., 8(3)(2014), 1031-

1046.

[9] M. Fukushima, A relaxed projection method for variational inequalities, Math. Program.,
35(1986), 58-70.

[10] A. Gibali, L. Liu, Y. Tang, Note on the modified relaxation CQ algorithm for the split feasibility
problem, Optim. Lett., 12(4)(2018), 813-830.

[11] B.S. He, Inexact implicit methods for monotone general variational inequalities, Math. Pro-
gram., A86(1999), 199-217.

[12] S. He, Z. Zhao, Strong convergence of a relaxed CQ algorithm for the split feasibility problem,
J. Ineq. Appl., 2013, 2013:197.

[13] S. He, Z. Zhao, B. Luo, A relaxed self-adaptive CQ algorithm for the multiple-setes split feasi-
bility problem, Optimization, 64(2015), 1907-1918.

[14] G. López, V. Mart́ın, F. Wang, H.K. Xu, Solving the split feasibility problem without prior
knowledge of matrix norms, Inverse Probl., 28(2012), 085004.

MODIFIED RELAXED CQ ALGORITHMS 831

[15] A. Moudafi, Alternating CQ-algorithm for convex feasibility and split fixed-point problems, J.

Nonlinear Convex Anal., 15(2014), 809-818.

[16] A. Moudafi, A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal.,
79(2013), 117-121.

[17] B. Qu, N.H. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Probl.,

21(2005), 1655-1665.
[18] B. Qu, N.H. Xiu, A new halfspace-relaxation projection method for the split feasibility problem,

Linear Algebra Appl., 428(2008), 1218-1229.

[19] R. Tibshirani, Regression shrinkage and selection via the LASSO, J.R. Stat. Soc. B, 58(1996),
267-288.

[20] F. Wang, A splitting-relaxed projection method for solving the split feasibility problem, Fixed

Point Theory, 14(2013), 211-218.
[21] F. Wang, Polyak’s gradient method for split feasibility problem constrained by level sets, Nu-

merical Algorithms, 77(2018), 925-938.
[22] Z. Wang, Q. Yang, Y. Yang, The relaxed inexact projection methods for the split feasibility

problem, Applied Mathematics and Computation, 217(12)(2011), 5347-5359.

[23] H.K. Xu, A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility prob-
lem, Inverse Probl., 22(6)(2006), 2021.

[24] H.K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,

Inverse Probl., 26(2010), 105018.
[25] Q. Yang, On variable-step relaxed projection algorithm for variational inequalities, J. Math.

Anal. Appl., 302(2005), 166-179.

[26] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Probl., 20(2004),
1261-1266.

[27] H. Yu, W. Zhan, F. Wang, The ball-relaxed CQ algorithms for the split feasibility problem,

Optimization, 67(2018), 1687-1699.

Received: November 1st, 2019; Accepted: Januray 10, 2020.

832 HAI YU AND FENGHUI WANG

