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1. Introduction

In 1922, Banach [8] stated a fixed point theorem, which became one of the most
notable results in the history of mathematical analysis, inspiring many other impor-
tant works. Amongst them, Caristi’s result [9] have been generally accepted as a very
useful one. It has been also referred as Caristi-Kirk’s (or Caristi-Kirk-Browder’s)
fixed point theorem, and it is essentially equivalent to Ekeland’s variational principle
[13] and even to completeness of the given metric space [22]. Caristi’s result asserts
that any self-mapping T of a complete metric space (X, d) such that

d(x, Tx) ≤ ϕ(x)− ϕ(Tx)

for all x ∈ X, has a fixed point, where ϕ is a nonnegative valued lower semi-continuous
function of X.

While there has been many generalizations of Caristi’s theorem [1, 2, 3, 4, 5, 6, 7,
10, 11, 12, 15, 16, 17, 18, 19, 20, 21], here we target especially those two: Downing-
Kirk’s fixed point theorem [12] and a theorem by Amini-Harandi [5], which we refer
to as Amini-Harandi’s fixed point theorem.

Throughout this paper, XY denotes the set of all functions from Y to X, and S[X]
stands for the image of a set X under a mapping S. Downing and Kirk strengthen
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Caristi’s result considering two complete metric spaces (X, d) and (Y, ρ), a self map-
ping T of X, a mapping S : X → Y with closed graph, a constant c > 0 and a lower
semi-continuous function φ : S[X]→ [0,∞) such that

max{d(x, Tx), cρ(Sx, STx)} ≤ φ(Sx)− φ(STx)

for all x ∈ X. On the other hand, Amini-Harandi improved the left side of inequality
by a self-mapping η of [0,∞) and the right side by a function ψ : X ×X → R with
certain properties, such that self-mappings T of X satisfying

η(d(x, Tx)) ≤ ψ(Tx, x)

for all x ∈ X, would have a fixed point. This is Corollary 2.4 in [5]. For more about
background, details on η and ψ, other results obtained and various applications given
by Amini-Harandi in the study in subject see [5].

It is worth noting that, beyond generalizing Caristi’s theorem, Amini-Harandi’s
result is strong enough to conclude Downing-Kirk’s fixed point theorem, but not in
a canonical manner, in the sense that, for given complete metric spaces (X, d) and
(Y, ρ), a self mapping T of X, a mapping S : X → Y with closed graph, a constant
c > 0 and a lower semi-continuous function φ : S[X] → [0,∞), it is not always
possible to find an η and a ψ such that η(d(x, Tx)) = max{d(x, Tx), cρ(Sx, STx)}
and ψ(Tx, x) = φ(Sx) − φ(STx) for all x ∈ Y . Instead, this generalization depends
on defining a new metric. In fact, it is apparent that Downing-Kirk’s theorem can
be derived as a rather simple conclusion of even Caristi’s theorem, since the metric
d′ defined as d′(x, y) = max{d(x, y), cρ(Sx, Sy)} on X, makes X complete thanks
to closed graph of S and completenesses of (X, d) and (Y, d), and it also makes the
function ϕ : X → [0,∞) defined as ϕ(x) = φ(Sx) lower semi-continuous.

We devote this study to introducing a common canonical generalization of
Downing-Kirk’s and Amini-Harandi’s fixed point theorems, which can not be triv-
ially obtained as their corollary. Thereafter, we prove our main result and obtain a
surjectivity theorem as an application of it.

2. Main results

In the sequel, R+ denotes the set of all nonnegative real numbers, ΨA denotes the
set of all mappings ψ : A×A→ R such that ψ(·, a) : A→ R is upper semi-continuous
for all a ∈ A, there exists an â ∈ A making ψ(â, ·) lower semi-continuous and bounded
below, ψ(a, b)+ψ(b, c) ≤ ψ(a, c) for all a, b, c ∈ A and ψ(a, a) = 0 for all a ∈ A, where
A is a subspace of a metric space, while Γ denotes the set of all mappings γ : R+ → R+

such that γ is nondecreasing and continuous, γ(α+β) ≤ γ(α)+γ(β) for all α, β ∈ R+

and γ−1[{0}] = {0}.

Lemma 2.1. Let (X, d) and (Y, ρ) be complete metric spaces, T : X → X, S : X →
Y , γ, δ ∈ Γ and ψ ∈ ΨA, where A is a set such that S[X] ⊆ A ⊆ Y . Define the
relation 4 on X with

x 4 y ⇔ max{γ(d(x, y)), δ(ρ(Sx, Sy))} ≤ ψ(Sx, Sy) (2.1)
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for all x, y ∈ X. If S has closed graph, then (X,4) is a partially ordered set and has
at least one minimal element.

Proof. It is easy to show that 4 is a partial order on X.
Suppose that C is a chain on (X,4). There exists a totally ordered infinite set (I,≤I),
such that it can be written C = {xi ∈ X : i ∈ I}, where j ≤I i implies xi 4 xj for all
i, j ∈ I. Then

0 ≤ γ(d(xi, xj)) ≤ ψ(Sxi, Sxj) ≤ ψ(â, Sxj)− ψ(â, Sxi),

which gives ψ(â, Sxi) ≤ ψ(â, Sxj), where ψ(â, ·) is lower semi-cointinuous and
bounded below. Hence {ψ(â, Sxi)}i∈I is a decreasing net of reals bounded below.
Thus we can find an increasing sequence (in) on I such that

lim
n→∞

ψ(â, Sxin) = inf
i∈I

ψ(â, Sxi).

Let ε > 0. For γ(ε) > 0, there exists n0 ∈ N such that m ≥ n ≥ n0 implies
0 ≤ ψ(â, Sxin)− ψ(â, Sxim) < γ(ε) for all m,n ∈ N, and

γ(d(xim , xin)) ≤ ψ(Sxim , Sxin) ≤ ψ(â, Sxin)− ψ(â, Sxim) < γ(ε).

γ(d(xim , xin)) < γ(ε) implies d(xim , xin) < ε, that is (xin) is a Cauchy sequence on
(X, d), and there is an x ∈ X such that (xin) → x. Then, since γ is continuous we
have

γ(d(x, xin)) = lim sup
m,n→∞

γ(d(xim , xin)) ≤ lim sup
m,n→∞

ψ(Sxim , Sxin). (2.2)

On the other hand by (2.1) we similarly have

δ(ρ(Sxim , Sxin)) ≤ ψ(Sxim , Sxin) ≤ ψ(â, Sxin)− ψ(â, Sxim) < γ(ε),

that is δ(ρ(Sxim , Sxin)) < δ(ε), or ρ(Sxim , Sxin) < ε. So (Sxin) is a Cauchy sequence
on (Y, ρ) and (Sxin) → y for some y ∈ Y . Since S has closed graph, (xin) → x and
(Sxin)→ y give y = Sx. Also

δ(ρ(Sx, Sxin)) = lim sup
m,n→∞

δ(ρ(Sxim , Sxin)) ≤ lim sup
m,n→∞

ψ(Sxim , Sxin). (2.3)

Since ψ(·, xin) is upper semi-continuous we have

lim sup
m,n→∞

ψ(Sxim , Sxin) ≤ ψ(Sx, Sxin). (2.4)

Then max{γ(d(x, xin)), δ(ρ(Sx, Sxin))} ≤ ψ(Sx, Sxin) by (2.2), (2.3) and (2.4), that
is x 4 xin for all n ∈ N.
Assume that x is not a lower bound for C. So there exists an x0 ∈ C such that
x 64 x0. Since C is a chain and x 4 xin , we also have x0 4 xin for all n ∈ N. Then

0 ≤ γ(d(x0, xin)) ≤ ψ(â, Sxin)− ψ(â, Sx0)

which gives ψ(â, Sx0) ≤ ψ(â, Sxin) for all n ∈ N so that

ψ(â, Sx0) = inf
i∈I

ψ(â, Sxi) = lim
n→∞

ψ(â, Sxin)

and therefore

0 ≤ lim
n→∞

γ(d(x0, xin)) ≤ lim
n→∞

ψ(â, Sxin)− ψ(â, Sx0) = 0.
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Then the sequence γ(d(x0, xin)) converges to 0 = γ(0) which implies by the properties
of γ that (d(x0, xin)) → 0, so that (xin) → x0. That is, we have the contradiction
x = x0. Hence x must be a lower bound of C and by Zorn’s Lemma, (X,4) has a
minimal element. �

In the following, for any mapping γ : R+ → R+, Ωγ denotes the set of all such
mappings η : R+ → R+ that, there exists an εη > 0 such that η(t) ≤ εη implies
γ(t) ≤ η(t) for all t ∈ R+.

Lemma 2.2. Let (X, d) and (Y, ρ) be complete metric spaces, T : X → X, S : X →
Y , γ, δ ∈ Γ, η ∈ Ωγ , θ ∈ Ωδ and ψ ∈ ΨA, where S[X] ⊆ A ⊆ Y . Define a relation �
(which is not needed to be a partial order) on X with

x � y ⇔ max{η(d(x, y)), θ(ρ(Sx, Sy))} ≤ ψ(Sx, Sy) (2.5)

for all x, y ∈ X. If S has closed graph, then (X,�) has minimal element.

Proof. Let â ∈ A such that ψ(â, ·) is lower semi-continuous and bounded below and
let

ψ0 := inf
x∈X

ψ(â, Sx).

Also let ε := min{εη, εθ} and X0 := {x ∈ X : ψ(â, x) ≤ ψ0 + ε}. Suppose that (xn) is
a sequence on X0 and (xn)→ x on (X, d). Then ψ(â, xn) ≤ ψ0 + ε for all n ∈ N and
lower semi-continuity of ψ(â, ·) : X → R+ implies

ψ(â, x) ≤ lim inf
n→∞

ψ(â, xn) ≤ ψ0 + ε

so that x ∈ X0.
Therefore X0 is a closed nonempty subset of X such that ψ0 ≤ ψ(â, x) ≤ ψ0 + ε for
all x ∈ X0. Then also X0 is complete and yet the restriction of S on X0 has closed
graph. If we define a relation 4 on X0 by

x 4 y ⇔ max{γ(d(x, y)), δ(ρ(Sx, Sy))} ≤ ψ(Sx, Sy)

then by Lemma 2.1 (X0,4) has a minimal element x∗.
Given an x ∈ X such that x � x∗, that is

0 ≤ η(d(x, x∗)) ≤ ψ(â, Sx∗)− ψ(â, Sx).

Then,

ψ(â, Sx) ≤ ψ(â, Sx∗) ≤ ψ0 + ε

gives x ∈ X0. x, x∗ ∈ X0 and x � x∗ yield

η(d(x, x∗)) ≤ ψ(Sx, Sx∗) ≤ ψ(â, Sx∗)− ψ(â, Sx) ≤ ε ≤ εη
and

θ(ρ(Sx, Sx∗)) ≤ ψ(Sx, Sx∗) ≤ ψ(â, Sx∗)− ψ(â, Sx) ≤ ε ≤ εθ.
Since η ∈ Ωγ and θ ∈ Ωδ, these implies that

γ(d(x, x∗)) ≤ η(d(x, x∗)) and δ(ρ(Sx, Sx∗)) ≤ θ(ρ(Sx, Sx∗)).
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Hence

max{γ(d(x, x∗)), δ(ρ(Sx, Sx∗))} ≤ max{η(d(x, x∗)), θ(ρ(Sx, Sx∗))}
≤ ψ(Sx, Sx∗),

that is x 4 x∗. Minimality of x∗ in (X0,4) yields x = x∗, which shows that x∗ is also
minimal in (X,�). �

Theorem 2.3. Let (X, d) and (Y, ρ) be complete metric spaces, T : X → X, S :
X → Y , γ, δ ∈ Γ, η ∈ Ωγ , θ ∈ Ωδ and ψ ∈ ΨA, where S[X] ⊆ A ⊆ Y . If S has closed
graph and

max{η(d(Tx, x)), θ(ρ(STx, Sx))} ≤ ψ(STx, Sx).

for all x ∈ X, then T has a fixed point.

Proof. We have Tx � x for all x ∈ X, where � is the relation on X defined in
(2.5). Then (X,�) has a minimal element x∗ by Lemma 2.2 and thus Tx∗ � x∗ gives
Tx∗ = x∗. �

Note that Theorem 2.3 generalizes Amini-Harandi’s fixed point theorem, namely
Corollary 2.4 in [5], with X = Y , S = IX , the identity mapping for X, A = X, δ = γ,
∪{Ωγ : γ ∈ Γ} = A in [5] and θ = η. It also generalizes Downing-Kirk’s fixed point
theorem [12] with A = S[X], γ = δ = IR, η = θ = f , where f : R+ → R+ is the
function given by f(x) = cx with a constant c > 0, and ψ(y1, y2) = φ(y2) − φ(y1),
where φ : S[X]→ R+ is lower semi-continuous.

3. Application

Suppose X and Y are locally convex topological vector spaces.
A mapping S : X → Y is said to be Gâteaux differentiable [12, 14] at a point

x ∈ X, if the limit

dSx(y) = lim
t→0+

S(x+ ty)− Sx
t

exists for each y ∈ Y and dSx : X → Y is a linear operator. If S : X → Y is
Gâteaux differentiable, with the derivative dSx at a point x ∈ X, then the dual of
dSx is denoted with dS′x, its nullspace is denoted with N(dS′x) and N(dS′x)⊥ is the
annihilator of N(dS′x) in Y . We also use the notations

Dx(S, ε) = {α(Su− Sx) : α ≥ 0, u ∈ X, ‖Su− Sx‖ < ε}
and

Dx(S) =
⋂
ε>0

Dx(S, ε).

We first express the following two lemmas from [2], followed by another lemma,
which will facilitate the proof of our surjectivity result.

Lemma 3.1. [12] Let X be a normed space, x, y, z ∈ X, α ≥ 1, β ∈ (0, 1) and

‖α(x− y)− (z − y)‖ ≤ β‖z − y‖.
Then

‖x− y‖ ≤ 1 + β

1− β
(‖y − z‖ − ‖x− z‖) .
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Lemma 3.2. [12] Let X be a locally convex topological vector space, Y be a Banach
space and S : X → Y be Gâteaux differentiable at the point x ∈ X. Then

N(dS′x)⊥ = dSx[X] ⊆ Dx(S).

Lemma 3.3. Given a complete metric space (X, d) and a Banach space Y . Let
S : X → Y have closed graph, γ, δ ∈ Γ and η ∈ Ωγ . Suppose that there exist a
y0 ∈ Y , a constant β ∈ (0, 1), a function ε : X → (0,∞) and sequences (αn) on
(R+)X , (Un) on XX such that

(a) the sets Vy := {v ∈ X : η(d(x, v)) ≤ δ(‖Sx − Sv‖), Sv = y} are nonempty for
all y ∈ B(Sx, ε(x)) ∩ S[X],

(b) ‖(αn(x))(SUnx− Sx)− (y0 − Sx)‖ ≤ β‖y0 − Sx‖ for all n ∈ N,
(c) (SUnx)→ Sx,
(d) SUnx 6= Sx for each n ∈ N.

Then y0 ∈ S[X].

Proof. Assume that y0 /∈ S[X]. Let x ∈ X. By (c), there exists an n1 ∈ N such that
‖SUnx− Sx‖ < ε(x) for all n ≥ n1. On the other hand, since

‖(αn(x))(SUnx− Sx)− (y0 − Sx)‖ ≤ β‖y0 − Sx‖

and y0 /∈ S[X], we have

0 6= (1− β)‖y0 − Sx‖ ≤ αn(x) · ‖SUnx− Sx‖,

and ‖SUnx− Sx‖ → 0 implies αn(x)→∞. Pick n2 ∈ N such that αn(x) ≥ 1 for all
n ≥ n2, and say n0 := max{n1, n2}. Then SUn0

x 6= Sx and αn0
(x) ≥ 1. We have

0 < ‖SUn0
x− Sx‖ ≤ 1 + β

1− β
(‖Sx− y0‖ − ‖SUn0

x− y0‖)

by Lemma 3.1. Also, SUn0x ∈ B(Sx, ε(x)) ∩ S[X] and VSUn0
x 6= ∅ by (a).

Let T : X → X be a choice function for the family of nonempty sets {VSUn0
x : x ∈ X}.

Then, η(d(x, Tx)) ≤ δ(‖Sx− STx‖) and STx = SUn0
x, which give

‖STx− Sx‖ ≤ 1 + β

1− β
(‖Sx− y0‖ − ‖STx− y0‖) .

We define a mapping ψ : S[X]× S[X]→ R such that

ψ(a, b) = δ

(
1 + β

1− β
(‖b− y0‖ − ‖a− y0‖)

)
for all a, b ∈ S[X]. Noting that δ ∈ Γ, we observe that ψ ∈ ΨS[X]. In addition, we
have

η(d(x, Tx)) ≤ δ(‖Sx− STx‖) ≤ ψ(STx, Sx),

which may be written as

max{η(d(Tx, x)), θ(ρ(STx, Sx))} ≤ ψ(STx, Sx),

where θ = δ ∈ Γ ⊆ Ωδ and ρ is the metric induced by the norm on Y . Then
by Theorem 2.3, T has a fixed point. However, if x∗ is a fixed point of T , then
Sx∗ = STx∗ = SUn0x contradicts with (d). This completes the proof. �
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Theorem 3.4. Let X and Y be Banach spaces and S : X → Y be a Gâteaux differen-
tiable mapping with a closed graph. Also suppose that given δ ∈ Γ and ε : X → (0,∞)
such that

(i) the sets Vy := {v ∈ X : η(‖x− v‖)) ≤ δ(‖Sx− Sv‖), Sv = y} are nonempty for
all y ∈ B(Sx, ε(x)) ∩ S[X],

(ii) N(dS′x) = {0} for each x ∈ X.
Then S is a surjective mapping.

Proof. We assume the contrary. Then there exists a y0 ∈ Y such that y0 6= Sx for
each x ∈ X. Clearly, (i) is equivalent to the condition (a) of Lemma 3.3.
Let x ∈ X. By N(dS′x) = {0}, we have N(dS′x)⊥ = Y and by Lemma 3.2 we also have

Dx(S) = Y , in particular y0−Sx ∈ Dx(S). Then for every ε > 0, y0−Sx ∈ Dx(S, ε)
and for each n ∈ N, there exists a (αn(x))(SUn(x)−Sx) with αn(x) ≥ 0, Un(x) ∈ X,
‖SUn(x)− Sx‖ < 1

n such that

‖((αn(x))(SUn(x)− Sx))− (y0 − Sx)‖ < ‖y0 − Sx‖
2n

.

This procedure defines the sequences (αn) on (R+)X and (Un) on XX such that the
conditions (b), (c) and (d) in Lemma 3.3 are satisfied for β = 1

2 . Thus y0 ∈ Y , which
is a contradiction. Hence S is surjective. �
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