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1. Introduction

The most important metric fixed point theorem is the well-known Contraction
Principle proved by St. Banach in 1922 in normed spaces and by R. Caccioppoli in
1930 in complete metric spaces. Very recently, in [9] I.A. Rus proved a saturated
version of the Banach-Caccioppoli Contraction Principle, together with an extended
version of it.

The purpose of this paper is to present extended versions of some fixed point the-
orems for generalized contractions. Hardy-Rogers contractions and Ćirić generalized
contractions are considered. Our results generalize similar theorems given in I.A. Rus
[9]. For the case of non-self operators see [2].

For a better understanding of the main part of the paper, we introduce some
important definitions. If X is a nonempty set and f : X → X is an operator, then
we denote by Ff := {x ∈ X : x = f(x)} the fixed point set for f .

Definition 1.1 ([7]). If X is a nonempty set and f : X → X is an operator such
that, Ffn = {x∗}, for all n ∈ N∗. then f is called a Bessaga oprator.

Definition 1.2 ([7]). Let (X, d) be a metric space. A mapping f : X → X is a
(strict) Picard mapping if there exists x∗ ∈ X such that Ff = {x∗} and (fn(x))n∈N
converges to x∗ (uniformly) for all x ∈ X.
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756 BURIS TONGNOI

Definition 1.3. Let (X, d) be a metric space, f : X → X and ψ : R+ → R+

be an increasing function which is continuous at 0 and ψ(0) = 0. If the following
assumptions are satisfies:

(i) Ff = {x∗}
(ii) fn(x)→ x∗ as n→∞, ∀x ∈ X.
(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀x ∈ X, where ψ(t) = t

1−l , t ≥ 0,

then f is called a ψ-Picard operator.

Definition 1.4. Let (X, d) be a metric space, f be a self-mapping in (X, d). Then
the fixed point equation x = f(x) is said to be well-posed if:

(i) Ff = {x∗}
(ii) yn ∈ X, n ∈ N, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞.

Moreover, if f satisfies (i) and

(iii) yn ∈ X, n ∈ N, d(yn+1, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞,

then we say that f has the Ostrowski property.

Definition 1.5 ([5]). Let X be a nonempty set and f : X → X be an operator such
that ⋂

n∈N
fn(X) = {x∗},

then f is a Janos operator.

In 2016, Rus [9] presented a new variant of the contraction principle, a variant with
generous conclusions. That variant is the following:

Theorem 1.6 (Saturated Principle of Contraction (SPC), [9]). Let (X, d) be a com-
plete metric space and f : X → X be an l-contraction. Then we have:

(i) There exists x∗ ∈ X such that, Ffn = {x∗},∀n ∈ N.
(ii) For all x ∈ X, fn(x)→ x∗ as n→∞.

(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀x ∈ X, where ψ(t) = ct, c > 0.
(iv) If {yn}n∈N is a sequence in X such that d(yn, f(yn)) → 0 as n → ∞, then

yn → x∗ as n→∞.
(v) If {yn}n∈N is a sequence in X such that d(yn+1, f(yn)) → 0 as n → ∞, then

yn → x∗ as n→∞.
(vi) If Y ⊂ X is a closed subset such that f(Y ) ⊂ Y , then x∗ ∈ Y . Moreover, if

in addition Y is bounded, then⋂
n∈N

fn(Y ) = {x∗}.

Another result of the above type is the following.

Theorem 1.7 (Saturated Principle of Quasicontraction (SPQC),[9]). Let (X, d) be a
complete metric space and f : X → X be an operator. We suppose that there exists a
fixed point x∗ of f and 0 < l < 1 such that:

d(f(x), x∗) ≤ ld(x, x∗), ∀x ∈ X.
Then we have (i)− (vi) in Theorem 1.6.
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In connection with the above results, I.A. Rus proposes in [9] the concept of relevant
metrical conditions.

Definition 1.8. Let (X, d) be a complete metric space and f : X → X be an
operator. A metric condition on f is relevant if all of the conclusion of the saturated
principle of contraction (SPC) take place.

For example, in [9] it is proved that Kannan’s condition on f is relevant from the
SPC point of view.

Theorem 1.9 ([9]). Let (X, d) be a complete metric space and f : X → X be such
that there exists 0 < l < 1, with

d(f(x), f(y)) ≤ l[d(x, f(x)) + d(y, f(y))],∀x, y ∈ X.

Then we have the conclusions in SPC, with
(iii) d(x, x∗) ≤ 1

1−2ld(x, f(x)),∀x ∈ X.

In this work we will give some examples of relevant metrical condition. More
precisely, we will extend the above mentioned results to the case of Hardy-Rogers and
Ćirić metrical conditions on a self operator f : X → X.

2. Main results

First, we give the definition of Hardy-Rogers type operators as follows.

Definition 2.1. A mapping f : X → X is said to be a Hardy-Rogers type operators
if and only if for every x, y ∈ X there exist non-negative numbers α, β, γ such that

α+ 2β + 2γ = λ < 1

and

d(f(x), f(y)) ≤ αd(x, y)+β[d(x, f(x))+d(y, f(y))]+γ[d(x, f(y))+d(y, f(x))], (2.1)

hold for every x, y ∈ X.

Now, we prove the saturated principle contraction for Hardy-Rogers type operators.

Theorem 2.2. Let (X, d) be f -orbitally complete metric space with f : X → X be
Hardy-Rogers type operators where α + 2β + 2γ = λ < 1 for α, β, γ ∈ R+. Then we
have the conclusions in SPC with
(iii) d(x, x∗) ≤ 1

1−ηd(x, f(x)),∀x ∈ X where η = α+β+γ
1−β−γ .

Proof. (i)− (ii) Let x ∈ X be arbitrary and define a sequence (xn) by

x0 = x, x1 = f(x0), . . . xn = f(xn−1) = fn(x0). . . .
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Since f is a Hardy-Rogers type operators and by (2.1), we have

d(xn, xn+1) = d(f(xn−1), f(xn))

≤ αd(xn−1, xn) + β[d(xn−1, f(xn−1)) + d(xn, f(xn))] + γ[d(xn−1, f(xn))

+ d(xn, f(xn−1))]

= (α+ β)d(xn−1, xn) + βd(xn, f(xn)) + γd(xn−1, f(xn))

≤ (α+ β)d(xn−1, xn) + βd(xn, f(xn)) + γ[d(xn−1, xn) + d(xn, f(xn))]

= (α+ β + γ)d(xn−1, xn) + (β + γ)d(xn, xn+1).

Then we have

d(xn, xn+1) ≤
(
α+ β + γ

1− β − γ

)
d(xn−1, xn) = ηd(xn−1, xn) ∀x, y ∈ X, (2.2)

and η = α+β+γ
1−β−γ be given. Since α+ 2β+ 2γ < 1,∀α, β, γ ∈ R+ ⇒ η =

(
α+β+γ
1−β−γ

)
< 1.

Repeating this argument n-times, we obtain

d(xn, xn+1) ≤ ηd(xn−1, xn) ≤ · · · ≤ ηnd(x, f(x)).

Consider

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ ηnd(x, f(x)) + ηn+1d(x, f(x)) + · · ·+ ηn+p−1d(x, f(x))

= ηn
(

1− ηp

1− η

)
d(x, f(x))

≤ ηn

1− η
d(x, f(x)), as p→∞,∀n ∈ N.

Since η < 1, then ηn → 0 as n → ∞. So It’s Cauchy sequence. Because X is
f -orbitally complete, then there is a point x∗ in X such that fn(x) → x∗ as n →
∞,∀x ∈ X.
Now, we shall show that f(x∗) = x∗ i.e., x∗ ∈ Ff . Let n = 1 in (2.2), we have

d(f(x), f2(x)) = d(x1, x2) ≤ ηd(x, f(x)) ∀x ∈ X. (2.3)

Consider

d(f(x∗), xn+1) = d(f(x∗), fn(x))

≤ αd(x∗, fn−1(x)) + β[d(x∗, f(x∗)) + d(fn−1(x), fn(x))]

+ γ[d(x∗, fn(x)) + d(fn−1(x), f(x∗))]

≤ αd(x∗, xn) + β[d(x∗, xn+1) + d(xn+1, f(x∗))] + βd(xn, xn+1)

+ γd(x∗, xn+1) + γ[d(xn, xn+1) + d(xn+1, f(x∗))]

≤ αd(x∗, xn) + βd(x∗, xn+1) + (β + γ)d(xn, xn+1)

+ γd(x∗, xn+1)) + (β + γ)d(xn+1, f(x∗)).
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Consequently

d(f(x∗), xn+1) ≤ α

1− β − γ
d(x∗, xn) +

β

1− β − γ
d(x∗, xn+1) +

β + γ

1− β − γ
d(xn, xn+1)

+
γ

1− β − γ
d(x∗, xn+1)

→ 0 as n→∞.
So we proved that f has at least one fixed point x∗ in X i.e., x∗ ∈ Ff and x∗ ∈ Ffn ,
because (fn(x))n∈N is a successive sequence of x.
To show a uniqueness of x∗, let y∗ 6= x∗ ∈ Ff . Then by (2.1) it follows

0 < d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ αd(x∗, y∗),

implies that α = 1 contradicts with α < 1− 2β − 2γ < 1,∀α, β, γ ∈ R+.
(iii) From (2.3). Consider

d(x, x∗) ≤ d(x, f(x)) + d(f(x), f2(x)) + · · ·+ d(fn−1(x), fn(x)) + d(fn(x), x∗)

≤ d(x, f(x)) + ηd(x, f(x)) + · · ·+ ηn−1d(x, f(x)) + d(fn(x), x∗)

= (1 + η + · · ·+ ηn−1)d(fn(x), x∗)

=

(
1− ηn

1− η

)
d(x, f(x))

≤ 1

1− η
d(x, f(x)) as n→∞.

Therefore we have d(x, x∗) ≤ 1
1−ηd(x, f(x)),∀x ∈ X where η = α+β+γ

1−β−γ , so (iii) is

proved.
(iv)− (vi) By (2.1). Consider

d(f(x), f(x∗)))

≤ αd(x, x∗) + β[d(x, f(x)) + d(x∗, f(x∗))] + γ[d(x, f(x∗)) + d(x∗, f(x))]

= αd(x, x∗) + βd(x, f(x)) + γd(x, f(x∗)) + γd(x∗, f(x))

≤ (α+ γ)d(x, x∗) + β[d(x, x∗) + d(x∗, f(x))] + γd(x∗, f(x))

= (α+ β + γ)d(x, x∗) + (β + γ)d(f(x∗), f(x)), ∀x ∈ X.

Thus d(f(x), f(x∗)) ≤
(
α+β+γ
1−β−γ

)
d(x, x∗), for every x ∈ X.

This implies that f is a l-contraction where l = α+β+γ
1−β−γ = η. It follows from SPQC

(see [9]), Theorem 1.7. We have (iv)− (vi).

Theorem 2.3 (SPC for Hardy-Rogers type operator with respect to a strongly equiv-
alent metric). Let X be a nonempty set, d and ρ be two metrics on X and f : X → X
be an operator. We suppose that

(a) (X, ρ) is complete metric space.
(b) f : X → X is a Hardy-Rogers type operator with respect to the metric ρ.
(c) There exists c1, c2 > 0 such that

c1d(x, y) ≤ ρ(x, y) ≤ c2d(x, y), ∀x, y ∈ X.
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Then we have:

(i) Ffn = {x∗},∀n ∈ N∗;
(ii) fn(x)

d−→ x∗ as n→∞,∀x ∈ X;

(iii) d(x, x∗) ≤ c2
c1

(
1

1−η

)
d(x, f(x)),∀x ∈ X where η = α+β+γ

1−β−γ ;

(iv) The fixed point problem for f is well-posed with respect to the metric d;
(v) The operator f has the Ostrowski property with respect to the metric d;
(vi) If Y ⊂ X is a nonempty bounded and closed subset in (X, d) with f(Y ) ⊂ Y ,

then x∗ ∈ Y and ⋂
n∈N

fn(Y ) = {x∗}.

Proof. (i) it is a set-theoretical one, we obtain it from previous theorem.
(ii) For all n ∈ N∗, consider

d(fn(x), x∗) ≤ 1

c1
ρ(fn(x), x∗)→ 0 as n→∞, ∀x ∈ X.

This follows that fn(x)
d−→ x∗ as n→∞.

(iii) We know from Theorem2.2 that ρ(x, x∗) ≤ 1
1−ηρ(x, f(x)),∀x ∈ X where

η = α+β+γ
1−β−γ . By property (c) we have that

d(x, x∗) ≤ 1

c1
ρ(x, x∗) ≤ 1

c1

(
1

1− η

)
ρ(x, f(x)) ≤ c2

c1

(
1

1− η

)
d(x, f(x)).

(iv) Suppose that yn ∈ X and d(yn, f(yn)) → 0 as n → ∞. From (iii), replacing
x by yn ∈ X, then

d(yn, x
∗) ≤ c2

c1

(
1

1− η

)
d(yn, f(yn))

Taking n→ 0, we obtain
d(yn, x

∗)→ 0 as n→∞.
(v) Since (X, ρ) is a complete metric space by (a), it follows form Theorem 2.2

that f has the Ostrowski property with respect to ρ. We wiil show that f has the
Ostrowski property with respect to d. Indeed, if for each (yn)n∈N ⊂ X such that
ρ(yn+1, f(yn)) → 0 as n → ∞, then there exists x ∈ X such that ρ(yn, x

∗) → 0 as
n→∞.
Suppose that (yn)n∈N ⊂ X with d(yn+1, f(yn))→ 0 as n→∞. From (c) we have

ρ(yn+1, f(yn)) ≤ c2d(yn+1, f(yn))→ 0 as n→∞.
By our hypothesis, ρ(yn, x

∗)→ 0 as n→∞. Using (c) again we obtain that

d(yn, x
∗) ≤ 1

c1
ρ(yn, x

∗)→ 0 as n→∞.

(vi) Suppose that ∅ 6= Y ⊂ X is a bounded and closed subset in (X, d) with

f(Y ) ⊂ Y . Let x ∈ Y . Then fn(x) ∈ Y , ∀n ∈ N. From (ii) we have fn(x)
d−→ x∗ as

n→∞, and since Y is closed, this implies that x∗ ∈ Y .
For the second part, since Y ⊂ X, from (a) and Theorem 2.2(ii) and (vi), we have

that fn(x)
ρ−→ x∗ as n → ∞. Then there exists subsequence fk(x) ⊂ Y , such that
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fk(x)
ρ−→ x∗, ∀k ∈ N as k → ∞, and x∗ ∈ Y . Thus Y is a closed subset in (X, ρ).

Since Y ⊂ X is bounded subset in (X, d) and (c) we obtain

ρ(x, y) ≤ c2d(x, y) ≤ c2M, ∀x, y ∈ Y, ∃M ∈ R+.

So we have Y is bounded closed subset of X in (X, ρ) and f(Y ) ⊂ Y . Then⋂
n∈N

fn(Y ) = {x∗},

by Theorem 2.2. The proof is complete. �

Theorem 2.4 (see [9], [10] Maia’s Theorem p. 40). Let X be a nonempty set, d and
ρ be two metrics on X and f : X → X be an operator. We suppose

(a) d(x, y) ≤ ρ(x, y), ∀x, y ∈ X.
(b) (X, d) is a complete metric space.
(c) f is a Hardy-Rogers type operator with respect to ρ.
(d) f is continuous with respect to d

Then we have:

(i) Ffn = {x∗},∀n ∈ N∗.
(ii) fn(x)

d−→ x∗ as n→∞, ∀x ∈ X.

(iii) fn(x)
ρ−→ x∗ as n→∞, ∀x ∈ X.

(iv) ρ(x, x∗) ≤ 1
1−lρ(x, f(x)), ∀x ∈ X, where l = α+β+γ

1−β−γ , α+ 2β + 2γ < 1.

(v) The fixed point problem for f is well-posed with respect to the metric ρ.
(vi) The operator f has the Ostrowski property with respect to the metric ρ.

(vii) If Y ⊂ X is a nonempty bounded and closed subset in (X, ρ) with f(Y ) ⊂ Y ,
then x∗ ∈ Y and ⋂

n∈N
fn(Y ) = {x∗}.

Proof. (i)− (ii). Let x ∈ X and (fn(x))n∈N be the corresponding sequence of succes-

sive approximations. From (c), we know that ρ(f(x), f2(x)) ≤
(
α+β+γ
1−β−γ

)
ρ(x, f(x)),

for all x ∈ X where α+β+γ
1−β−γ < 1. It follows that this sequence is a Cauchy sequence in

(X, ρ). From (a), we also get that it is a Cauchy sequence in (X, d) too. By (b), there

exists x∗ ∈ X such that fn(x)
d−→ x∗ for n ∈ N. From (d) we obtain that x∗ ∈ Ff

and we have x∗ ∈ Ffn , by hypothesis. Let x∗ 6= y∗ ∈ X and y∗ be another fixed
point. Then

0 ≤ ρ(f(x∗), f(y∗)) ≤ αρ(x∗, y∗) + β[ρ(x∗, f(x∗)) + ρ(y∗, f(y∗))]

+ γ[ρ(x∗, f(y∗) + ρ(y∗, f(x∗))]

= (α+ 2γ)ρ(x∗, y∗) ⇒ α+ 2γ = 1,

This contradict to α+2β+2γ < 1, ∀α, β ∈ R+. Thus, we have that Ff = Ffn = {x∗}.
(iii) Taking y = x∗ in (c) we have

ρ(f(x), x∗) ≤
(
α+ β + γ

1− β − γ

)
ρ(x, x∗), where α+ 2β + 2γ < 1. (2.4)
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Consider

ρ(fn(x), x∗) ≤
(
α+ β + γ

1− β − γ

)n
ρ(x, x∗)→ 0 as n→∞, since

α+ β + γ

1− β − γ
< 1.

Suppose that y∗ is an another fixed point and x∗ 6= y∗, then

0 ≤ ρ(x∗, y∗) ≤
(
α+ β + γ

1− β − γ

)
ρ(x∗, y∗).

This implies that α+β+γ
1−β−γ = 1 which is a contradiction, since α+β+γ

1−β−γ < 1. Hence

fn(x)
ρ−→ x∗ as n→∞.

(iv)− (vii) Using (2.4), we will have that

ρ(x, x∗) ≤ 1

1− l
ρ(x, f(x)),∀x ∈ X, where l =

α+ β + γ

1− β − γ
< 1.

Notice that f is a l-qusicontraction where l = α+β+γ
1−β−γ . So the proof follows from

SPQC (see [9]), Theorem 1.7. �

Next, we will consider the SPC for some Ćirić type operators.

Theorem 2.5. Let (X, d) be f -orbitally complete metric space with f : X → X be

Ćirić type operator such that

d(f(x), f(y)) ≤ q ·max{d(x, y); d(x, f(x)); d(y, f(y));
1

2
[d(x, f(y)) + d(y, f(x))]},

(2.5)

∀x, y ∈ X, where 0 < q < 1. Then we have the conclusions (i)-(iv) in SPC with
(iii) d(x, x∗) ≤ 1

1−qd(x, f(x)),∀x ∈ X. Additionally, if q ∈ (0, 12 ), then:

(v) the fixed point problem for f has Ostrowski’s property;
(vi) f is a Janos operator.

Proof. (i)− (ii) Let x ∈ X be arbitrary and define a sequence

x0 = x, x1 = f(x0), ..., xn = f(xn−1) = fn(x0), ...

From (2.5) and the definition of the sequence, it follows that

d(xn, xn+1)

= d(f(xn−1), f(xn))

≤ qmax{d(xn−1, xn); d(xn−1, xn); d(xn, xn+1);
1

2
[d(xn−1, xn+1) + d(xn, xn)]}

= qmax{d(xn−1, xn); d(xn, xn+1);
1

2
[d(xn−1, xn) + d(xn, xn+1)]}

≤ qmax{d(xn−1, xn); d(xn, xn+1);
1

2
[d(xn−1, xn) + d(xn, xn+1)]}

≤ qd(xn−1, xn) ∀x, y ∈ X.
Repeating this process for n-times, we obtain that

d(xn, xn+1) ≤ qd(xn−1, xn) ≤ ... ≤ qnd(x0, x1) = qnd(x, f(x)).
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Consider

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xn+p−1, xn+p)

≤ qnd(x, f(x)) + qn+1d(x, f(x)) + ...+ qn+p−1d(x, f(x))

= qn(1 + q + ...+ qp−1)d(x, f(x))

= qn
(

1− qp

1− q

)
d(x, f(x)), ∀p ∈ N.

Since 0 < q < 1 then qn → 0 as n → ∞. So (fn(x))n∈N is a Cauchy sequence.
From X is f -orbitally complete, so there is a point x∗ in X such that fn(x)→ x∗ as
n→∞,∀x ∈ X. Now (ii) is proved, let us prove that x∗ ∈ Ff . Consider

d(x∗, f(x∗)) ≤ d(x∗, fn(x)) + d(fn(x), f(x∗))

≤ d(x∗, fn(x)) + qmax{d(fn−1(x), x∗); d(fn−1(x), fn(x)); d(x∗, f(x∗));

1

2
[d(fn−1(x), f(x∗)) + d(x∗, fn(x))]}

= 0 + qd(x∗, f(x∗)) by taking n→∞, it is a contradiction.

Hence x∗ = f(x∗) that is x∗ ∈ Ff . From (ii) we have that Ff = Ffn = x∗ for each
n ∈ N.

(iii) Consider

d(x, x∗) ≤ d(x, f(x)) + d(f(x), f2(x)) + · · ·+ d(fn−1(x), fn(x)) + d(fn(x), x∗)

≤ d(x, f(x)) + qd(x, f(x)) + · · ·+ qn−1d(x, f(x)) + d(fn(x), x∗)

= (1 + q + · · ·+ qn−1)d(x, f(x)) + d(fn(x), x∗)

=

(
1− qn

1− q

)
d(x, f(x)) + d(fn(x), x∗).

So we have d(x, x∗) ≤ 1
1−qd(x, f(x)),∀x ∈ X.

(iv) Suppose that yn ∈ X and d(yn, f(yn)) → 0 as n → ∞. From (iii), replacing
x by yn ∈ X, then

d(yn, x
∗) ≤ 1

1− q
d(yn, f(yn)).

Taking n→ 0 and by our assumption we obtain that

d(yn, x
∗)→ 0 as n→∞.
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(v) Suppose that yn ∈ X and d(yn+1, f(yn))→ 0 as n→∞. We evaluate

d(yn+1, x
∗)

≤ d(yn+1, f(yn)) + d(f(yn), f(x∗))

≤ d(yn+1, f(yn)) + qmax{d(yn, x
∗), d(yn, f(yn)),

1

2
[d(yn, x

∗) + d(x∗, f(yn))]}

≤ d(yn+1, f(yn)) + qmax{d(yn, x
∗), d(yn, x

∗) + d(x∗, f(yn))

,
1

2
[d(yn, x

∗) + d(x∗, f(yn))]}

= d(yn+1, f(yn)) + qmax{d(yn, x
∗), d(yn, x

∗) + d(x∗, f(yn))}
= d(yn+1, f(yn)) + q(d(yn, x

∗) + d(x∗, f(yn)))

≤ d(yn+1, f(yn)) + qd(yn, x
∗) + q(d(x∗, yn+1) + d(yn+1, f(yn))).

Thus

d(yn+1, x
∗) ≤ 1 + q

1− q
d(yn+1, f(yn)) +

q

1− q
d(yn, x

∗), for every n ∈ N.

Continuing this procedure we obtain that

d(yn+1, x
∗) ≤ 1 + q

1− q

n∑
k=0

d(yk+1, f(yk))

(
q

1− q

)n−k
+

(
q

1− q

)n+1

d(y0, x
∗),

for every n ∈ N.
By Cauchy Lemma the first sequence tends to 0 as n→∞, while the second one goes
to zero, since q ∈ (0, 12 ).

(vi) Suppose that ∅ 6= Y ⊂ X is a closed subset in (X, d) with f(Y ) ⊂ Y . Let
x ∈ Y . Then fn(x) ∈ Y , ∀n ∈ N. From (ii) we have fn(x) → x∗ as n → ∞, and
since Y is closed, this implies that x∗ ∈ Y . For the second part of (vi), From (2.5)
we have

d(f(x), x∗) ≤ q

1− q
d(x, x∗) (2.6)

and q
1−q < 1 by our hypothesis that q ∈ (0, 12 ). So δ(f(Y ), {x∗}) ≤ δ(Y, {x∗}) where

δ is the diameter functional with respect to d. Consider

d(f(y), x∗) ≤ ld(y, x∗) ≤ l sup
z∈Y

d(z, x∗) ≤ lδ(Y, {x∗})

for all y ∈ Y and l = q
1−q . Then supy∈Y d(f(y), x∗) ≤ lδ(Y, {x∗}). Hence

δ(f(Y ), {x∗}) ≤ lδ(Y, {x∗}).
Furthermore, we have δ(fn(Y ), {x∗}) ≤ lnδ(Y, {x∗})→ 0 as n→∞.

So
⋂
n∈N

fn(Y ) = {x∗} �

Theorem 2.6 (SPC for Ćirić type operator with respect to a strongly equivalent
metric). Let X be a nonempty set, d and ρ be two metrics on X and f : X → X be
an operator. We suppose that

(a) (X, ρ) is f -orbitally complete metric space.



SATURATED VERSIONS OF SOME FIXED POINT THEOREMS 765

(b) f : X → X is Ćirić type operators with respect to the metric ρ and q ∈ (0, 12 )
for gaurantee that f has Ostrowski property and f is a Janos operator.

(c) There exists c1, c2 > 0 such that

c1d(x, y) ≤ ρ(x, y) ≤ c2d(x, y), ∀x, y ∈ X.
Then we have (i)− (vi) in Theorem 2.5, except
(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀x ∈ X, where ψ = c2

c1(1−q) , 0 < q < 1 and q ∈ (0, 12 )

for (v) and (vi).

Proof. (i)− (vi) The proof follows from Theorem 2.3, by applying Theorem 2.5. �

3. An open question

The most general extension of the Contraction Principle was given by Lj. Ćirić.
We give here his result.

Definition 3.1 ([6]). Let f be a mapping of a metric space X into it self. For each
x ∈ X, let

O(x, n) = {x, fx, . . . , fnx}, n = 1, 2, . . .

O(x,∞) = {x, fx, . . .}.
A space X is said to be f -orbitally complete if and only if every Cauchy sequence
which is contained in (O,∞) for some x ∈ X converges in X.

Definition 3.2 ([3]). A mapping f : X → X of a metric space X into itself is said
to be quasi-contraction if and only if there exists a number q ∈ (0, 1), such that

d(f(x), f(y)) ≤ q ·max{d(x, y); d(x, f(x)); d(y, f(y)); d(x, f(y)); d(y, f(x))}
holds for every x, y ∈ X.

Theorem 3.3 ([3]). Let f : X → X be a quasi-contraction on a metric space X and
let X be f -orbitally complete. Then

(a) f has a unique fixed point x∗ in X,
(b) fn(x)→ x∗, and

(c) d(fn(x), x∗) ≤ qn

1−qd(x, fx) for every x ∈ X.

The open question is to give an extended version of the above principle and to study
if the quasi-contraction condition is a relevant one, in the sense of Definition 1.8.
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[4] Lj.B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 26(1971), no.

12, 19-26.

[5] L. Janos, A converse of Banach’s contraction theorem, Proc. Amer. Math. Soc., 18(1967), no.
2, 287-289.

[6] L. Janos, On contraction type mappings, Math. Balkanica, 1(1971), 52-57.

[7] I.A. Rus, Bessaga mapping, Proc. Approx. Th., Cluj-Napoca, (1984), 164-172.
[8] I.A., Rus, Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.

[9] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ.
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