
Fixed Point Theory, 21(2020), No. 2, 805-818

DOI: 10.24193/fpt-ro.2020.2.57

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

PROPERTIES AND ITERATIVE METHODS

FOR THE ELASTIC NET WITH `p-NORM ERRORS

LILING WEI∗ AND HONG-KUN XU∗∗

∗School of Science, Hangzhou Dianzi University, Hangzhou, 310018, China

E-mail: wll.1225@foxmail.com

∗∗School of Science, Hangzhou Dianzi University, Hangzhou, 310018, China
E-mail: xuhk@hdu.edu.cn (Corresponding author)

Abstract. The p-elastic net (p-EN) with 1 < p <∞ is introduced to recover a sparse signal x ∈ Rn

from m (< n) linear measurements with noise. The p-EN, which extends the elastic net of Zou

and Hastie [23] and was implicitly suggested by Tropp [16], amounts to minimizing the objective

function (1/p)‖Ax− b‖pp +λ‖x‖1 + (µ/2)‖x‖22 over x ∈ Rn, where A is the measurement matrix, b is
the observation, and λ > 0, µ > 0 are regularization parameters. Some basic geometric properties

of the p-EN such as how the solution curve of the minimization depends on the parameters λ and

µ are investigated. Moreover, iterative algorithms such as the proximal-gradient algorithm and the
Frank-Wolfe algorithm are studied for solving the p-EN.
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1. Introduction

In signal processing theory, a signal x ∈ Rn of interest is sampled m > 1 times
linearly and then recovered from the linear (exact) system

Ax = b. (1.1)

Here A ∈ Rm×n is an m × n matrix and b ∈ Rm is the observation. In compressed
sensing [6, 9], m � n and a sparse signal x is intended to be recovered. However,
samples (or measurements) are taken with noises; in other words, the signal x is to
be recovered from the perturbed linear (inexact) system

Ax = b+ e, (1.2)

where e represents noises.
A key issue is in which way the errors e = Ax− b are measured. The most popular

way is using the least-squares (i.e., the `2-norm) to measure the errors [12, 15, 23]:

‖e‖2 = ‖Ax− b‖2. (1.3)
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This leads to the `1-norm regularized least-squares minimization problem (for recov-
ering a sparse signal)

min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1, (1.4)

where λ > 0 is a regularization parameter. This is equivalent to the lasso of Tibshirani
[15] (see also [10]) for variable selections (in group lasso [22] as well), and also used
in compressed sensing [4, 5, 6, 9] to recover the sparsest signal x if the measurement
matrix A satisfies the restricted isometry property [3] (which will not be formulated
here).

Similarly, the elastic net (EN) of Zou and Hastie [23], i.e., the minimization

min
x∈Rn

(
1

2
‖Ax− b‖22 + λ‖x‖1 +

µ

2
‖x‖22

)
(1.5)

is also induced from the `2-norm errors (1.3). A generalization of EN to p-elastic net
(p-EN) can be found in [1].

However, Tropp [16, page 1045] pointed out that “One can imagine situations where
the `2 norm is not the most appropriate way to measure the error in approximating
the input signal.” He further suggested that it may be more effective to use the convex
program min ‖b−Ax‖p +λ‖x‖1, where p ∈ [1,∞]. To be consistent, we will raise the
pth power to the `p-norm error (so that when p = 2, our problem exactly reduces to
the lasso) and consider the `1-regularized least-pth powered optimization problem

min
x∈Rn

1

p
‖Ax− b‖pp + λ‖x‖1 (1.6)

for p ∈ [1,∞).
The `1 norm case is studied in [17]. We will in this paper focus on the `p norm case

for p ∈ (1,∞). [Note that `p-norm regularization is also popularly utilized [1, 8, 21].]
In this paper we will study the elastic net with `p-norm errors. More precisely, we

will study the optimization below, which we call the elastic net with `p-norm errors
(p-EN for short):

min
x∈Rn

(
1

p
‖Ax− b‖pp + λ‖x‖1 +

µ

2
‖x‖22

)
(1.7)

We will present certain basic properties of the p-EN and also some iterative methods
that can be used to solve it. The extension from EN to p-EN is nontrivial, due to the
fact that EN corresponds to optimization methods in Hilbert spaces (the Euclidean
norm ‖ · ‖2 is used throughout), while p-EN corresponds to optimization methods in
Banach spaces (the space Rn equipped with `p-norm ‖ · ‖p with p 6= 2 is no longer
Hilbertian). As a consequence, some methods which work for EN would fail to work
for p-EN and we have to manipulate cleverly with the generalized duality map Jp
which maps Rn equipped with `p-norm ‖ · ‖p to Rn equipped with `q-norm ‖ · ‖q, with
q = p/(p− 1) for p ∈ (1,∞). Banach space techniques are needed in our approach to
p-EN in the rest of this paper.
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2. Preliminaries

We use 〈·, ·〉 to denote the dot product on Rn; namely if x = (x1, · · · , xn)t ∈ Rn
and y = (y1, · · · , yn)t ∈ Rn (here t means transpose), then

〈x, y〉 =

n∑
i=1

xiyi.

Let p ∈ [1,∞). Recall the `p norm on Rn is defined as

‖x‖p =

(
n∑
i=1

|xi|p
) 1
p

(1 ≤ p <∞).

Note that (Rn, ‖ · ‖p) is a Banach space (not Hilbertian unless p = 2).

2.1. Duality Maps. Assume p ∈ (1,∞) and let q = p/(p − 1) be the conjugate of
p. Recall that the (generalized) duality map Jp maps (Rn, ‖ · ‖p) to its dual space
(Rn, ‖ · ‖q) with the properties:

〈x, Jpx〉 = ‖x‖pp = ‖x‖p · ‖Jqx‖q and ‖Jpx‖q = ‖x‖p−1p (2.1)

for all x ∈ Rn. [Note: Jp is the identity mapping when p = 2.] It is known that

Jpx = ∇(
1

p
‖x‖pp)

and has the expression:

(Jpx)i = |xi|p−1sgn(xi), i = 1, 2, · · · , n. (2.2)

Here sgn(t) is the sign function of t ∈ R; namely,

sgn(t) =

 1, if t > 0,
0, if t = 0,
−1, if t < 0.

Moreover, it is known that Jp is strongly monotone as stated below.

Lemma 2.1. Assume p ∈ (1,∞). Then the duality map Jp is strongly monotone,
namely, there exists a constant cp > 0 such that [18, Corollary 1]

〈Jpx− Jpy, x− y〉 ≥ cp‖x− y‖pp, x, y ∈ Rn. (2.3)

2.2. Subdifferential of Convex Functions. Let h : Rn → R := R ∪ {∞} be an
extended real-valued function. Recall that h is said to be convex [14] if

h((1− λ)x+ λy) ≤ (1− λ)h(x) + λh(y) (2.4)

for all λ ∈ (0, 1) and x, y ∈ Rn. When the strict inequality in (2.4) holds for all x 6= y
and λ ∈ (0, 1), h is said to be strictly convex. As standard, we use Γ0(Rn) to denote
the class of all proper, lower semicontinuous (l.s.c.), convex functions from Rn to R.

The subdifferential of h ∈ Γ0(Rn) is the operator ∂h defined by

∂h(x) = {ξ ∈ Rn : h(y) ≥ h(x) + 〈ξ, y − x〉, y ∈ Rn}, x ∈ Rn. (2.5)
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The inequality in (2.5) is referred to as the subdifferential inequality of ϕ at x. We
say that f is subdifferentiable at x if ∂h(x) is nonempty. It is well-known that for an
everywhere finite-valued convex function h on Rn, ϕ is everywhere subdifferentiable.
[More details about convex analysis can be found in [14].]

Examples: (i) If h(x) = |x| for x ∈ R, then ∂h(0) = [−1, 1]; (ii) If h(x) = ‖x‖1 for
x ∈ Rn, then ∂h(x) is given componentwise by

(∂h(x))j =

{
sgn(xj), if xj 6= 0,
[−1, 1], if xj = 0,

1 ≤ j ≤ n. (2.6)

2.3. Proximal Mappings. We need the notion of the proximal mapping of a proper
l.s.c. convex function.

Definition 2.2. The proximal mapping of a convex function h ∈ Γ0(Rn) of index
λ > 0 is defined as [13]

proxλh(x) := arg min
v∈H

{
h(v) +

1

2λ
‖v − x‖2

}
, x ∈ Rn.

It is not hard to find that if h(x) = |x| (for x ∈ R) is the absolute value function, then

proxλ|·|(x) = sgn(x) max{|x| − λ, 0}.

This can be extended to the `1-norm of x ∈ Rn as follows:

proxλ‖·‖(x) = (y1, · · · , yn)t

where yi = proxλ|·|(xi) = sgn(xi) max{|xi| − λ, 0} for 1 ≤ i ≤ n.

It is also known [7] that proximal mappings are firmly nonexpansive, that is, if we
set T = proxλh(·), where h ∈ Γ0(Rn) and λ > 0, then

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, x, y ∈ Rn.

In particular, T is nonexpansive, i.e., ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ Rn.

2.4. Proximal-Gradient Algorithm. Consider a composite optimization problem
of the form in a Hilbert space H:

min
x∈H

h(x) := f(x) + g(x) (2.7)

where f, g ∈ Γ0(Rn).
The following equivalence of (2.7) to a fixed point problem is known (cf. [7, 19]).

Proposition 2.3. Let λ > 0 and assume f is continuously differentiable. Then x∗ is
a solution to (2.7) if and only if x∗ is a solution to the fixed point problem

x∗ = proxλg(x
∗ − λ∇f(x∗)). (2.8)

The proximal gradient algorithm for solving (2.7) is a fixed point algorithm defined
as follows.
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Initializing x0 ∈ H and iterating

xk+1 = proxλkg(xk − λk∇f(xk)), (2.9)

where {λk} is a sequence of positive real numbers.
We have the following convergence result.

Theorem 2.4. [7, 19] Assume (2.7) is solvable and f has a Lipschitz continuous
gradient:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, x, y ∈ Rn. (2.10)

Assume, in addition, the stepsize sequence (λk) satisfies the condition:

0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λk <
2

L
. (2.11)

Then the sequence (xk) converges to a solution of (2.7).

Lemma 2.5. Let 1 ≤ a < ∞ and ε > 0. Let f : Rn → R be a continuous, convex
function such that

Sf := arg min
x∈Rn

f(x) 6= ∅. (2.12)

Consider the `a-norm regularized minimization problem

min
x∈Rn

f(x) +
ε

a
‖x‖aa, (2.13)

Let Saε be the solution set of (2.13). Then, for each fixed 1 ≤ a < ∞, {Saε }ε>0 is
bounded. When a > 1, Saε consists of exactly one point, which is denoted as xaε .

(i) If 1 < a < ∞, then xaε → xa0 (as ε → 0), where xa0 is the unique point in Sf
assuming the minimal `a-norm; that is, xa0 = arg min{‖z‖a : z ∈ Sf}.

(ii) If a = 1, then limε→0 ‖xε‖1 = |Sf |1 := minz∈Sf ‖z‖1, where xε ≡ x1ε ∈ S1
ε for

ε > 0. Thus, each cluster point of (xε) (as ε→ 0) assumes minimal `1-norm
in Sf .

Proof. We have, for each z ∈ Sf ,

f(z) +
ε

a
‖xaε‖aa ≤ f(xaε) +

ε

a
‖xaε‖aa ≤ f(z) +

ε

a
‖z‖aa. (2.14)

It turns out that

‖xaε‖a ≤ ‖z‖a (∀z ∈ Sf ). (2.15)

In particular,

‖xaε‖a ≤ min
z∈Sf

‖z‖a =: |Sf |a. (2.16)

This verifies that the net {xaε}ε>0 is bounded.
Now assume {εk} is a sequence such that εk → 0 and xaεk → x∗ as k →∞.
We distinguish two cases.

Case 1: a > 1. In this case, there exists a unique point xa0 ∈ Sf assuming the minimal
`a-norm in Sf ; that is, ‖xa0‖a = minz∈Sf ‖z‖a = |Sf |a.

We observe that a direct consequence of (2.14) (letting ε = εk → 0) is f(z) = f(x∗)
for z ∈ Sf ; hence x∗ ∈ Sf . Now it turns out from (2.15) that ‖x∗‖a ≤ ‖xa0‖a. This
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must imply that x∗ = xa0 , due to the uniqueness of the minimal `a-norm element of
Sf . This has proved that xaε → xa0 as ε→ 0.
Case 2: a = 1. In this case, elements of the minimal `1-norm of Sf may not be unique
due to the fact that the `1-norm is not strictly convex. Let xε ∈ S1

ε . By (2.15), we get
‖xε‖1 ≤ ‖z‖1 for every z ∈ Sf . This implies that ‖xε‖1 ≤ |Sf |1 = min{‖z‖1 : z ∈ Sf}.
Repeating the argument of Case 1, we immediately obtain ‖xε‖1 → |Sf |1 (as ε→ 0)
since every cluster point of xε assumes the minimal `1-norm of Sf , i.e., in the set
arg min{‖z‖1 : z ∈ Sf}. This completes the proof.

3. Geometric properties

Let 1 < p <∞ and λ > 0, µ > 0 be given. Set

ϕλ,µ(x) :=
1

p
‖Ax− b‖pp + λ‖x‖1 +

µ

2
‖x‖22, x ∈ Rn. (3.1)

Here A is an m×n matrix and b ∈ Rm. The following optimization problem is known
as the elastic net with `p-norm errors (p-NE for short):

min
x∈Rn

ϕλ,µ(x) =
1

p
‖Ax− b‖pp + λ‖x‖1 +

µ

2
‖x‖22. (3.2)

Since ϕλ,µ is continuous, strictly convex, and coercive (i.e., ϕλ,µ(x)→∞ as ‖x‖2 →
∞), ϕλ,µ has a unique minimizer, which is denoted as xλ,µ; that is,

xλ,µ = arg min
x∈Rn

(
1

p
‖Ax− b‖pp + λ‖x‖1 +

µ

2
‖x‖22

)
. (3.3)

We now discuss some properties of the minimizer xλ,µ as a function defined on the
domain D := {(λ, µ) : λ > 0, µ > 0}. Observe that the subdifferential of ϕλ,µ is given
by

∂ϕλ,µ(x) := AtJp(Ax− b) + λ∂‖x‖1 + µx. (3.4)

Here At is the transpose of the matrix A and Jp is the generalized duality map of the
`p norm as given in (2.2). This implies that the minimizer xλ,µ satisfies the optimality
condition 0 ∈ AtJp(Axλ,µ − b) + λ∂‖xλ,µ‖1 + µxλ,µ, or equivalently:

− 1

λ

(
AtJp(Axλ,µ − b) + µxλ,µ

)
∈ ∂‖xλ,µ‖1. (3.5)

Define a function ρ on D by
ρ(λ, µ) = ‖xλ,µ‖1 (3.6)

where xλ,µ is defined by (3.3).
We also consider the least-pth power problem:

min
x∈Rn

‖Ax− b‖pp. (3.7)

Let Sp denote the set of solutions of (3.7). Namely,

Sp = arg min
x∈Rn

‖Ax− b‖pp. (3.8)

Proposition 3.1. Let (λ, µ) ∈ D and fix 1 < p <∞. Then (xλ,µ)(λ,µ)∈D is bounded
if and only if Sp is nonempty.
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Proof. Assume Sp 6= ∅. Consider the `1-norm regularized optimization problem:

min
x∈Rn

1

p
‖Ax− b‖pp + λ‖x‖1. (3.9)

We use Sλp to denote the set of solutions of (3.9). That is,

Sλp = arg min
x∈Rn

1

p
‖Ax− b‖pp + λ‖x‖1. (3.10)

Note that Sλp is always nonempty. Applying (2.16) to the case where

f(x) := (1/p)‖Ax− b‖pp, ε := λ and a := 1,

we obtain that
‖xλ‖1 ≤ |Sp|1 = min

z∈Sp
‖z‖1, xλ ∈ Sλp . (3.11)

Applying again (2.16) to the case where f(x) := (1/p)‖Ax− b‖pp + λ‖x‖1, ε := µ and
a := 2, together with (3.11), we obtain (observing the fact that ‖v‖2 ≤ ‖v‖1 for all
v ∈ Rn)

‖xλ,µ‖2 ≤ |Sλp |2 = min
z∈Sλp

‖z‖2 ≤ min
z∈Sλp

‖z‖1 = |Sλp |1 ≤ |Sp|1. (3.12)

Hence, (xλ,µ) is bounded.
Conversely, assume (xλ,µ) is bounded. Taking positive sequences (λk) and (µk)

with the properties: λk → 0, µk → 0, and xλk,µk → x̂ (as k →∞). By the definition
(3.3), we get

1

p
‖Axλk,µk − b‖pp + λk‖xλk,µk‖1 +

µk
2
‖xλk,µk‖22 ≤

1

p
‖Ax− b‖pp + λk‖x‖1 +

µk
2
‖x‖22

for all x ∈ Rn and k ≥ 1. Upon taking the limit as k →∞, we obtain

1

p
‖Ax̂− b‖pp ≤

1

p
‖Ax− b‖pp

for all x ∈ Rn. It turns out that x̂ ∈ Sp and thus Sp 6= ∅. The proof is complete.

Proposition 3.2. Fix 1 < p < ∞ and let D = {(λ, µ) : λ > 0, µ > 0}. Assume
Sp 6= ∅. We have the following statements.

(i) xλ,µ is a continuous function of (λ, µ) ∈ D and uniformly continuous over
the subregion Dµ0 := {(λ, µ) : λ > 0, µ ≥ µ0} for each fixed µ0 > 0.

(ii) As µ→ 0 (for each fixed λ > 0), xλ,µ → x†λ, the unique point in Sλp that has

minimal `2-norm, i.e., x†λ = arg min{‖z‖2 : z ∈ Sλp }. Moreover, as λ → 0 ,

every cluster point of x†λ is a minimal `1-norm solution of the least-pth-power
problem (3.7), i.e., a point in the set arg minx∈Sp ‖x‖1.

(iii) As λ→ 0 (for each fixed µ > 0), xλ,µ → x̂µ, where

x̂µ = arg min
x∈Rn

(
1

p
‖Ax− b‖pp +

µ

2
‖x‖22

)
. (3.13)

Moreover, as µ→ 0, x̂µ → x̂ which is the minimal `p-norm solution of (3.7),
that is, x̂ = arg minx∈Sp ‖x‖p.

(iv) ρ(λ, µ) := ‖xλ,µ‖1 is decreasing in λ for each given µ > 0.
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(v) ξ(λ, µ) := ‖xλ,µ‖2 is decreasing in µ for each given λ > 0.

Proof. (i) Using the optimality condition (3.5) and subdifferential inequality, we get

λ‖x‖1 ≥ λ‖xλ,µ‖1 − 〈AtJp(Axλ,µ − b) + µxλ,µ, x− xλ,µ〉 (3.14)

for x ∈ Rn. It follows that, for (λ′, µ′) ∈ D,

λ‖xλ′,µ′‖1 ≥ λ‖xλ,µ‖1 − 〈AtJp(Axλ,µ − b) + µxλ,µ, xλ′,µ′ − xλ,µ〉. (3.15)

Interchanging λ and λ′, and µ and µ′ yields

λ′‖xλ,µ‖1 ≥ λ′‖xλ′,µ′‖1 − 〈AtJp(Axλ′,µ′ − b) + µ′xλ′,µ′ , xλ,µ − xλ′,µ′〉. (3.16)

Adding up (3.15) and (3.16) obtains

(λ′ − λ)(‖xλ,µ‖1 − ‖xλ′,µ′‖1)

≥ 〈AtJp(Axλ,µ − b) + µxλ,µ − (AtJp(Axλ′,µ′ − b) + µ′xλ′,µ′), xλ,µ − xλ′,µ′〉
= 〈Jp(Axλ,µ − b)− Jp(Axλ′,µ′ − b), A(xλ,µ − b)−A(xλ′,µ′ − b)〉

+ 〈µxλ,µ − µ′xλ′,µ′ , xλ,µ − xλ′,µ′〉.
By Lemma 2.1, we get

(λ′ − λ)(‖xλ,µ‖1 − ‖xλ′,µ′‖1)

≥ cp‖Axλ,µ −Axλ′,µ′‖pp + 〈µxλ,µ − µ′xλ′,µ′ , xλ,µ − xλ′,µ′〉
= cp‖Axλ,µ −Axλ′,µ′‖pp + (µ− µ′)〈xλ,µ, xλ,µ − xλ′,µ′〉+ µ′‖xλ,µ − xλ′,µ′‖22
≥ (µ− µ′)〈xλ,µ, xλ,µ − xλ′,µ′〉+ µ′‖xλ,µ − xλ′,µ′‖22. (3.17)

However, by Proposition 3.1, {xλ,µ} is bounded. It thus follows from (3.17) that

‖xλ,µ − xλ′,µ′‖22 ≤
c

µ′
(|λ− λ′|+ |µ− µ′|) (3.18)

for some constant c > 0. This shows that xλ,µ is continuous in D and uniformly
continuous in Dµ0

for each fixed µ0 > 0.
(ii) For each fixed λ > 0, xλ,µ = arg minx∈Rn f(x) + (µ/2)‖x‖22, where

f(x) := (1/p)‖Ax− b‖pp + λ‖x‖1.

Applying Lemma 2.5, we obtain that, as µ→ 0, xλ,µ → x†λ := arg minz∈Sλp ‖z‖2.

Applying Lemma 2.5(ii) to the case where f(x) = (1/p)‖Ax− b‖pp, we obtain that, as

λ→ 0, ‖x†λ‖1 → |Sp|1 and each cluster point of (x†λ) is of minimal `1-norm in the set
Sp.

(iii) Applying Lemma 2.5 to the case where f(x) = (1/p)‖Ax − b‖pp + (µ/2)‖x‖22,
we immediately find that xλ,µ converges, as λ → 0, to x̂µ defined by (3.13). Again
by Lemma 2.5(ii), we obtain that x̂µ converges, as µ → 0, to the minimal `p-norm
element of Sp.

(iv) Using the subdifferential inequality (3.14), we get

λ(‖xλ′,µ‖1 − ‖xλ,µ‖1) ≥ 〈AtJp(Axλ,µ − b) + µxλ,µ, xλ,µ − xλ′,µ〉. (3.19)

Interchange λ and λ′ from (3.19) to get

λ′(‖xλ,µ‖1 − ‖xλ′,µ‖1) ≥ 〈AtJp(Axλ′,µ − b) + µxλ′,µ, xλ′,µ − xλ,µ〉. (3.20)
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Adding (3.19) and (3.20) up yields

(λ− λ′)(‖xλ′,µ‖1 − ‖xλ,µ‖1)

≥ 〈Jp(Axλ,µ − b)− Jp(Axλ′,µ − b), A(xλ,µ − b)−A(xλ′,µ − b)〉+ µ‖xλ,µ − xλ′,µ‖2

≥ cp‖Axλ,µ −Axλ′,µ‖pp + µ‖xλ,µ − xλ′,µ‖2 ≥ 0.

This immediately implies that ‖xλ′,µ‖1 ≥ ‖xλ,µ‖1 whenever λ ≥ λ′. That is, ρ(·, µ)
is nonincreasing for each fixed µ > 0.

(v) Similarly to (3.19) and (3.20) we have for µ > 0 and µ′ > 0,

λ(‖xλ,µ′‖1 − ‖xλ,µ‖1) ≥ 〈AtJp(Axλ,µ − b) + µxλ,µ, xλ,µ − xλ,µ′〉

and

λ(‖xλ,µ‖1 − ‖xλ,µ′‖1) ≥ 〈AtJp(Axλ,µ′ − b) + µ′xλ,µ′ , xλ,µ′ − xλ,µ〉.
Adding up the last two inequalities yields

0 ≥ 〈Jp(Axλ,µ − b)− Jp(Axλ,µ′ − b), A(xλ,µ − b)−A(xλ,µ′ − b)〉
+ 〈µxλ,µ − µ′xλ,µ′ , xλ,µ − xλ,µ′〉
≥ cp‖Axλ,µ −Axλ,µ′‖pp + (µ− µ′)〈xλ,µ, xλ,µ − xλ′,µ〉+ µ′‖xλ,µ − xλ,µ′‖22
= cp‖Axλ,µ −Axλ,µ′‖pp + (µ− µ′)(‖xλ,µ‖22 − 〈xλ,µ, xλ′,µ〉) + µ′‖xλ,µ − xλ,µ′‖22
≥ (µ− µ′)(‖xλ,µ‖22 − 〈xλ,µ, xλ′,µ〉).

It turns out that if µ > µ′, then we must have ‖xλ,µ‖22 − 〈xλ,µ, xλ′,µ〉 ≤ 0. Since

〈xλ,µ, xλ′,µ〉 ≤ ‖xλ,µ‖2 · ‖xλ′,µ‖2
by the Cauchy-Schwartz inequality, we obtain that ‖xλ,µ‖2 ≤ ‖xλ′,µ‖2.
Namely, ξ(λ, ·) is nonincreasing for fixed λ > 0. The proof is complete.

The following result shows that if λ > 0 is sufficiently big, then the minimization
(1.6) has trivial solutions only.

Proposition 3.3. Assume Sp = arg minx∈Rn ‖Ax− b‖pp is nonempty and set

∆p := sup
(λ,µ)∈D

‖At(Jp(Axλ,µ)− Jp(Axλ,µ − b))‖∞. (3.21)

If λ > ∆p, then xλ,µ = 0 for all µ ∈ (0,∞).

Remark 3.4. Since (xλ,µ)(λ,µ)∈D is bounded, ∆p is finite. Also, since by (3.12),

‖xλ,µ‖2 ≤ |Sp|1 for (λ, µ) ∈ D, we can replace the ∆p in Proposition 3.3 with ∆̃p

which is defined as

∆̃p := sup
‖x‖2≤|Sp|1

‖At(Jp(Ax)− Jp(Ax− b))‖∞ (≥ ∆p). (3.22)

Proof of Proposition 3.3. Setting

zλ,µ = AtJp(Axλ,µ − b) + µxλ,µ,
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we can rewrite the optimality condition (3.5) as

− 1

λ
zλ,µ ∈ ∂‖xλ,µ‖1

and the subdifferential equality (3.14) turns out to be

λ‖x‖1 ≥ λ‖xλ,µ‖1 − 〈zλ,µ, x− xλ,µ〉 (3.23)

for x ∈ Rn. Noticing

−(zλ,µ)i = λ · sgn[(xλ,µ)i], if (xλ,µ)i 6= 0,
|(zλ,µ)i| ≤ λ, if (xλ,µ)i = 0.

and taking x = 2xλ,µ in (3.23) yields

λ‖xλ,µ‖1 ≥ −〈zλ,µ, xλ,µ〉 = −
∑

(xλ,µ)i 6=0

(zλ,µ)i (xλ,µ)i

= λ
∑

(xλ,µ)i 6=0

sgn[(xλ,µ)i] (xλ,µ)i

= λ
∑

(xλ,µ)i 6=0

|(xλ,µ)i| = λ‖xλ,µ‖1.

Consequently, we must have

λ‖xλ,µ‖1 = −〈zλ,µ, xλ,µ〉
= −〈AtJp(Axλ,µ − b) + µxλ,µ, xλ,µ〉
= −〈Jp(Axλ,µ − b), Axλ,µ〉 − µ〈xλ,µ, xλ,µ〉
= 〈Jp(Axλ,µ)− Jp(Axλ,µ − b), Axλ,µ〉 − 〈Jp(Axλ,µ), Axλ,µ〉 − µ‖xλ,µ‖22
= 〈At(Jp(Axλ,µ)− Jp(Axλ,µ − b)), xλ,µ〉 − ‖Axλ,µ‖pp − µ‖xλ,µ‖22
≤ 〈At(Jp(Axλ,µ)− Jp(Axλ,µ − b)), xλ,µ〉
≤ ‖xλ,µ‖1‖At(Jp(Axλ,µ)− Jp(Axλ,µ − b))‖∞
≤ ∆p · ‖xλ,µ‖1.

This implies that if xλ,µ 6= 0, we must have λ ≤ ∆p. Consequently, if λ > ∆p, we
necessarily have xλ,µ = 0. This completes the proof.

Remark 3.5. When p = 2, the duality map Jp = I and ∆2 = ‖Atb‖∞. Thus
xλ,µ = 0 whenever λ > ‖Atb‖∞. This particularly recovers [19, Proposition 2.3].

4. Iterative methods

Taking f(x) = (1/p)‖Ax− b‖pp + (µ/2)‖x‖22 and g(x) = λ‖x‖1, we rewrite (3.2) as
the composite optimization (2.7). Notice that f is differentiable with gradient given
by (assuming p ∈ (1,∞))

∇f(x) = AtJp(Ax− b) + µx. (4.1)
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4.1. Proximal-gradient algorithm. Applying the proximal gradient algorithm
(2.9) to (3.2), we get a sequence (xk) given as follows:

xk+1 = proxλkλ‖·‖1(xk − λk(AtJp(Axk − b) + µxk)), (4.2)

where x0 ∈ Rn is an initial guess and {λk} is a sequence of positive real numbers.
However, Theorem 2.4 is not applicable to (4.2) because the gradient of f , ∇f , as
given in (4.1), fails to be Lipschitz (except for the case of p = 2). We therefore pose
the following

Open question: Does the sequence (xk) generated by the algorithm (4.2) converge
to the solution of (3.2)?

4.2. Generalized Frank-Wolfe Algorithm. The Frank-Whole algorithm (FWA)
[11] provides an iterative algorithm that does not require the gradient to be Lipschitz
continuous, and is thus applicable to the optimization (1.6). In fact, a generalization
of FWA, called generalized Frank-Whole algorithm (gFWA) [2, 20], has recently been
developed to treat the composite optimization (2.7). Let C be a closed bounded
convex subset of Rn and consider the constrained composite optimization problem

min
x∈Rn

ϕ(x) := f(x) + g(x) (4.3)

where f and g are convex.
The gFWA generates a sequence (xk) via the following iteration process:{

x̄k = arg minx∈C〈f ′(xk), x〉+ g(x),

xk+1 = xk + γk(x̄k − xk)
(4.4)

where x0 ∈ C is an initial and γk ∈ [0, 1) is the stepsize of the kth iteration.

Theorem 4.1. ([20, Theorem 5.2]) Consider the sequence {xk} generated by the
generalized Frank-Wolfe algorithm (4.4). Assume the conditions below are satisfied:

(i) the Fréchet derivative f ′ is uniformly continuous over C;
(ii) the stepsizes {γk} ⊂ (0, 1] satisfy the open loop conditions:

(C1) limk→∞ γk = 0,
(C2)

∑∞
k=0 γk =∞.

Then limk→∞ ϕ(xk) = ϕ∗ := infC ϕ, where ϕ = f + g.

Now assume S = arg minx∈Rn ‖Ax− b‖pp is nonempty. Then by Proposition 3, the

solution xλ of (1.6) is trivial (i.e., xλ = 0) for all λ > ∆̃p, where ∆̃p is defined by
(3.22). It turns out that we can restrict the minimization problem (1.6) to the closed
ball Br for achieving nontrivial solutions. Here r = |Sp|1. Hence, the gFWA (4.4)
applies, where we take

f(x) =
1

p
‖Ax− b‖pp +

µ

2
‖x‖22 and g(x) = λ‖x‖1.

Note again
f ′(x) = AtJp(Ax− b) + µx.

Consequently, the following result follows immediately from Theorem 4.1.
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Theorem 4.2. Let the sequence {xk} be generated by the generalized Frank-Wolfe
algorithm: {

x̄k = arg minx∈Br 〈AtJp(Axk − b) + µxk, x〉+ λ‖x‖1,
xk+1 = xk + γk(x̄k − xk).

Let (γk) satisfy the open loop conditions (C1) and (C2). Then

lim
k→∞

ϕλ,µ(xk) = min
Rn

ϕλ,µ,

with ϕλ,µ defined in (3.2).
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