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1. Introduction

The metric fixed point theory is an useful tools to deal with various mathematical
problems. The Banach contraction principle (see [2]) is at the base of this theory.
Such principle was generalized in different directions, see for example [1, 3, 6, 11, 12,
13, 16, 17].

In particular, we recall that Jleli et al. used an appropriate family of functions in
order to introduce a new type of contraction, called (F,ϕ)-contraction (see [5]). They
obtained results of existence and uniqueness of fixed point in the setting of metric
spaces by using the (F,ϕ)-contractions (see also [18]). Khojasteh et al. introduced
the concept of Z-contraction (see [7]). The Z-contractions are nonlinear contractions
defined by using a specific function, called simulation function. We stress that the
existence and uniqueness of fixed points for Z-contraction mappings was proved in
[7]. Furthermore, we remind that Samet et al. (see [16]) and Vetro and Vetro (see
[17]) showed the existence and uniqueness of fixed point which belongs to the zero-set
of a given function.

In this paper, we work in the setting of metric spaces endowed with a w0-distance.
Thanks to two suitable families of functions, we introduce a new type of contraction
which we call w-contraction. We use the w-contractions in order to establish new and
more general results of existence and uniqueness of fixed point. In particular, we stress
that as applications of our main result (see Theorem 3.3), we get the existence and
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uniqueness of fixed point for cyclic mappings (see Theorem 4.3) and mappings that
satisfy a contractive condition of integral type (see Theorems 5.4 and 5.5). In addition,
we point out that our main result allows to deduce, as particular cases, some of the
most known results of fixed point in the existing literature (see Corollaries 6.1, 6.2,
6.3 and 6.4). Finally, following [4] we give another result of existence and uniqueness
of fixed point which involves cyclic contractions by weakening the closure assumption
of Theorem 4.3 (see Theorem 4.4). We remark that such a closure assumption is
usually supposed in the literature.

2. Preliminaries

In this section, we recall some definitions and notations that we will use throughout
the paper. Precisely, we remind the notion of w0-distance, and in addition, we present
two families of functions which we will use in order to define the w-contractions.

The notion of w-distance in a metric space was introduced by Kada et al. (see [6]) in
order to obtain new and more general fixed point results. Such definition was recently
revised by Kostić et al. in [9]. Exactly, they supposed the lower semicontinuity with
respect to both variables and so introduced the w0-distance.

Definition 2.1. Let (X, d) be a metric space. A function w : X ×X → [0,+∞[ is
called a w0-distance on X if the following three conditions are verified.

(w1) w(u, z) ≤ w(u, v) + w(v, z) for all u, v, z ∈ X;
(w2) for any u ∈ X the functions w(u, ·), w(·, u) : X → [0,+∞[ are lower semicon-

tinuous;
(w3) for any ε > 0 there exists δ > 0 such that w(u, z) ≤ δ and w(u, v) ≤ δ imply

d(v, z) ≤ ε.

We stress that the notion of w0-distance introduced by Kostić et al. is less general
than one of w-distance given in [6]. However, the notion of w0-distance is more general
than one of metric.

For convenience of the reader we recall the following result of [6] which gives the
principal properties of a w-distance.

Lemma 2.2 (See [6]). Let (X, d) be a metric space and let w be a w-distance on X.
Let {um} and {vm} be sequences in X, let {αm} and {βm} be sequences in [0,+∞[
converging to 0 and let u, v, z ∈ X. Then the following hold:

(i) If w(um, v) ≤ αm and w(um, z) ≤ βm for any m ∈ N, then v = z.
In particular, if w(u, v) = 0 and w(u, z) = 0, then v = z.

(ii) If w(um, vm) ≤ αm and w(um, z) ≤ βm for any m ∈ N, then vm converges to
z.

(iii) If w(uk, um) ≤ αm, for any k,m ∈ N with k > m, then {um} is a Cauchy
sequence.

(iv) If w(v, um) ≤ αm, for any m ∈ N, then {um} is a Cauchy sequence.

In the sequel, given a metric space (X, d) and a w0-distance w on X, we will denote
by µ : X ×X → [0,+∞[ the function defined by

µ(u, v) = max{w(u, v), w(v, u)} for any u, v ∈ X. (2.1)
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It is easy to infer that the function µ verifies the following properties:

• µ(u, v) = 0⇒ u = v for any u, v ∈ X;
• µ is symmetric, that is, µ(u, v) = µ(v, u) for any u, v ∈ X;
• µ satisfies the triangle inequality, that is, µ(u, z) ≤ µ(u, v) + µ(v, z) for any
u, v, z ∈ X.

Furthermore, the function µ : X ×X → [0,+∞[ defined by (2.1) is such that

µ(u, z) ≤ lim inf
m→+∞

µ(u, um) whenever um → z as m→ +∞. (2.2)

This means that µ is lower semicontinuous with respect to the second variable. Hence,
taking into account that µ is symmetric, we deduce that

µ(z, u) ≤ lim inf
m→+∞

µ(um, u) whenever um → z as m→ +∞, (2.3)

that is, µ is also lower semicontinuous with respect to the first variable.
In this paper, we use a contractive notion which involves two families of functions,

called H and S. Precisely, H denotes the family of functions H : [0,+∞[3→ [0,+∞[
satisfying the following conditions (see [5]):

(H1) max{δ, θ} ≤ H(δ, θ, λ), for all δ, θ, λ ∈ [0,+∞[;
(H2) H(0, 0, 0) = 0;
(H3) H is continuous.

S denotes the family of functions S : [0,+∞[2→ R satisfying the following conditions
(see [1, 7]):

(S1) S(δ, θ) < θ − δ for all δ, θ > 0;
(S2) if {δm}, {θm} are sequences in ]0,+∞[ such that

lim
m→+∞

δm = lim
m→+∞

θm = ` ∈ ]0,+∞[

then lim supm→+∞ S(δm, θm) < 0.

For completeness we remark that both the families H and S were used in order to
establish new and more general results of existence and uniqueness of fixed point (see
[5] and [1, 7, 9], respectively). Furthermore, Jleli et al. used the family H in order to
introduce a new type of contraction (see Definition 2.4 of [5]).

We notice that the following are examples of functions H : [0,+∞[3→ [0,+∞[
belonging to the family H:

(i) H(δ, θ, λ) = δ + θ + λ, for all δ, θ, λ ∈ [0,+∞[;
(ii) H(δ, θ, λ) = max{δ, θ}+ λ, for all δ, θ, λ ∈ [0,+∞[.

In addition, the following are examples of functions S : [0,+∞[2→ R belonging to
the family S:

(i) S(δ, θ) = σ θ − δ for all δ, θ ∈ [0,+∞[ where σ ∈ [0, 1[;
(ii) S(δ, θ) = θ − ψ(θ) − δ for all δ, θ ∈ [0,+∞[ where ψ : [0,+∞[→ [0,+∞[ is a

lower semicontinuous function such that ψ(θ) = 0 if and only if θ = 0;
(iii) S(δ, θ) = θ ψ(θ)−δ for all δ, θ ∈ [0,+∞[ where ψ : [0,+∞[→ [0, 1[ is such that

limθ→r+ ψ(θ) < 1 for all r > 0.

In the next sections, given X 6= ∅, f : X → X, u0 ∈ X and um = fum−1 for all
m ∈ N, we will call {um} a sequence of Picard starting at u0.
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3. Fixed points for w-contractions

In this section, we state and prove our main result. Firstly, we introduce the notion
of w-contraction.

Definition 3.1. Let (X, d) be a metric space and w : X × X → [0,+∞[ be a w0-
distance on X. A mapping f : X → X is a w-contraction if there exist three functions
H ∈ H, S ∈ S and ρ : X → [0,+∞[, such that

S(H(µ(fu, fv), ρ(fu), ρ(fv)), H(µ(u, v), ρ(u), ρ(v))) ≥ 0 for all u, v ∈ X. (3.1)

Lemma 3.2. Let (X, d) be a metric space and w : X×X → [0,+∞[ be a w0-distance
on X. Assume that the mapping f : X → X is a w-contraction with respect to the
functions S ∈ S, H ∈ H and ρ : X → [0,+∞[, that is,

S(H(µ(fu, fv), ρ(fu), ρ(fv)), H(µ(u, v), ρ(u), ρ(v))) ≥ 0 for all u, v ∈ X.
Then any sequence {um} of Picard starting at a point u0 ∈ X is a Cauchy sequence,
whenever um−1 6= um for all m ∈ N.

Proof. Let u0 be an arbitrary point in X. Suppose that the sequence {um} of Picard
starting at u0 is such that um−1 6= um for all m ∈ N. Firstly, we establish that

lim
m→+∞

µ(um−1, um) = 0 and lim
m→+∞

ρ(um) = 0. (3.2)

We recall that µ(u, v) = 0 implies u = v and so, taking into account that um−1 6= um
for all m ∈ N, we have that µ(um−1, um) > 0 for all m ∈ N. Hence using the property
(H1) of the function H, we infer that

H(µ(um−1, um), ρ(um−1), ρ(um)) ≥ µ(um−1, um) > 0 for all m ∈ N.
Using (3.1) with u = um−1 and v = um and the property (S1) of the function S, we
obtain

0 ≤ S(H(µ(um, um+1), ρ(um), ρ(um+1)), H(µ(um−1, um), ρ(um−1), ρ(um)))

< H(µ(um−1, um), ρ(um−1), ρ(um))−H(µ(um, um+1), ρ(um), ρ(um+1))

for all m ∈ N. The previous inequality shows that

H(µ(um, um+1), ρ(um), ρ(um+1)) < H(µ(um−1, um), ρ(um−1), ρ(um)) for all m ∈ N.
This ensures that {H(µ(um−1, um), ρ(um−1), ρ(um))} is a decreasing sequence of pos-
itive real numbers. So, there exists some ` ≥ 0 such that

lim
m→+∞

H(µ(um−1, um), ρ(um−1), ρ(um)) = `.

We claim that ` = 0. We assume by contradiction that ` > 0. Then using the property
(S2) with

δm = H(µ(um, um+1), ρ(um), ρ(um+1))

and
θm = H(µ(um−1, um), ρ(um−1), ρ(um)),

we obtain

0≤ lim sup
m→+∞

S(H(µ(um, um+1), ρ(um), ρ(um+1)), H(µ(um−1, um), ρ(um−1), ρ(um)))<0.
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Clearly, this is a contradiction and hence we conclude that ` = 0. Next, using the
property (H1) of the function H, we get

max{µ(um−1, um), ρ(um−1)} ≤ H(µ(um−1, um), ρ(um−1), ρ(um)) for m ∈ N
and hence

lim
m→+∞

µ(um−1, um) = 0 and lim
m→+∞

ρ(um−1) = 0.

Secondly, we prove that {um} is a Cauchy sequence. In order to show this by Lemma
2.2 (iii), it is sufficient to establish that for any ε > 0 there exists n(ε) ∈ N such that

µ(un, um) < ε for all m > n ≥ n(ε). (3.3)

We assume for way of contradiction that (3.3) does not hold. Then, there exist a
positive real number ε0 and two sequences {mk} and {nk} such that mk > nk ≥ k
and µ(unk

, umk
) ≥ ε0 > µ(unk

, umk−1) for all k ∈ N. The previous inequality and the
first limit of (3.2) imply that

lim
k→+∞

µ(unk
, umk

) = lim
k→+∞

µ(unk−1, umk−1) = ε0.

Now, taking into account that H is a continuous function, we have

lim
k→+∞

H(µ(unk−1, umk−1), ρ(unk−1), ρ(umk−1)) = lim
k→+∞

H(µ(unk
, umk

), ρ(unk
), ρ(umk

))

= H(ε0, 0, 0) > 0.

Furthermore, we can assume µ(unk−1, umk−1) > 0 for all k ∈ N. Consequently, we
deduce that

H(µ(unk−1, umk−1), ρ(unk−1), ρ(umk−1)) ≥ µ(unk−1, umk−1) > 0 for all k ∈ N.
Since we also have H(µ(unk

, umk
), ρ(unk

), ρ(umk
)) ≥ µ(unk

, umk
) > 0, we can use the

property (S2) with
δk = H(µ(unk

, umk
), ρ(unk

), ρ(umk
))

and
θk = H(µ(unk−1, umk−1), ρ(unk−1), ρ(umk−1)).

Thus, we get

0 ≤ lim sup
k→+∞

S(H(µ(unk
, umk

), ρ(unk
), ρ(umk

)),

H(µ(unk−1, umk−1), ρ(unk−1), ρ(umk−1))) < 0.

Obviously, this is out of the question. So, we conclude that for any ε > 0 there exists
n(ε) ∈ N such that (3.3) holds and hence the sequence {um} is Cauchy. �

Now, we are ready to formulate and prove our first main result.

Theorem 3.3. Let (X, d) be a complete metric space and w : X ×X → [0,+∞[ be
a w0-distance on X. Assume that the mapping f : X → X is a w-contraction with
respect to the functions S ∈ S, H ∈ H and ρ : X → [0,+∞[, that is,

S(H(µ(fu, fv), ρ(fu), ρ(fv)), H(µ(u, v), ρ(u), ρ(v))) ≥ 0 for all u, v ∈ X.
If ρ is a lower semicontinuous function, then f has a unique fixed point ξ such that
ρ(ξ) = 0.
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Proof. Firstly, we establish the uniqueness of the fixed point. Suppose that f has two
fixed points ξ, ζ ∈ X such that ξ 6= ζ. This ensures that

H(µ(ξ, ζ), ρ(ξ), ρ(ζ)) ≥ µ(ξ, ζ) > 0.

Using (3.1) with u = ξ and v = ζ and the property (S1) of the function S, we infer
that

0 ≤ S(H(µ(fξ, fζ), ρ(fξ), ρ(fζ)), H(µ(ξ, ζ), ρ(ξ), ρ(ζ)))

< H(µ(ξ, ζ), ρ(ξ), ρ(ζ))−H(µ(ξ, ζ), ρ(ξ), ρ(ζ)) = 0.

Clearly, this is a contradiction. Hence, we have ξ = ζ and further we obtain the claim,
that is, the uniqueness of the fixed point.

In order to establish the existence of a fixed point, we consider a point u0 ∈ X.
Let {um} be a sequence of Picard starting at u0. We stress that if uk = uk+1 for
some k ∈ N then uk = uk+1 = fuk, that is, uk is a fixed point of f . We claim that
ρ(uk) = 0. We assume by contradiction that ρ(uk) > 0. Then, by the property (H1)
of the function H, we get

0 < ρ(uk) ≤ H(µ(uk, uk), ρ(uk), ρ(uk)).

Taking into account that um = uk for all m > k, m ∈ N, using (3.1) with

u = v = uk = uk+1 = uk+2

and the property (S1) of the function S, we deduce that

0 ≤ S(H(µ(uk+1, uk+2), ρ(uk+1), ρ(uk+2)), H(µ(uk, uk+1), ρ(uk), ρ(uk+1)))

< H(µ(uk, uk+1), ρ(uk), ρ(uk+1))−H(µ(uk+1, uk+2), ρ(uk+1), ρ(uk+2))

= H(µ(uk, uk), ρ(uk), ρ(uk))−H(µ(uk, uk), ρ(uk), ρ(uk)) = 0.

Clearly, the previous inequality gives a contradiction. Hence, it follows that ρ(uk) = 0.
So, we conclude that if uk = uk+1 for some k ∈ N, then uk is a fixed point of f such
that ρ(uk) = 0.

Now, we can suppose that um 6= um+1 for every m ∈ N. By Lemma 3.2, we have
that the sequence {um} is Cauchy. Hence, since (X, d) is complete, there exists some
ξ ∈ X such that

lim
m→+∞

um = ξ. (3.4)

From the proof of Lemma 3.2, we say that for every k ∈ N there exists m(k) ∈ N such
that

µ(um(k), um) <
1

k
for all m > m(k). (3.5)

From (3.5), using the semicontinuity of µ with respect to the second variable (see
(2.2)), we get

µ(um(k), ξ) ≤ lim inf
m→+∞

µ(um(k), um) ≤ 1

k
. (3.6)

Consequently, from (3.6) we infer that there exists a subsequence {um(k)} of {um}
such that

lim
k→+∞

µ(um(k), ξ) = 0. (3.7)
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Since µ satisfies the triangle inequality, we have also

lim
k→+∞

µ(um(k)+1, ξ) = 0. (3.8)

By (3.2), taking into account that ρ is a lower semicontinuous function, we get

0 ≤ ρ(ξ) ≤ lim inf
m→+∞

ρ(um) = 0,

that is, ρ(ξ) = 0. We assert that ξ is a fixed point of f . Clearly, ξ is a fixed point of
f if there exists a subsequence umj

of um such that umj
= ξ or fumj

= fξ, for all
j ∈ N. If such a subsequence there is not, we can assume that um 6= ξ and fum 6= fξ
for all m ∈ N. So, using (3.1) with u = um and v = ξ and the property (S1) of the
function S, we deduce that

0 ≤ S(H(µ(fum, fξ), ρ(fum), ρ(fξ)), H(µ(um, ξ), ρ(um), ρ(ξ)))

< H(µ(um, ξ), ρ(um), ρ(ξ))−H(µ(fum, fξ), ρ(fum), ρ(fξ)).

This implies

H(µ(fum, fξ), ρ(fum), ρ(fξ)) < H(µ(um, ξ), ρ(um), ρ(ξ)) for all n ∈ N.
Next, using the semicontinuity of µ with respect to the first variable (see (2.3)) and
further using (3.7) and (3.8), we deduce

µ(ξ, fξ) ≤ lim inf
k→+∞

µ(um(k)+1, fξ) = lim inf
k→+∞

µ(fum(k), fξ)

≤ lim inf
k→+∞

H(µ(fum(k), fξ), ρ(fum(k)), ρ(fξ))

≤ lim inf
k→+∞

H(µ(um(k), ξ), ρ(um(k)), ρ(ξ)) = 0

(recall that H is continuous and (3.7) holds). Then µ(ξ, fξ) = 0 and hence ξ = fξ,
that is, ξ is a fixed point of f such that ρ(ξ) = 0. �

4. Application to cyclic mappings

Here, using the results obtained in Section 3, we deduce a fixed point theorem for
cyclic mappings on metric spaces.

We remark that Kirk et al. introduced in [8] the following definition (see also [17]).

Definition 4.1. (See [8, 17]) Let (X, d) be a metric space, q be a positive integer
and f : X → X be a mapping. X = ∪qi=1Ai is said a cyclic representation of X with
respect to f if

(i) Ai is a nonempty closed set for each i = 1, 2, . . . , q;
(ii) f(Ai) ⊂ Ai+1 for each i = 1, 2, . . . , q, where Aq+1 = A1.

Since then, fixed point theorems involving a cyclic representation of X with respect
to a self-mapping f appeared in many articles (see, for example, [4, 10, 17] and their
references). Motived by this, we give the following definition.

Definition 4.2. Let (X, d) be a metric space, w : X × X → [0,+∞[ be a w0-
distance on X, q be a positive integer, A1, A2, . . . , Aq be nonempty subsets of X and
Y = ∪qi=1Ai. A mapping f : Y → Y is said a cyclic w-contraction if
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(i) f(Ai) ⊂ Ai+1 for each i = 1, 2, . . . , q, where Aq+1 = A1;
(ii) there exist three functions S ∈ S, H ∈ H and ρ : X → [0,+∞[ such that

S (H(µ(fu, fv), ρ(fu), ρ(fv)), H(µ(u, v), ρ(u), ρ(v))) ≥ 0 (4.1)

for every u ∈ Ai, v ∈ Ai+1, i = 1, 2, . . . , q.

Now, we are ready to prove the following theorem which is an extension of the Kirk
et al.’s cyclic fixed point theorems (see [8], Theorems 1.3, 2.3 and 2.4).

Theorem 4.3. Let (X, d) be a complete metric space, w : X×X → [0,+∞[ be a w0-
distance on X, q be a positive integer, A1, . . . , Aq be nonempty closed subsets of X,
Y = ∪qi=1Ai and f : Y → Y be a cyclic w-contraction. If ρ is a lower semicontinuous
function, then f has a unique fixed point ξ in Y such that ρ(ξ) = 0.

Proof. Firstly, we assume that ∩qi=1Ai 6= ∅. We notice that f(∩qi=1Ai) ⊂ ∩
q
i=1Ai.

Therefore, f : ∩qi=1Ai → ∩
q
i=1Ai satisfies all the hypotheses of Theorem 3.3, that is,

∩qi=1Ai is a complete metric space (we recall that Ai is closed for each i = 1, 2, . . . , q),
f is a w-contraction on ∩qi=1Ai and ρ is a semicontinuous function. Hence by Theorem
3.3, we conclude that f has a unique fixed point ξ in ∩qi=1Ai (and so in Y ) such that
ρ(ξ) = 0.

We observe that the foregoing discussion ensures that in order to obtain the claim
it is sufficient to show that ∩qi=1Ai 6= ∅. Let u1 ∈ A1 and let {um} be a sequence of
Picard starting at u1. Since Y = ∪qi=1Ai is a cyclic representation of Y with respect
to f , we have that umq+i ∈ Ai for all i = 1, . . . , q and m ∈ N ∪ {0}. We note that
if uk = uk+1 for some k ∈ N then um = uk for all m ≥ k. Thus, uk ∈ Ai for each
i = 1, . . . , q and hence ∩qi=1Ai 6= ∅.

Therefore, we suppose that um 6= um+1 for every m ∈ N. By Lemma 3.2, we have
that the sequence {um} is Cauchy. Hence, since (X, d) is complete, there exists some
ξ ∈ X such that

lim
m→+∞

um = ξ.

Since umq+i → ξ as m → +∞ and the set Ai is closed, for each i = 1, . . . , q, we get
that ξ ∈ ∩qi=1Ai 6= ∅. This prove the claim. �

Next, we give another result for cyclic w-contractions which improves one of The-
orem 4.3. Precisely, following [4] we weaken the closure assumption on the sets Ai,
that is, we only suppose that A1 is closed. We stress that such a result does not follow
from Theorem 3.3.

Theorem 4.4. Let (X, d) be a complete metric space, w : X × X → [0,+∞[ be
a w0-distance on X, q be a positive integer, A1, . . . , Aq be nonempty subsets of X,
Y = ∪qi=1Ai and f : Y → Y be a cyclic w-contraction. If A1 is closed and ρ is a lower
semicontinuous function, then f has a unique fixed point ξ in Y such that ρ(ξ) = 0.

Proof. We notice that in order to prove the uniqueness of the fixed point it is sufficient
proceed as in the proof of Theorem 3.3 (we remark that the fixed point of f belongs
to ∩qi=1Ai). Therefore, we only establish the existence of a fixed point. Let u1 ∈ A1

and let {um} be a sequence of Picard starting at u1. Since f : Y → Y is a cyclic w-
contraction, we have that umq+1 ∈ A1 for all m ∈ N∪{0}. We stress that if uk = uk+1
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for some k ∈ N, then uk is a fixed point of f and, further, ρ(uk) = 0 (see the proof of
Theorem 3.3). So, we suppose that um 6= um+1 for every m ∈ N. By Lemma 3.2, we
have that the sequence {um} is Cauchy. Hence, since (X, d) is complete, there exists
some ξ ∈ X such that

lim
m→+∞

um = ξ.

Since umq+1 → ξ as m → +∞ and the set A1 is closed, we have that ξ ∈ A1. We
assert that ξ is a fixed point of f . Clearly, ξ is a fixed point of f if there exists a
subsequence {um(k)q+2} of {umq+2} such that um(k)q+2 = ξ or fum(k)q+2 = fξ, for
all k ∈ N ∪ {0}. If such a subsequence there is not, we can assume that umq+2 6= ξ
and fumq+2 6= fξ for all m ∈ N ∪ {0}.

Thanks to the proof of Theorem 3.3, we can affirm that there exists a subsequence
{um(k)q+2} of {umq+2} such that µ(ξ, um(k)q+2) → 0 as k → +∞. Further, we
can affirm that ρ(um(k)q+2) → 0 as k → +∞ and, taking into account that ρ is
semicontinuous, we have that ρ(ξ) = 0. Now, using (4.1) with u = ξ ∈ A1 and
v = um(k)q+2 ∈ A2 and the property (S1) of the function S, we deduce that

0≤S(H(µ(fξ, fum(k)q+2), ρ(fξ), ρ(fum(k)q+2)), H(µ(ξ, um(k)q+2), ρ(ξ), ρ(um(k)q+2)))

< H(µ(ξ, um(k)q+2), ρ(ξ), ρ(um(k)q+2))−H(µ(fξ, fum(k)q+2), ρ(fξ), ρ(fum(k)q+2)).

This implies

H(µ(fξ, fum(k)q+2), ρ(fξ), ρ(fum(k)q+2)) < H(µ(ξ, um(k)q+2), ρ(ξ), ρ(um(k)q+2))

for all k ∈ N ∪ {0}. Next, using the semicontinuity of µ with respect to the second
variable (see (2.2)), we deduce

µ(fξ, ξ) ≤ lim inf
k→+∞

µ(fξ, um(k)q+3) = lim inf
k→+∞

µ(fξ, fum(k)q+2)

≤ lim inf
k→+∞

H(µ(fξ, fum(k)q+2), ρ(fξ), ρ(fum(k)q+2))

≤ lim inf
k→+∞

H(µ(ξ, um(k)q+2), ρ(ξ), ρ(um(k)q+2)) = H(0, 0, 0) = 0

(we recall that H is continuous). Then µ(fξ, ξ) = 0 and hence ξ = fξ, that is, ξ is a
fixed point of f such that ρ(ξ) = 0. �

5. Application to contractions of integral type

In this section, we give some fixed point results for mappings which satisfy a
contractive condition of integral type. First, we start with some remarks.

Remark 5.1. Let ψ : [0,+∞[→ [0,+∞[ with ψ(θ) < θ for all θ > 0 and ψ(0) = 0 be
an upper semicontinuous function. Then the function S : [0,+∞[×[0,+∞[→ [0,+∞[
defined by S(δ, θ) = ψ(θ)− δ belongs to S.

In fact, (S1) holds because S(δ, θ) = ψ(θ)− δ < θ − δ for each δ, θ > 0. Regarding
(S2), we consider two sequences {δm}, {θm} in ]0,+∞[ such that

lim
m→+∞

δm = lim
m→+∞

θm = ` ∈ ]0,+∞[.

The upper semicontinuity of the function ψ ensures that

lim sup
m→+∞

S(δm, θm) ≤ lim sup
m→+∞

ψ(θm)− ` ≤ ψ(`)− ` < `− ` = 0.
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Remark 5.2. Let ψ : [0,+∞[→ [0,+∞[ with ψ(θ) > θ for all θ > 0 and ψ(0) = 0 be
a lower semicontinuous function. Then the function S : [0,+∞[×[0,+∞[→ [0,+∞[
defined by S(δ, θ) = θ − ψ(δ) belongs to S.

We notice that from Remarks 5.1 and 5.2, we can deduce the following.

Remark 5.3. Let ι : [0,+∞[→ [0,+∞[ be a function Lebesgue integrable in every
interval [0, τ ] with τ > 0, then

(i) S : [0,+∞[×[0,+∞[→ [0,+∞[ defined by S(δ, θ) =
∫ θ
0
ι(u)du − δ, for all

δ, θ ∈ [0,+∞[, belongs to S if
∫ τ
0
ι(u)du < τ for all τ > 0;

(ii) S : [0,+∞[×[0,+∞[→ [0,+∞[ defined by S(δ, θ) = θ −
∫ δ
0
ι(u)du, for all

δ, θ ∈ [0,+∞[, belongs to S if
∫ τ
0
ι(u)du > τ for all τ > 0.

Now, using Theorem 3.3 and Remark 5.3 (i), we can give a new kind of contractive
condition of integral type which ensures the existence and uniqueness of fixed point.

Theorem 5.4. Let (X, d) be a complete metric space, w : X × X → [0,+∞[ be
a w0-distance on X and let f : X → X be a mapping. Suppose that there exist a
function H ∈ H, a lower semicontinuous function ρ : X → [0,+∞[ and a function
ι : [0,+∞[→ [0,+∞[ Lebesgue integrable in every interval [0, τ ], τ > 0, such that

H(µ(fu, fv), ρ(fu), ρ(fv)) ≤
∫ H(µ(u,v),ρ(u),ρ(v))

0

ι(t)dt for all u, v ∈ X.

If

∫ τ

0

ι(t)dt < τ for all τ > 0, then f has a unique fixed point ξ such that ρ(ξ) = 0.

In addition, using Theorem 3.3 and Remark 5.3 (ii), we can easily get the following.

Theorem 5.5. Let (X, d) be a complete metric space, w : X × X → [0,+∞[ be
a w0-distance on X and let f : X → X be a mapping. Suppose that there exist a
function H ∈ H, a lower semicontinuous function ρ : X → [0,+∞[ and a function
ι : [0,+∞[→ [0,+∞[ Lebesgue integrable in every interval [0, τ ], τ > 0, such that∫ H(µ(fu,fv),ρ(fu),ρ(fv))

0

ι(t)dt ≤ H(µ(u, v), ρ(u), ρ(v)) for all u, v ∈ X.

If

∫ τ

0

ι(t)dt > τ for all τ > 0, then f has a unique fixed point ξ such that ρ(ξ) = 0.

We conclude this section giving an example which motives our study.

Example 5.6. Let X = [0, 158 ]∪ {2}. We consider X endowed with the usual metric
d(u, v) = |u − v| for all u, v ∈ X. Furthermore, we endow X with the w0-distance
w : X ×X → [0,+∞[ defined by w(u, v) = v for all u, v ∈ X. Obviously, (X, d) is a
complete metric space and µ : X ×X → [0,+∞[ is given by µ(u, v) = max{u, v} for
all u, v ∈ X. Let f : X → X be the function defined by

fu =


u
3 if u ∈ [0, 158 ],

3
2 if u = 2.
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Clearly, f satisfies the contractive condition of Theorem 5.5 with respect to the func-
tion H ∈ H defined by H(δ, θ, λ) = δ + θ + λ for all δ, θ, λ ∈ [0,+∞[, the lower
semicontinuous function ρ : X → [0,+∞[ defined by ρ(u) = u for all u ∈ X and the
function ι : [0,+∞[→ [0,+∞[ given by

ι(t) = 1 +
1

(t+ 1)2
for all t ∈ [0,+∞[.

Let u, v ∈ X, we notice that

H(µ(fu, fv), ρ(fu), ρ(fv)) = 2fv + fu and H(µ(u, v), ρ(u), ρ(v)) = 2v + u.

If u ≤ v and u, v ∈ [0, 158 ], then 2fv + fu ≤ v and hence∫ H(µ(fu,fv),ρ(fu),ρ(fv))

0

ι(t)dt ≤
∫ v

0

ι(t)dt

=
v + 2

v + 1
v ≤ 2v ≤ 2v + u

= H(µ(u, v), ρ(u), ρ(v)).

If u ∈ [0, 158 ] and v = 2, then 2fv + fu = 9+u
3 and hence∫ H(µ(fu,fv),ρ(fu),ρ(fv))

0

ι(t)dt =

∫ 9+u
3

0

ι(t)dt =
15 + u

12 + u

9 + u

3

≤ 5

4

9 + u

3
≤ 4 + u

= H(µ(u, v), ρ(u), ρ(v)).

If u = v = 2, then 2fv + fu = 9
2 and hence∫ H(µ(fu,fv),ρ(fu),ρ(fv))

0

ι(t)dt =

∫ 9
2

0

ι(t)dt

=
13

11

9

2
≤ 6

= H(µ(u, v), ρ(u), ρ(v)).

Since all the conditions of Theorem 5.5 are satisfied, we can affirm that f has a unique
fixed point ξ = 0 = ρ(ξ) in X.

We stress that if we choose the w0-distance w = d and ρ(u) = 0 for all u ∈ X, by
d(f0, f2) = 3/2 and d(0, 2) = 2, we deduce that∫ d(f0,f2)

0

ι(t)dt =
21

10
≥ 2 = d(0, 2).

This implies that Theorem 27 of [15] cannot be used in order to affirm that f has a
fixed point with respect to the contractive condition of Theorem 5.5 associated to the
function ι. In addition, the previous consideration shows that the function ρ has a
decisive role in enlarging the class of self mappings which are w-contractions.
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6. Consequences

In this section, using Theorem 3.3 we show that the notion of w-contraction includes
different kinds of contractive conditions in the existing literature.

Firstly, we give a result of Jleli et al. type (see [5], Theorem 2.1).

Corollary 6.1. Let (X, d) be a complete metric space, w : X × X → [0,+∞[ be a
w0-distance on X and let f : X → X be a mapping. Suppose that there exist σ ∈ ]0, 1[,
a function H ∈ H and a lower semicontinuous function ρ : X → [0,+∞[ such that

H(µ(fu, fv), ρ(fu), ρ(fv)) ≤ σH(µ(u, v), ρ(u), ρ(v)) for all u, v ∈ X.

Then f has a unique fixed point ξ ∈ X such that ρ(ξ) = 0.

Proof. The claim follows by Theorem 3.3 if we choose S ∈ S given by S(δ, θ) = σ θ−δ
for all δ, θ ≥ 0. �

We notice that we obtain the Banach contraction principle if we take w = d,
H(δ, θ, λ) = δ + θ + λ for all δ, θ, λ ∈ [0,+∞[ and ρ(u) = 0 for all u ∈ X.

Secondly, we give a result of Rhoades type (see [14]).

Corollary 6.2. Let (X, d) be a complete metric space, w : X × X → [0,+∞[ be
a w0-distance on X and let f : X → X be a mapping. Suppose that there exist a
function H ∈ H and two lower semicontinuous functions ψ : [0,+∞[→ [0,+∞[ with
ψ−1(0) = {0} and ρ : X → [0,+∞[ such that

H(µ(fu, fv), ρ(fu), ρ(fv)) ≤ H(µ(u, v), ρ(u), ρ(v))− ψ(H(µ(u, v), ρ(u), ρ(v)))

for all u, v ∈ X. Then f has a unique fixed point ξ ∈ X such that ρ(ξ) = 0.

Proof. The claim follows by Theorem 3.3 if we choose S ∈ S given by

S(δ, θ) = θ − ψ(θ)− δ,

for all δ, θ ≥ 0. �

In addition, we notice that also the following result (see [12]) is an immediate
consequence of Theorem 3.3.

Corollary 6.3. Let (X, d) be a complete metric space, w : X×X → [0,+∞[ be a w0-
distance on X and let f : X → X be a mapping. Suppose that there exist a function
H ∈ H, a function ψ : [0,+∞[→ [0, 1[ with lim supt→r+ ψ(t) < 1 for all r > 0 and a
lower semicontinuous function ρ : X → [0,+∞[ such that

H(µ(fu, fv), ρ(fu), ρ(fv)) ≤ ψ(H(µ(u, v), ρ(u), ρ(v)))H(µ(u, v), ρ(u), ρ(v))

for all u, v ∈ X. Then f has a unique fixed point ξ ∈ X such that ρ(ξ) = 0.

Proof. We get the claim by using Theorem 3.3 and taking S ∈ S given by

S(δ, θ) = θ ψ(θ)− δ,

for all δ, θ ≥ 0. �

Lastly, we give a result of Boyd-Wong type (see [3]).
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Corollary 6.4. Let (X, d) be a complete metric space, w : X×X → [0,+∞[ be a w0-
distance on X and let f : X → X be a mapping. Suppose that there exist a function
H ∈ H, an upper semicontinuous function ψ : [0,+∞[→ [0,+∞[ with ψ(t) < t for all
t > 0 and ψ(0) = 0 and a lower semicontinuous function ρ : X → [0,+∞[ such that

H(µ(fu, fv), ρ(fu), ρ(fv)) ≤ ψ(H(µ(u, v), ρ(u), ρ(v))) for all u, v ∈ X.

Then f has a unique fixed point ξ ∈ X such that ρ(ξ) = 0.

Proof. Again, we can get the claim thanks to Theorem 3.3 by choosing S ∈ S given
by S(δ, θ) = ψ(θ)− δ, for all δ, θ ≥ 0. �

We point out that if we take w = d, H(δ, θ, λ) = δ + θ + λ for all δ, θ, λ ∈ [0,+∞[
and ρ(u) = 0 for all u ∈ X, then we have the Boyd-Wong result.

The following example shows which Theorem 3.3 is a proper generalization in the
setting of metric spaces both Banach contraction principle and Boyd-Wong result.

Example 6.5. (See [17], Example 4) Let X = [0, 1] and we endow X with the usual
metric d(u, v) = |u − v| for all u, v ∈ X. Further, we consider on X the w0-distance
w : X × X → [0,+∞[ given by w(u, v) = v for all u, v ∈ X. Clearly, (X, d) is a
complete metric space. Fix σ ∈ [0, 1[ and consider the function f : X → X defined
by

fu =


0 if u = 0,
σ
2n − σ

2n−1
2n (2nu− 1) if 1

2n ≤ u ≤
1

2n−1 ,

σ
2n + σ 2n+1

2n (2nu− 1) if 1
2n+1 ≤ u ≤

1
2n .

We notice that if σ > 3/5 then f is not a nonexpansive function in the metric space
(X, d). In fact, if for odd n > 1 we choose u = 1

2n−1 and v = 1
n−1 , we have

d(fu, fv) =
σ

n− 1
and d(u, v) =

n

(n− 1)(2n− 1)
≤ 3

5(n− 1)
.

Hence, if σ > 3/5 we get that d(fu, fv) > d(u, v). So f is not a nonexpansive function.
Therefore, both the Banach contraction principle and Boyd-Wong result cannot be
used in order to affirm that f has a fixed point.

Now, if we consider the function ρ : X → [0,+∞[ defined by ρ(u) = 0 for all u ∈ X
and the function H(δ, θ, λ) = δ + θ + λ for all δ, θ, λ ∈ [0,+∞[, then we have

H(µ(fu, fv), ρ(fu), ρ(fv)) = µ(fu, fv)

= max{fu, fv} ≤ max{σu, σv}
= σmax{u, v}
= σH(µ(u, v), ρ(u), ρ(v)),

for all u, v ∈ X. Since all the conditions of Corollary 6.1 are satisfied we get that f
has a unique fixed point in X.
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