SATURATED VERSIONS OF SOME FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS

BURIS TONGNOI

Department of Mathematics, Faculty of Science
Naresuan University, Thailand
Graduate Ph.D. Program in Mathematics
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
E-mail: book_buris@hotmail.com

Abstract

In this paper, we will give extended versions of two standard fixed point principles: one for Hardy-Rogers type operators and the other one for Ćirić type operators in complete metric space. Our results generalize similar theorems given in [9]. Key Words and Phrases: Fixed point, complete metric space, Hardy-Rogers type operators, Ćirić type operators, well-posed property, Ostrowski property, quasi-contraction. 2010 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

The most important metric fixed point theorem is the well-known Contraction Principle proved by St. Banach in 1922 in normed spaces and by R. Caccioppoli in 1930 in complete metric spaces. Very recently, in [9] I.A. Rus proved a saturated version of the Banach-Caccioppoli Contraction Principle, together with an extended version of it.

The purpose of this paper is to present extended versions of some fixed point theorems for generalized contractions. Hardy-Rogers contractions and Ćirić generalized contractions are considered. Our results generalize similar theorems given in I.A. Rus [9]. For the case of non-self operators see [2].

For a better understanding of the main part of the paper, we introduce some important definitions. If X is a nonempty set and $f: X \rightarrow X$ is an operator, then we denote by $F_{f}:=\{x \in X: x=f(x)\}$ the fixed point set for f.

Definition 1.1 ([7]). If X is a nonempty set and $f: X \rightarrow X$ is an operator such that, $F_{f^{n}}=\left\{x^{*}\right\}$, for all $n \in \mathbb{N}^{*}$. then f is called a Bessaga oprator.

Definition $1.2([7])$. Let (X, d) be a metric space. A mapping $f: X \rightarrow X$ is a (strict) Picard mapping if there exists $x^{*} \in X$ such that $F_{f}=\left\{x^{*}\right\}$ and $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ converges to x^{*} (uniformly) for all $x \in X$.

Definition 1.3. Let (X, d) be a metric space, $f: X \rightarrow X$ and $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ be an increasing function which is continuous at 0 and $\psi(0)=0$. If the following assumptions are satisfies:
(i) $F_{f}=\left\{x^{*}\right\}$
(ii) $f^{n}(x) \rightarrow x^{*}$ as $n \rightarrow \infty, \forall x \in X$.
(iii) $d\left(x, x^{*}\right) \leq \psi(d(x, f(x))), \forall x \in X$, where $\psi(t)=\frac{t}{1-l}, t \geq 0$, then f is called a ψ-Picard operator.
Definition 1.4. Let (X, d) be a metric space, f be a self-mapping in (X, d). Then the fixed point equation $x=f(x)$ is said to be well-posed if:
(i) $F_{f}=\left\{x^{*}\right\}$
(ii) $y_{n} \in X, n \in \mathbb{N}, d\left(y_{n}, f\left(y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty \Rightarrow y_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.

Moreover, if f satisfies (i) and
(iii) $y_{n} \in X, n \in \mathbb{N}, d\left(y_{n+1}, f\left(y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty \Rightarrow y_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, then we say that f has the Ostrowski property.

Definition 1.5 ([5]). Let X be a nonempty set and $f: X \rightarrow X$ be an operator such that

$$
\bigcap_{n \in \mathbb{N}} f^{n}(X)=\left\{x^{*}\right\}
$$

then f is a Janos operator.
In 2016, Rus [9] presented a new variant of the contraction principle, a variant with generous conclusions. That variant is the following:
Theorem 1.6 (Saturated Principle of Contraction (SPC), [9]). Let (X,d) be a complete metric space and $f: X \rightarrow X$ be an l-contraction. Then we have:
(i) There exists $x^{*} \in X$ such that, $F_{f^{n}}=\left\{x^{*}\right\}, \forall n \in \mathbb{N}$.
(ii) For all $x \in X, f^{n}(x) \rightarrow x^{*}$ as $n \rightarrow \infty$.
(iii) $d\left(x, x^{*}\right) \leq \psi(d(x, f(x))), \forall x \in X$, where $\psi(t)=c t, c>0$.
(iv) If $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in X such that $d\left(y_{n}, f\left(y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, then $y_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.
(v) If $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in X such that $d\left(y_{n+1}, f\left(y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, then $y_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.
(vi) If $Y \subset X$ is a closed subset such that $f(Y) \subset Y$, then $x^{*} \in Y$. Moreover, if in addition Y is bounded, then

$$
\bigcap_{n \in \mathbb{N}} f^{n}(Y)=\left\{x^{*}\right\}
$$

Another result of the above type is the following.
Theorem 1.7 (Saturated Principle of Quasicontraction (SPQC), [9]). Let (X,d) be a complete metric space and $f: X \rightarrow X$ be an operator. We suppose that there exists a fixed point x^{*} of f and $0<l<1$ such that:

$$
d\left(f(x), x^{*}\right) \leq l d\left(x, x^{*}\right), \quad \forall x \in X
$$

Then we have $(i)-(v i)$ in Theorem 1.6.

In connection with the above results, I.A. Rus proposes in [9] the concept of relevant metrical conditions.

Definition 1.8. Let (X, d) be a complete metric space and $f: X \rightarrow X$ be an operator. A metric condition on f is relevant if all of the conclusion of the saturated principle of contraction (SPC) take place.

For example, in [9] it is proved that Kannan's condition on f is relevant from the SPC point of view.

Theorem $1.9([9])$. Let (X, d) be a complete metric space and $f: X \rightarrow X$ be such that there exists $0<l<1$, with

$$
d(f(x), f(y)) \leq l[d(x, f(x))+d(y, f(y))], \forall x, y \in X
$$

Then we have the conclusions in SPC, with
(iii) $d\left(x, x^{*}\right) \leq \frac{1}{1-2 l} d(x, f(x)), \forall x \in X$.

In this work we will give some examples of relevant metrical condition. More precisely, we will extend the above mentioned results to the case of Hardy-Rogers and Ćirić metrical conditions on a self operator $f: X \rightarrow X$.

2. Main Results

First, we give the definition of Hardy-Rogers type operators as follows.
Definition 2.1. A mapping $f: X \rightarrow X$ is said to be a Hardy-Rogers type operators if and only if for every $x, y \in X$ there exist non-negative numbers α, β, γ such that

$$
\alpha+2 \beta+2 \gamma=\lambda<1
$$

and

$$
\begin{equation*}
d(f(x), f(y)) \leq \alpha d(x, y)+\beta[d(x, f(x))+d(y, f(y))]+\gamma[d(x, f(y))+d(y, f(x))] \tag{2.1}
\end{equation*}
$$

hold for every $x, y \in X$.
Now, we prove the saturated principle contraction for Hardy-Rogers type operators.
Theorem 2.2. Let (X, d) be f-orbitally complete metric space with $f: X \rightarrow X$ be Hardy-Rogers type operators where $\alpha+2 \beta+2 \gamma=\lambda<1$ for $\alpha, \beta, \gamma \in \mathbb{R}^{+}$. Then we have the conclusions in SPC with
(iii) $d\left(x, x^{*}\right) \leq \frac{1}{1-\eta} d(x, f(x)), \forall x \in X$ where $\eta=\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}$.

Proof. (i) $-(i i)$ Let $x \in X$ be arbitrary and define a sequence $\left(x_{n}\right)$ by

$$
x_{0}=x, x_{1}=f\left(x_{0}\right), \ldots x_{n}=f\left(x_{n-1}\right)=f^{n}\left(x_{0}\right) \ldots
$$

Since f is a Hardy-Rogers type operators and by (2.1), we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right)= & d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \\
\leq & \alpha d\left(x_{n-1}, x_{n}\right)+\beta\left[d\left(x_{n-1}, f\left(x_{n-1}\right)\right)+d\left(x_{n}, f\left(x_{n}\right)\right)\right]+\gamma\left[d\left(x_{n-1}, f\left(x_{n}\right)\right)\right. \\
& \left.+d\left(x_{n}, f\left(x_{n-1}\right)\right)\right] \\
= & (\alpha+\beta) d\left(x_{n-1}, x_{n}\right)+\beta d\left(x_{n}, f\left(x_{n}\right)\right)+\gamma d\left(x_{n-1}, f\left(x_{n}\right)\right) \\
\leq & (\alpha+\beta) d\left(x_{n-1}, x_{n}\right)+\beta d\left(x_{n}, f\left(x_{n}\right)\right)+\gamma\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, f\left(x_{n}\right)\right)\right] \\
= & (\alpha+\beta+\gamma) d\left(x_{n-1}, x_{n}\right)+(\beta+\gamma) d\left(x_{n}, x_{n+1}\right) .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right) d\left(x_{n-1}, x_{n}\right)=\eta d\left(x_{n-1}, x_{n}\right) \forall x, y \in X \tag{2.2}
\end{equation*}
$$

and $\eta=\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}$ be given. Since $\alpha+2 \beta+2 \gamma<1, \forall \alpha, \beta, \gamma \in \mathbb{R}^{+} \Rightarrow \eta=\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right)<1$. Repeating this argument n -times, we obtain

$$
d\left(x_{n}, x_{n+1}\right) \leq \eta d\left(x_{n-1}, x_{n}\right) \leq \cdots \leq \eta^{n} d(x, f(x))
$$

Consider

$$
\begin{aligned}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& \leq \eta^{n} d(x, f(x))+\eta^{n+1} d(x, f(x))+\cdots+\eta^{n+p-1} d(x, f(x)) \\
& =\eta^{n}\left(\frac{1-\eta^{p}}{1-\eta}\right) d(x, f(x)) \\
& \leq \frac{\eta^{n}}{1-\eta} d(x, f(x)), \text { as } p \rightarrow \infty, \forall n \in \mathbb{N} .
\end{aligned}
$$

Since $\eta<1$, then $\eta^{n} \rightarrow 0$ as $n \rightarrow \infty$. So It's Cauchy sequence. Because X is f-orbitally complete, then there is a point x^{*} in X such that $f^{n}(x) \rightarrow x^{*}$ as $n \rightarrow$ $\infty, \forall x \in X$.
Now, we shall show that $f\left(x^{*}\right)=x^{*}$ i.e., $x^{*} \in F_{f}$. Let $n=1$ in (2.2), we have

$$
\begin{equation*}
d\left(f(x), f^{2}(x)\right)=d\left(x_{1}, x_{2}\right) \leq \eta d(x, f(x)) \forall x \in X \tag{2.3}
\end{equation*}
$$

Consider

$$
\begin{aligned}
d\left(f\left(x^{*}\right), x_{n+1}\right) & =d\left(f\left(x^{*}\right), f^{n}(x)\right) \\
& \leq \alpha d\left(x^{*}, f^{n-1}(x)\right)+\beta\left[d\left(x^{*}, f\left(x^{*}\right)\right)+d\left(f^{n-1}(x), f^{n}(x)\right)\right] \\
& +\gamma\left[d\left(x^{*}, f^{n}(x)\right)+d\left(f^{n-1}(x), f\left(x^{*}\right)\right)\right] \\
& \leq \alpha d\left(x^{*}, x_{n}\right)+\beta\left[d\left(x^{*}, x_{n+1}\right)+d\left(x_{n+1}, f\left(x^{*}\right)\right)\right]+\beta d\left(x_{n}, x_{n+1}\right) \\
& +\gamma d\left(x^{*}, x_{n+1}\right)+\gamma\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, f\left(x^{*}\right)\right)\right] \\
& \leq \alpha d\left(x^{*}, x_{n}\right)+\beta d\left(x^{*}, x_{n+1}\right)+(\beta+\gamma) d\left(x_{n}, x_{n+1}\right) \\
& \left.+\gamma d\left(x^{*}, x_{n+1}\right)\right)+(\beta+\gamma) d\left(x_{n+1}, f\left(x^{*}\right)\right)
\end{aligned}
$$

Consequently

$$
\begin{aligned}
d\left(f\left(x^{*}\right), x_{n+1}\right) & \leq \frac{\alpha}{1-\beta-\gamma} d\left(x^{*}, x_{n}\right)+\frac{\beta}{1-\beta-\gamma} d\left(x^{*}, x_{n+1}\right)+\frac{\beta+\gamma}{1-\beta-\gamma} d\left(x_{n}, x_{n+1}\right) \\
& +\frac{\gamma}{1-\beta-\gamma} d\left(x^{*}, x_{n+1}\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

So we proved that f has at least one fixed point x^{*} in X i.e., $x^{*} \in F_{f}$ and $x^{*} \in F_{f^{n}}$, because $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ is a successive sequence of x.
To show a uniqueness of x^{*}, let $y^{*} \neq x^{*} \in F_{f}$. Then by (2.1) it follows

$$
0<d\left(x^{*}, y^{*}\right)=d\left(f\left(x^{*}\right), f\left(y^{*}\right)\right) \leq \alpha d\left(x^{*}, y^{*}\right)
$$

implies that $\alpha=1$ contradicts with $\alpha<1-2 \beta-2 \gamma<1, \forall \alpha, \beta, \gamma \in \mathbb{R}^{+}$.
(iii) From (2.3). Consider

$$
\begin{aligned}
d\left(x, x^{*}\right) & \leq d(x, f(x))+d\left(f(x), f^{2}(x)\right)+\cdots+d\left(f^{n-1}(x), f^{n}(x)\right)+d\left(f^{n}(x), x^{*}\right) \\
& \leq d(x, f(x))+\eta d(x, f(x))+\cdots+\eta^{n-1} d(x, f(x))+d\left(f^{n}(x), x^{*}\right) \\
& =\left(1+\eta+\cdots+\eta^{n-1}\right) d\left(f^{n}(x), x^{*}\right) \\
& =\left(\frac{1-\eta^{n}}{1-\eta}\right) d(x, f(x)) \\
& \leq \frac{1}{1-\eta} d(x, f(x)) \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore we have $d\left(x, x^{*}\right) \leq \frac{1}{1-\eta} d(x, f(x)), \forall x \in X$ where $\eta=\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}$, so (iii) is proved.
(iv) - (vi) By (2.1). Consider

$$
\begin{aligned}
& \left.d\left(f(x), f\left(x^{*}\right)\right)\right) \\
\leq & \alpha d\left(x, x^{*}\right)+\beta\left[d(x, f(x))+d\left(x^{*}, f\left(x^{*}\right)\right)\right]+\gamma\left[d\left(x, f\left(x^{*}\right)\right)+d\left(x^{*}, f(x)\right)\right] \\
= & \alpha d\left(x, x^{*}\right)+\beta d(x, f(x))+\gamma d\left(x, f\left(x^{*}\right)\right)+\gamma d\left(x^{*}, f(x)\right) \\
\leq & (\alpha+\gamma) d\left(x, x^{*}\right)+\beta\left[d\left(x, x^{*}\right)+d\left(x^{*}, f(x)\right)\right]+\gamma d\left(x^{*}, f(x)\right) \\
= & (\alpha+\beta+\gamma) d\left(x, x^{*}\right)+(\beta+\gamma) d\left(f\left(x^{*}\right), f(x)\right), \forall x \in X .
\end{aligned}
$$

Thus $d\left(f(x), f\left(x^{*}\right)\right) \leq\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right) d\left(x, x^{*}\right)$, for every $x \in X$.
This implies that f is a l-contraction where $l=\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}=\eta$. It follows from SPQC (see [9]), Theorem 1.7. We have (iv) - (vi).

Theorem 2.3 (SPC for Hardy-Rogers type operator with respect to a strongly equivalent metric). Let X be a nonempty set, d and ρ be two metrics on X and $f: X \rightarrow X$ be an operator. We suppose that
(a) (X, ρ) is complete metric space.
(b) $f: X \rightarrow X$ is a Hardy-Rogers type operator with respect to the metric ρ.
(c) There exists $c_{1}, c_{2}>0$ such that

$$
c_{1} d(x, y) \leq \rho(x, y) \leq c_{2} d(x, y), \quad \forall x, y \in X
$$

Then we have:
(i) $F_{f^{n}}=\left\{x^{*}\right\}, \forall n \in \mathbb{N}^{*}$;
(ii) $f^{n}(x) \xrightarrow{d} x^{*}$ as $n \rightarrow \infty, \forall x \in X$;
(iii) $d\left(x, x^{*}\right) \leq \frac{c_{2}}{c_{1}}\left(\frac{1}{1-\eta}\right) d(x, f(x)), \forall x \in X$ where $\eta=\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}$;
(iv) The fixed point problem for f is well-posed with respect to the metric d;
(v) The operator f has the Ostrowski property with respect to the metric d;
(vi) If $Y \subset X$ is a nonempty bounded and closed subset in (X, d) with $f(Y) \subset Y$, then $x^{*} \in Y$ and

$$
\bigcap_{n \in \mathbb{N}} f^{n}(Y)=\left\{x^{*}\right\}
$$

Proof. (i) it is a set-theoretical one, we obtain it from previous theorem.
(ii) For all $n \in \mathbb{N}^{*}$, consider

$$
d\left(f^{n}(x), x^{*}\right) \leq \frac{1}{c_{1}} \rho\left(f^{n}(x), x^{*}\right) \rightarrow 0 \text { as } n \rightarrow \infty, \forall x \in X
$$

This follows that $f^{n}(x) \xrightarrow{d} x^{*}$ as $n \rightarrow \infty$.
(iii) We know from Theorem2.2 that $\rho\left(x, x^{*}\right) \leq \frac{1}{1-\eta} \rho(x, f(x)), \forall x \in X$ where $\eta=\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}$. By property (c) we have that

$$
d\left(x, x^{*}\right) \leq \frac{1}{c_{1}} \rho\left(x, x^{*}\right) \leq \frac{1}{c_{1}}\left(\frac{1}{1-\eta}\right) \rho(x, f(x)) \leq \frac{c_{2}}{c_{1}}\left(\frac{1}{1-\eta}\right) d(x, f(x))
$$

(iv) Suppose that $y_{n} \in X$ and $d\left(y_{n}, f\left(y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. From (iii), replacing x by $y_{n} \in X$, then

$$
d\left(y_{n}, x^{*}\right) \leq \frac{c_{2}}{c_{1}}\left(\frac{1}{1-\eta}\right) d\left(y_{n}, f\left(y_{n}\right)\right)
$$

Taking $n \rightarrow 0$, we obtain

$$
d\left(y_{n}, x^{*}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

(v) Since (X, ρ) is a complete metric space by (a), it follows form Theorem 2.2 that f has the Ostrowski property with respect to ρ. We wiil show that f has the Ostrowski property with respect to d. Indeed, if for each $\left(y_{n}\right)_{n \in \mathbb{N}} \subset X$ such that $\rho\left(y_{n+1}, f\left(y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$, then there exists $x \in X$ such that $\rho\left(y_{n}, x^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Suppose that $\left(y_{n}\right)_{n \in \mathbb{N}} \subset X$ with $d\left(y_{n+1}, f\left(y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. From (c) we have

$$
\rho\left(y_{n+1}, f\left(y_{n}\right)\right) \leq c_{2} d\left(y_{n+1}, f\left(y_{n}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

By our hypothesis, $\rho\left(y_{n}, x^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$. Using (c) again we obtain that

$$
d\left(y_{n}, x^{*}\right) \leq \frac{1}{c_{1}} \rho\left(y_{n}, x^{*}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

(vi) Suppose that $\emptyset \neq Y \subset X$ is a bounded and closed subset in (X, d) with $f(Y) \subset Y$. Let $x \in Y$. Then $f^{n}(x) \in Y, \forall n \in \mathbb{N}$. From (ii) we have $f^{n}(x) \xrightarrow{d} x^{*}$ as $n \rightarrow \infty$, and since Y is closed, this implies that $x^{*} \in Y$.

For the second part, since $Y \subset X$, from (a) and Theorem $2.2(i i)$ and $(v i)$, we have that $f^{n}(x) \xrightarrow{\rho} x^{*}$ as $n \rightarrow \infty$. Then there exists subsequence $f^{k}(x) \subset Y$, such that
$f^{k}(x) \xrightarrow{\rho} x^{*}, \forall k \in \mathbb{N}$ as $k \rightarrow \infty$, and $x^{*} \in Y$. Thus Y is a closed subset in (X, ρ). Since $Y \subset X$ is bounded subset in (X, d) and (c) we obtain

$$
\rho(x, y) \leq c_{2} d(x, y) \leq c_{2} M, \quad \forall x, y \in Y, \exists M \in \mathbb{R}^{+}
$$

So we have Y is bounded closed subset of X in (X, ρ) and $f(Y) \subset Y$. Then

$$
\bigcap_{n \in \mathbb{N}} f^{n}(Y)=\left\{x^{*}\right\}
$$

by Theorem 2.2. The proof is complete.
Theorem 2.4 (see [9], [10] Maia's Theorem p. 40). Let X be a nonempty set, d and ρ be two metrics on X and $f: X \rightarrow X$ be an operator. We suppose
(a) $d(x, y) \leq \rho(x, y), \forall x, y \in X$.
(b) (X, d) is a complete metric space.
(c) f is a Hardy-Rogers type operator with respect to ρ.
(d) f is continuous with respect to d

Then we have:
(i) $F_{f^{n}}=\left\{x^{*}\right\}, \forall n \in \mathbb{N}^{*}$.
(ii) $f^{n}(x) \xrightarrow{d} x^{*}$ as $n \rightarrow \infty, \forall x \in X$.
(iii) $f^{n}(x) \xrightarrow{\rho} x^{*}$ as $n \rightarrow \infty, \forall x \in X$.
(iv) $\rho\left(x, x^{*}\right) \leq \frac{1}{1-l} \rho(x, f(x)), \forall x \in X$, where $l=\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}, \alpha+2 \beta+2 \gamma<1$.
(v) The fixed point problem for f is well-posed with respect to the metric ρ.
(vi) The operator f has the Ostrowski property with respect to the metric ρ.
(vii) If $Y \subset X$ is a nonempty bounded and closed subset in (X, ρ) with $f(Y) \subset Y$, then $x^{*} \in Y$ and

$$
\bigcap_{n \in \mathbb{N}} f^{n}(Y)=\left\{x^{*}\right\}
$$

Proof. (i) - (ii). Let $x \in X$ and $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ be the corresponding sequence of successive approximations. From (c), we know that $\rho\left(f(x), f^{2}(x)\right) \leq\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right) \rho(x, f(x))$, for all $x \in X$ where $\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}<1$. It follows that this sequence is a Cauchy sequence in (X, ρ). From (a), we also get that it is a Cauchy sequence in (X, d) too. By (b), there exists $x^{*} \in X$ such that $f^{n}(x) \xrightarrow{d} x^{*}$ for $n \in \mathbb{N}$. From (d) we obtain that $x^{*} \in F_{f}$ and we have $x^{*} \in F_{f^{n}}$, by hypothesis. Let $x^{*} \neq y^{*} \in X$ and y^{*} be another fixed point. Then

$$
\begin{aligned}
0 \leq \rho\left(f\left(x^{*}\right), f\left(y^{*}\right)\right) \leq & \alpha \rho\left(x^{*}, y^{*}\right)+\beta\left[\rho\left(x^{*}, f\left(x^{*}\right)\right)+\rho\left(y^{*}, f\left(y^{*}\right)\right)\right] \\
& +\gamma\left[\rho\left(x^{*}, f\left(y^{*}\right)+\rho\left(y^{*}, f\left(x^{*}\right)\right)\right]\right. \\
= & (\alpha+2 \gamma) \rho\left(x^{*}, y^{*}\right) \Rightarrow \alpha+2 \gamma=1
\end{aligned}
$$

This contradict to $\alpha+2 \beta+2 \gamma<1, \forall \alpha, \beta \in \mathbb{R}^{+}$. Thus, we have that $F_{f}=F_{f^{n}}=\left\{x^{*}\right\}$.
(iii) Taking $y=x^{*}$ in (c) we have

$$
\begin{equation*}
\rho\left(f(x), x^{*}\right) \leq\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right) \rho\left(x, x^{*}\right), \text { where } \alpha+2 \beta+2 \gamma<1 \tag{2.4}
\end{equation*}
$$

Consider

$$
\rho\left(f^{n}(x), x^{*}\right) \leq\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right)^{n} \rho\left(x, x^{*}\right) \rightarrow 0 \text { as } n \rightarrow \infty, \text { since } \frac{\alpha+\beta+\gamma}{1-\beta-\gamma}<1
$$

Suppose that y^{*} is an another fixed point and $x^{*} \neq y^{*}$, then

$$
0 \leq \rho\left(x^{*}, y^{*}\right) \leq\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right) \rho\left(x^{*}, y^{*}\right)
$$

This implies that $\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}=1$ which is a contradiction, since $\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}<1$. Hence $f^{n}(x) \xrightarrow{\rho} x^{*}$ as $n \rightarrow \infty$.
(iv) - (vii) Using (2.4), we will have that

$$
\rho\left(x, x^{*}\right) \leq \frac{1}{1-l} \rho(x, f(x)), \forall x \in X, \text { where } l=\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}<1 .
$$

Notice that f is a l-qusicontraction where $l=\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}$. So the proof follows from SPQC (see [9]), Theorem 1.7.

Next, we will consider the SPC for some Ćirić type operators.
Theorem 2.5. Let (X, d) be f-orbitally complete metric space with $f: X \rightarrow X$ be Ćirić type operator such that

$$
\begin{equation*}
d(f(x), f(y)) \leq q \cdot \max \left\{d(x, y) ; d(x, f(x)) ; d(y, f(y)) ; \frac{1}{2}[d(x, f(y))+d(y, f(x))]\right\} \tag{2.5}
\end{equation*}
$$

$\forall x, y \in X$, where $0<q<1$. Then we have the conclusions (i)-(iv) in SPC with
(iii) $d\left(x, x^{*}\right) \leq \frac{1}{1-q} d(x, f(x)), \forall x \in X$. Additionally, if $q \in\left(0, \frac{1}{2}\right)$, then:
(v) the fixed point problem for f has Ostrowski's property;
(vi) f is a Janos operator.

Proof. (i) - (ii) Let $x \in X$ be arbitrary and define a sequence

$$
x_{0}=x, x_{1}=f\left(x_{0}\right), \ldots, x_{n}=f\left(x_{n-1}\right)=f^{n}\left(x_{0}\right), \ldots
$$

From (2.5) and the definition of the sequence, it follows that

$$
\begin{aligned}
& d\left(x_{n}, x_{n+1}\right) \\
= & d\left(f\left(x_{n-1}\right), f\left(x_{n}\right)\right) \\
\leq & q \max \left\{d\left(x_{n-1}, x_{n}\right) ; d\left(x_{n-1}, x_{n}\right) ; d\left(x_{n}, x_{n+1}\right) ; \frac{1}{2}\left[d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right)\right]\right\} \\
= & q \max \left\{d\left(x_{n-1}, x_{n}\right) ; d\left(x_{n}, x_{n+1}\right) ; \frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]\right\} \\
\leq & q \max \left\{d\left(x_{n-1}, x_{n}\right) ; d\left(x_{n}, x_{n+1}\right) ; \frac{1}{2}\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right]\right\} \\
\leq & q d\left(x_{n-1}, x_{n}\right) \quad \forall x, y \in X .
\end{aligned}
$$

Repeating this process for n-times, we obtain that

$$
d\left(x_{n}, x_{n+1}\right) \leq q d\left(x_{n-1}, x_{n}\right) \leq \ldots \leq q^{n} d\left(x_{0}, x_{1}\right)=q^{n} d(x, f(x))
$$

Consider

$$
\begin{aligned}
d\left(x_{n}, x_{n+p}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\ldots+d\left(x_{n+p-1}, x_{n+p}\right) \\
& \leq q^{n} d(x, f(x))+q^{n+1} d(x, f(x))+\ldots+q^{n+p-1} d(x, f(x)) \\
& =q^{n}\left(1+q+\ldots+q^{p-1}\right) d(x, f(x)) \\
& =q^{n}\left(\frac{1-q^{p}}{1-q}\right) d(x, f(x)), \forall p \in \mathbb{N} .
\end{aligned}
$$

Since $0<q<1$ then $q^{n} \rightarrow 0$ as $n \rightarrow \infty$. So $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. From X is f-orbitally complete, so there is a point x^{*} in X such that $f^{n}(x) \rightarrow x^{*}$ as $n \rightarrow \infty, \forall x \in X$. Now (ii) is proved, let us prove that $x^{*} \in F_{f}$. Consider

$$
\begin{aligned}
d\left(x^{*}, f\left(x^{*}\right)\right) \leq & d\left(x^{*}, f^{n}(x)\right)+d\left(f^{n}(x), f\left(x^{*}\right)\right) \\
\leq & d\left(x^{*}, f^{n}(x)\right)+q \max \left\{d\left(f^{n-1}(x), x^{*}\right) ; d\left(f^{n-1}(x), f^{n}(x)\right) ; d\left(x^{*}, f\left(x^{*}\right)\right) ;\right. \\
& \left.\frac{1}{2}\left[d\left(f^{n-1}(x), f\left(x^{*}\right)\right)+d\left(x^{*}, f^{n}(x)\right)\right]\right\} \\
= & 0+q d\left(x^{*}, f\left(x^{*}\right)\right) \quad \text { by taking } n \rightarrow \infty, \text { it is a contradiction. }
\end{aligned}
$$

Hence $x^{*}=f\left(x^{*}\right)$ that is $x^{*} \in F_{f}$. From (ii) we have that $F_{f}=F_{f^{n}}=x^{*}$ for each $n \in \mathbb{N}$.
(iii) Consider

$$
\begin{aligned}
d\left(x, x^{*}\right) & \leq d(x, f(x))+d\left(f(x), f^{2}(x)\right)+\cdots+d\left(f^{n-1}(x), f^{n}(x)\right)+d\left(f^{n}(x), x^{*}\right) \\
& \leq d(x, f(x))+q d(x, f(x))+\cdots+q^{n-1} d(x, f(x))+d\left(f^{n}(x), x^{*}\right) \\
& =\left(1+q+\cdots+q^{n-1}\right) d(x, f(x))+d\left(f^{n}(x), x^{*}\right) \\
& =\left(\frac{1-q^{n}}{1-q}\right) d(x, f(x))+d\left(f^{n}(x), x^{*}\right)
\end{aligned}
$$

So we have $d\left(x, x^{*}\right) \leq \frac{1}{1-q} d(x, f(x)), \forall x \in X$.
(iv) Suppose that $y_{n} \in X$ and $d\left(y_{n}, f\left(y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. From (iii), replacing x by $y_{n} \in X$, then

$$
d\left(y_{n}, x^{*}\right) \leq \frac{1}{1-q} d\left(y_{n}, f\left(y_{n}\right)\right)
$$

Taking $n \rightarrow 0$ and by our assumption we obtain that

$$
d\left(y_{n}, x^{*}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

(v) Suppose that $y_{n} \in X$ and $d\left(y_{n+1}, f\left(y_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. We evaluate

$$
\begin{aligned}
& d\left(y_{n+1}, x^{*}\right) \\
\leq & d\left(y_{n+1}, f\left(y_{n}\right)\right)+d\left(f\left(y_{n}\right), f\left(x^{*}\right)\right) \\
\leq & d\left(y_{n+1}, f\left(y_{n}\right)\right)+q \max \left\{d\left(y_{n}, x^{*}\right), d\left(y_{n}, f\left(y_{n}\right)\right), \frac{1}{2}\left[d\left(y_{n}, x^{*}\right)+d\left(x^{*}, f\left(y_{n}\right)\right)\right]\right\} \\
\leq & d\left(y_{n+1}, f\left(y_{n}\right)\right)+q \max \left\{d\left(y_{n}, x^{*}\right), d\left(y_{n}, x^{*}\right)+d\left(x^{*}, f\left(y_{n}\right)\right)\right. \\
& \left., \frac{1}{2}\left[d\left(y_{n}, x^{*}\right)+d\left(x^{*}, f\left(y_{n}\right)\right)\right]\right\} \\
= & d\left(y_{n+1}, f\left(y_{n}\right)\right)+q \max \left\{d\left(y_{n}, x^{*}\right), d\left(y_{n}, x^{*}\right)+d\left(x^{*}, f\left(y_{n}\right)\right)\right\} \\
= & d\left(y_{n+1}, f\left(y_{n}\right)\right)+q\left(d\left(y_{n}, x^{*}\right)+d\left(x^{*}, f\left(y_{n}\right)\right)\right) \\
\leq & d\left(y_{n+1}, f\left(y_{n}\right)\right)+q d\left(y_{n}, x^{*}\right)+q\left(d\left(x^{*}, y_{n+1}\right)+d\left(y_{n+1}, f\left(y_{n}\right)\right)\right) .
\end{aligned}
$$

Thus

$$
d\left(y_{n+1}, x^{*}\right) \leq \frac{1+q}{1-q} d\left(y_{n+1}, f\left(y_{n}\right)\right)+\frac{q}{1-q} d\left(y_{n}, x^{*}\right), \text { for every } n \in \mathbb{N} .
$$

Continuing this procedure we obtain that

$$
d\left(y_{n+1}, x^{*}\right) \leq \frac{1+q}{1-q} \sum_{k=0}^{n} d\left(y_{k+1}, f\left(y_{k}\right)\right)\left(\frac{q}{1-q}\right)^{n-k}+\left(\frac{q}{1-q}\right)^{n+1} d\left(y_{0}, x^{*}\right)
$$

for every $n \in \mathbb{N}$.
By Cauchy Lemma the first sequence tends to 0 as $n \rightarrow \infty$, while the second one goes to zero, since $q \in\left(0, \frac{1}{2}\right)$.
(vi) Suppose that $\emptyset \neq Y \subset X$ is a closed subset in (X, d) with $f(Y) \subset Y$. Let $x \in Y$. Then $f^{n}(x) \in Y, \forall n \in \mathbb{N}$. From (ii) we have $f^{n}(x) \rightarrow x^{*}$ as $n \rightarrow \infty$, and since Y is closed, this implies that $x^{*} \in Y$. For the second part of (vi), From (2.5) we have

$$
\begin{equation*}
d\left(f(x), x^{*}\right) \leq \frac{q}{1-q} d\left(x, x^{*}\right) \tag{2.6}
\end{equation*}
$$

and $\frac{q}{1-q}<1$ by our hypothesis that $q \in\left(0, \frac{1}{2}\right)$. So $\delta\left(f(Y),\left\{x^{*}\right\}\right) \leq \delta\left(Y,\left\{x^{*}\right\}\right)$ where δ is the diameter functional with respect to d. Consider

$$
d\left(f(y), x^{*}\right) \leq l d\left(y, x^{*}\right) \leq l \sup _{z \in Y} d\left(z, x^{*}\right) \leq l \delta\left(Y,\left\{x^{*}\right\}\right)
$$

for all $y \in Y$ and $l=\frac{q}{1-q}$. Then $\sup _{y \in Y} d\left(f(y), x^{*}\right) \leq l \delta\left(Y,\left\{x^{*}\right\}\right)$. Hence

$$
\delta\left(f(Y),\left\{x^{*}\right\}\right) \leq l \delta\left(Y,\left\{x^{*}\right\}\right)
$$

Furthermore, we have $\delta\left(f^{n}(Y),\left\{x^{*}\right\}\right) \leq l^{n} \delta\left(Y,\left\{x^{*}\right\}\right) \rightarrow 0$ as $n \rightarrow \infty$.
So $\bigcap_{n \in \mathbb{N}} f^{n}(Y)=\left\{x^{*}\right\}$
Theorem 2.6 (SPC for Ćirić type operator with respect to a strongly equivalent metric). Let X be a nonempty set, d and ρ be two metrics on X and $f: X \rightarrow X$ be an operator. We suppose that
(a) (X, ρ) is f-orbitally complete metric space.
(b) $f: X \rightarrow X$ is Ćiric type operators with respect to the metric ρ and $q \in\left(0, \frac{1}{2}\right)$ for gaurantee that f has Ostrowski property and f is a Janos operator.
(c) There exists $c_{1}, c_{2}>0$ such that

$$
c_{1} d(x, y) \leq \rho(x, y) \leq c_{2} d(x, y), \forall x, y \in X
$$

Then we have $(i)-(v i)$ in Theorem 2.5, except
(iii) $d\left(x, x^{*}\right) \leq \psi(d(x, f(x))), \forall x \in X$, where $\psi=\frac{c_{2}}{c_{1}(1-q)}, 0<q<1$ and $q \in\left(0, \frac{1}{2}\right)$ for (v) and (vi).
Proof. (i) - (vi) The proof follows from Theorem 2.3, by applying Theorem 2.5.

3. An open question

The most general extension of the Contraction Principle was given by Lj . Ćirić. We give here his result.

Definition 3.1 ([6]). Let f be a mapping of a metric space X into it self. For each $x \in X$, let

$$
\begin{aligned}
O(x, n) & =\left\{x, f x, \ldots, f^{n} x\right\}, n=1,2, \ldots \\
O(x, \infty) & =\{x, f x, \ldots\}
\end{aligned}
$$

A space X is said to be f-orbitally complete if and only if every Cauchy sequence which is contained in (O, ∞) for some $x \in X$ converges in X.
Definition 3.2 ([3]). A mapping $f: X \rightarrow X$ of a metric space X into itself is said to be quasi-contraction if and only if there exists a number $q \in(0,1)$, such that

$$
d(f(x), f(y)) \leq q \cdot \max \{d(x, y) ; d(x, f(x)) ; d(y, f(y)) ; d(x, f(y)) ; d(y, f(x))\}
$$

holds for every $x, y \in X$.
Theorem 3.3 ([3]). Let $f: X \rightarrow X$ be a quasi-contraction on a metric space X and let X be f-orbitally complete. Then
(a) f has a unique fixed point x^{*} in X,
(b) $f^{n}(x) \rightarrow x^{*}$, and
(c) $d\left(f^{n}(x), x^{*}\right) \leq \frac{q^{n}}{1-q} d(x, f x)$ for every $x \in X$.

The open question is to give an extended version of the above principle and to study if the quasi-contraction condition is a relevant one, in the sense of Definition 1.8.
Acknowledgement. This paper was written during my research stage at BabesBolyai University Cluj-Napoca. I am thankful to Professor Adrian Petrusel for his very careful guidance.

References

[1] V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, 2007.
[2] V. Berinde, Şt. Mă ruşter, I.A. Rus, Saturated contraction principles for non self operators, generalizations and applications, Filomat, 31(2017), 3391-3406.
[3] Lj.B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), no. 2, 267-273.
[4] Lj.B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 26(1971), no. 12, 19-26.
[5] L. Janos, A converse of Banach's contraction theorem, Proc. Amer. Math. Soc., 18(1967), no. 2, 287-289.
[6] L. Janos, On contraction type mappings, Math. Balkanica, 1(1971), 52-57.
[7] I.A. Rus, Bessaga mapping, Proc. Approx. Th., Cluj-Napoca, (1984), 164-172.
[8] I.A., Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.
[9] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai Math., 61(2016), no. 3, 343-358.
[10] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.
[11] T. Zamfirescu, Fixed point theorem in metric space, Arch. Math., 24(1972), 292-298.
Received: October 11, 2018; Accepted: September 2, 2019.

