Fixed Point Theory, 21(2020), No. 2, 707-714 DOI: 10.24193/fpt-ro.2020.2.50 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

A GENERALIZATION OF AMINI-HARANDI'S FIXED POINT THEOREM WITH AN APPLICATION TO NONLINEAR MAPPING THEORY

KÜBRA ÖZKAN*, UTKU GÜRDAL** AND ALİ MUTLU***

*Manisa Celal Bayar University, Department of Mathematics, 45140 Manisa Turkey E-mail: kubra.ozkan@hotmail.com, kubra.ozkan@cbu.edu.tr (Corresponding author)

**Mehmet Akif Ersoy University, Department of Mathematics, 15030, Burdur Turkey E-mail: utkugurdal@gmail.com

***Manisa Celal Bayar University, Department of Mathematics, 45140 Manisa Turkey E-mail: abgamutlu@gmail.com

Abstract. We introduce a new fixed point theorem on complete metric spaces, which generalizes some former results, and we apply this to obtain a surjectivity theorem for Gâteaux differentiable mappings between Banach spaces.

Key Words and Phrases: Complete metric space, fixed point, Gâteaux derivative. 2010 Mathematics Subject Classification: 54E50, 54H25, 47H10.

1. INTRODUCTION

In 1922, Banach [8] stated a fixed point theorem, which became one of the most notable results in the history of mathematical analysis, inspiring many other important works. Amongst them, Caristi's result [9] have been generally accepted as a very useful one. It has been also referred as Caristi-Kirk's (or Caristi-Kirk-Browder's) fixed point theorem, and it is essentially equivalent to Ekeland's variational principle [13] and even to completeness of the given metric space [22]. Caristi's result asserts that any self-mapping T of a complete metric space (X, d) such that

$$d(x, Tx) \le \varphi(x) - \varphi(Tx)$$

for all $x \in X$, has a fixed point, where φ is a nonnegative valued lower semi-continuous function of X.

While there has been many generalizations of Caristi's theorem [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21], here we target especially those two: Downing-Kirk's fixed point theorem [12] and a theorem by Amini-Harandi [5], which we refer to as Amini-Harandi's fixed point theorem.

Throughout this paper, X^Y denotes the set of all functions from Y to X, and S[X] stands for the image of a set X under a mapping S. Downing and Kirk strengthen

Caristi's result considering two complete metric spaces (X, d) and (Y, ρ) , a self mapping T of X, a mapping $S: X \to Y$ with closed graph, a constant c > 0 and a lower semi-continuous function $\phi: S[X] \to [0, \infty)$ such that

$$\max\{d(x, Tx), c\rho(Sx, STx)\} \le \phi(Sx) - \phi(STx)$$

for all $x \in X$. On the other hand, Amini-Harandi improved the left side of inequality by a self-mapping η of $[0, \infty)$ and the right side by a function $\psi : X \times X \to \mathbb{R}$ with certain properties, such that self-mappings T of X satisfying

$$\eta(d(x, Tx)) \le \psi(Tx, x)$$

for all $x \in X$, would have a fixed point. This is Corollary 2.4 in [5]. For more about background, details on η and ψ , other results obtained and various applications given by Amini-Harandi in the study in subject see [5].

It is worth noting that, beyond generalizing Caristi's theorem, Amini-Harandi's result is strong enough to conclude Downing-Kirk's fixed point theorem, but not in a canonical manner, in the sense that, for given complete metric spaces (X, d) and (Y, ρ) , a self mapping T of X, a mapping $S : X \to Y$ with closed graph, a constant c > 0 and a lower semi-continuous function $\phi : S[X] \to [0, \infty)$, it is not always possible to find an η and a ψ such that $\eta(d(x, Tx)) = \max\{d(x, Tx), c\rho(Sx, STx)\}$ and $\psi(Tx, x) = \phi(Sx) - \phi(STx)$ for all $x \in Y$. Instead, this generalization depends on defining a new metric. In fact, it is apparent that Downing-Kirk's theorem can be derived as a rather simple conclusion of even Caristi's theorem, since the metric d' defined as $d'(x, y) = \max\{d(x, y), c\rho(Sx, Sy)\}$ on X, makes X complete thanks to closed graph of S and completenesses of (X, d) and (Y, d), and it also makes the function $\varphi : X \to [0, \infty)$ defined as $\varphi(x) = \phi(Sx)$ lower semi-continuous.

We devote this study to introducing a common canonical generalization of Downing-Kirk's and Amini-Harandi's fixed point theorems, which can not be trivially obtained as their corollary. Thereafter, we prove our main result and obtain a surjectivity theorem as an application of it.

2. Main results

In the sequel, \mathbb{R}^+ denotes the set of all nonnegative real numbers, Ψ_A denotes the set of all mappings $\psi : A \times A \to \mathbb{R}$ such that $\psi(\cdot, a) : A \to \mathbb{R}$ is upper semi-continuous for all $a \in A$, there exists an $\hat{a} \in A$ making $\psi(\hat{a}, \cdot)$ lower semi-continuous and bounded below, $\psi(a, b) + \psi(b, c) \leq \psi(a, c)$ for all $a, b, c \in A$ and $\psi(a, a) = 0$ for all $a \in A$, where A is a subspace of a metric space, while Γ denotes the set of all mappings $\gamma : \mathbb{R}^+ \to \mathbb{R}^+$ such that γ is nondecreasing and continuous, $\gamma(\alpha + \beta) \leq \gamma(\alpha) + \gamma(\beta)$ for all $\alpha, \beta \in \mathbb{R}^+$ and $\gamma^{-1}[\{0\}] = \{0\}$.

Lemma 2.1. Let (X, d) and (Y, ρ) be complete metric spaces, $T : X \to X$, $S : X \to Y$, $\gamma, \delta \in \Gamma$ and $\psi \in \Psi_A$, where A is a set such that $S[X] \subseteq A \subseteq Y$. Define the relation \preccurlyeq on X with

$$x \preccurlyeq y \Leftrightarrow \max\{\gamma(d(x,y)), \delta(\rho(Sx,Sy))\} \le \psi(Sx,Sy) \tag{2.1}$$

for all $x, y \in X$. If S has closed graph, then (X, \preccurlyeq) is a partially ordered set and has at least one minimal element.

Proof. It is easy to show that \preccurlyeq is a partial order on X.

Suppose that C is a chain on (X, \preccurlyeq) . There exists a totally ordered infinite set (I, \leq_I) , such that it can be written $C = \{x_i \in X : i \in I\}$, where $j \leq_I i$ implies $x_i \preccurlyeq x_j$ for all $i, j \in I$. Then

$$0 \le \gamma(d(x_i, x_j)) \le \psi(Sx_i, Sx_j) \le \psi(\hat{a}, Sx_j) - \psi(\hat{a}, Sx_i),$$

which gives $\psi(\hat{a}, Sx_i) \leq \psi(\hat{a}, Sx_j)$, where $\psi(\hat{a}, \cdot)$ is lower semi-cointinuous and bounded below. Hence $\{\psi(\hat{a}, Sx_i)\}_{i \in I}$ is a decreasing net of reals bounded below. Thus we can find an increasing sequence (i_n) on I such that

$$\lim_{i \to \infty} \psi(\hat{a}, Sx_{i_n}) = \inf_{i \in I} \psi(\hat{a}, Sx_i).$$

Let $\varepsilon > 0$. For $\gamma(\varepsilon) > 0$, there exists $n_0 \in \mathbb{N}$ such that $m \ge n \ge n_0$ implies $0 \le \psi(\hat{a}, Sx_{i_n}) - \psi(\hat{a}, Sx_{i_m}) < \gamma(\varepsilon)$ for all $m, n \in \mathbb{N}$, and

$$\gamma(d(x_{i_m}, x_{i_n})) \le \psi(Sx_{i_m}, Sx_{i_n}) \le \psi(\hat{a}, Sx_{i_n}) - \psi(\hat{a}, Sx_{i_m}) < \gamma(\varepsilon).$$

 $\gamma(d(x_{i_m}, x_{i_n})) < \gamma(\varepsilon)$ implies $d(x_{i_m}, x_{i_n}) < \varepsilon$, that is (x_{i_n}) is a Cauchy sequence on (X, d), and there is an $x \in X$ such that $(x_{i_n}) \to x$. Then, since γ is continuous we have

$$\gamma(d(x, x_{i_n})) = \limsup_{m, n \to \infty} \gamma(d(x_{i_m}, x_{i_n})) \le \limsup_{m, n \to \infty} \psi(Sx_{i_m}, Sx_{i_n}).$$
(2.2)

On the other hand by (2.1) we similarly have

$$\delta(\rho(Sx_{i_m}, Sx_{i_n})) \le \psi(Sx_{i_m}, Sx_{i_n}) \le \psi(\hat{a}, Sx_{i_n}) - \psi(\hat{a}, Sx_{i_m}) < \gamma(\varepsilon),$$

that is $\delta(\rho(Sx_{i_m}, Sx_{i_n})) < \delta(\varepsilon)$, or $\rho(Sx_{i_m}, Sx_{i_n}) < \varepsilon$. So (Sx_{i_n}) is a Cauchy sequence on (Y, ρ) and $(Sx_{i_n}) \to y$ for some $y \in Y$. Since S has closed graph, $(x_{i_n}) \to x$ and $(Sx_{i_n}) \to y$ give y = Sx. Also

$$\delta(\rho(Sx, Sx_{i_n})) = \limsup_{m, n \to \infty} \delta(\rho(Sx_{i_m}, Sx_{i_n})) \le \limsup_{m, n \to \infty} \psi(Sx_{i_m}, Sx_{i_n}).$$
(2.3)

Since $\psi(\cdot, x_{i_n})$ is upper semi-continuous we have

$$\limsup_{m,n\to\infty} \psi(Sx_{i_m}, Sx_{i_n}) \le \psi(Sx, Sx_{i_n}).$$
(2.4)

Then $\max\{\gamma(d(x, x_{i_n})), \delta(\rho(Sx, Sx_{i_n}))\} \leq \psi(Sx, Sx_{i_n})$ by (2.2), (2.3) and (2.4), that is $x \preccurlyeq x_{i_n}$ for all $n \in \mathbb{N}$.

Assume that x is not a lower bound for C. So there exists an $x_0 \in C$ such that $x \not\preccurlyeq x_0$. Since C is a chain and $x \preccurlyeq x_{i_n}$, we also have $x_0 \preccurlyeq x_{i_n}$ for all $n \in \mathbb{N}$. Then

$$0 \le \gamma(d(x_0, x_{i_n})) \le \psi(\hat{a}, Sx_{i_n}) - \psi(\hat{a}, Sx_0)$$

which gives $\psi(\hat{a}, Sx_0) \leq \psi(\hat{a}, Sx_{i_n})$ for all $n \in \mathbb{N}$ so that

$$\psi(\hat{a}, Sx_0) = \inf_{i \in I} \psi(\hat{a}, Sx_i) = \lim_{n \to \infty} \psi(\hat{a}, Sx_{i_n})$$

and therefore

$$0 \le \lim_{n \to \infty} \gamma(d(x_0, x_{i_n})) \le \lim_{n \to \infty} \psi(\hat{a}, Sx_{i_n}) - \psi(\hat{a}, Sx_0) = 0.$$

Then the sequence $\gamma(d(x_0, x_{i_n}))$ converges to $0 = \gamma(0)$ which implies by the properties of γ that $(d(x_0, x_{i_n})) \to 0$, so that $(x_{i_n}) \to x_0$. That is, we have the contradiction $x = x_0$. Hence x must be a lower bound of C and by Zorn's Lemma, (X, \preccurlyeq) has a minimal element.

In the following, for any mapping $\gamma : \mathbb{R}^+ \to \mathbb{R}^+$, Ω_{γ} denotes the set of all such mappings $\eta : \mathbb{R}^+ \to \mathbb{R}^+$ that, there exists an $\varepsilon_{\eta} > 0$ such that $\eta(t) \leq \varepsilon_{\eta}$ implies $\gamma(t) \leq \eta(t)$ for all $t \in \mathbb{R}^+$.

Lemma 2.2. Let (X, d) and (Y, ρ) be complete metric spaces, $T : X \to X$, $S : X \to Y$, $\gamma, \delta \in \Gamma$, $\eta \in \Omega_{\gamma}$, $\theta \in \Omega_{\delta}$ and $\psi \in \Psi_A$, where $S[X] \subseteq A \subseteq Y$. Define a relation \preceq (which is not needed to be a partial order) on X with

$$x \preceq y \Leftrightarrow \max\{\eta(d(x,y)), \theta(\rho(Sx,Sy))\} \le \psi(Sx,Sy)$$
(2.5)

for all $x, y \in X$. If S has closed graph, then (X, \preceq) has minimal element.

Proof. Let $\hat{a} \in A$ such that $\psi(\hat{a}, \cdot)$ is lower semi-continuous and bounded below and let

$$\psi_0 := \inf_{x \in X} \psi(\hat{a}, Sx).$$

Also let $\varepsilon := \min\{\varepsilon_{\eta}, \varepsilon_{\theta}\}$ and $X_0 := \{x \in X : \psi(\hat{a}, x) \leq \psi_0 + \varepsilon\}$. Suppose that (x_n) is a sequence on X_0 and $(x_n) \to x$ on (X, d). Then $\psi(\hat{a}, x_n) \leq \psi_0 + \varepsilon$ for all $n \in \mathbb{N}$ and lower semi-continuity of $\psi(\hat{a}, \cdot) : X \to \mathbb{R}^+$ implies

$$\psi(\hat{a}, x) \le \liminf_{n \to \infty} \psi(\hat{a}, x_n) \le \psi_0 + \varepsilon$$

so that $x \in X_0$.

Therefore X_0 is a closed nonempty subset of X such that $\psi_0 \leq \psi(\hat{a}, x) \leq \psi_0 + \varepsilon$ for all $x \in X_0$. Then also X_0 is complete and yet the restriction of S on X_0 has closed graph. If we define a relation \preccurlyeq on X_0 by

$$x \preccurlyeq y \Leftrightarrow \max\{\gamma(d(x,y)), \delta(\rho(Sx,Sy))\} \le \psi(Sx,Sy)$$

then by Lemma 2.1 (X_0, \preccurlyeq) has a minimal element x_* . Given an $x \in X$ such that $x \preceq x_*$, that is

$$0 \le \eta(d(x, x_*)) \le \psi(\hat{a}, Sx_*) - \psi(\hat{a}, Sx).$$

Then,

$$\psi(\hat{a}, Sx) \le \psi(\hat{a}, Sx_*) \le \psi_0 + \varepsilon$$

gives $x \in X_0$. $x, x_* \in X_0$ and $x \leq x_*$ yield

$$\eta(d(x, x_*)) \le \psi(Sx, Sx_*) \le \psi(\hat{a}, Sx_*) - \psi(\hat{a}, Sx) \le \varepsilon \le \varepsilon_{\eta}$$

and

$$\theta(\rho(Sx, Sx_*)) \le \psi(Sx, Sx_*) \le \psi(\hat{a}, Sx_*) - \psi(\hat{a}, Sx) \le \varepsilon \le \varepsilon_{\theta}.$$

Since $\eta \in \Omega_{\gamma}$ and $\theta \in \Omega_{\delta}$, these implies that

$$\gamma(d(x, x_*)) \leq \eta(d(x, x_*))$$
 and $\delta(\rho(Sx, Sx_*)) \leq \theta(\rho(Sx, Sx_*)).$

Hence

$$\max\{\gamma(d(x,x_*)), \delta(\rho(Sx,Sx_*))\} \le \max\{\eta(d(x,x_*)), \theta(\rho(Sx,Sx_*))\}$$
$$\le \psi(Sx,Sx_*),$$

that is $x \preccurlyeq x_*$. Minimality of x_* in (X_0, \preccurlyeq) yields $x = x_*$, which shows that x_* is also minimal in (X, \preceq) .

Theorem 2.3. Let (X, d) and (Y, ρ) be complete metric spaces, $T : X \to X$, $S : X \to Y$, $\gamma, \delta \in \Gamma$, $\eta \in \Omega_{\gamma}$, $\theta \in \Omega_{\delta}$ and $\psi \in \Psi_A$, where $S[X] \subseteq A \subseteq Y$. If S has closed graph and

$$\max\{\eta(d(Tx,x)), \theta(\rho(STx,Sx))\} \le \psi(STx,Sx).$$

for all $x \in X$, then T has a fixed point.

Proof. We have $Tx \leq x$ for all $x \in X$, where \leq is the relation on X defined in (2.5). Then (X, \leq) has a minimal element x_* by Lemma 2.2 and thus $Tx_* \leq x_*$ gives $Tx_* = x_*$.

Note that Theorem 2.3 generalizes Amini-Harandi's fixed point theorem, namely Corollary 2.4 in [5], with X = Y, $S = I_X$, the identity mapping for X, A = X, $\delta = \gamma$, $\cup \{\Omega_{\gamma} : \gamma \in \Gamma\} = \mathcal{A}$ in [5] and $\theta = \eta$. It also generalizes Downing-Kirk's fixed point theorem [12] with A = S[X], $\gamma = \delta = I_{\mathbb{R}}$, $\eta = \theta = f$, where $f : \mathbb{R}^+ \to \mathbb{R}^+$ is the function given by f(x) = cx with a constant c > 0, and $\psi(y_1, y_2) = \phi(y_2) - \phi(y_1)$, where $\phi : S[X] \to \mathbb{R}^+$ is lower semi-continuous.

3. Application

Suppose X and Y are locally convex topological vector spaces.

A mapping $S: X \to Y$ is said to be Gâteaux differentiable [12, 14] at a point $x \in X$, if the limit

$$dS_x(y) = \lim_{t \to 0^+} \frac{S(x+ty) - Sx}{t}$$

exists for each $y \in Y$ and $dS_x : X \to Y$ is a linear operator. If $S : X \to Y$ is Gâteaux differentiable, with the derivative dS_x at a point $x \in X$, then the dual of dS_x is denoted with dS'_x , its nullspace is denoted with $N(dS'_x)$ and $N(dS'_x)^{\perp}$ is the annihilator of $N(dS'_x)$ in Y. We also use the notations

$$D_x(S,\varepsilon) = \{ \alpha(Su - Sx) : \alpha \ge 0, \, u \in X, \, \|Su - Sx\| < \varepsilon \}$$

and

$$D_x(S) = \bigcap_{\varepsilon > 0} \overline{D_x(S,\varepsilon)}.$$

We first express the following two lemmas from [2], followed by another lemma, which will facilitate the proof of our surjectivity result.

Lemma 3.1. [12] Let X be a normed space, $x, y, z \in X$, $\alpha \ge 1$, $\beta \in (0, 1)$ and

$$\|\alpha(x-y) - (z-y)\| \le \beta \|z-y\|.$$

Then

$$\left\|x-y\right\| \leq \frac{1+\beta}{1-\beta}\left(\left\|y-z\right\|-\left\|x-z\right\|\right)$$

Lemma 3.2. [12] Let X be a locally convex topological vector space, Y be a Banach space and $S: X \to Y$ be Gâteaux differentiable at the point $x \in X$. Then

$$N(dS'_x)^{\perp} = \overline{dS_x[X]} \subseteq D_x(S)$$

Lemma 3.3. Given a complete metric space (X,d) and a Banach space Y. Let $S: X \to Y$ have closed graph, $\gamma, \delta \in \Gamma$ and $\eta \in \Omega_{\gamma}$. Suppose that there exist a $y_0 \in Y$, a constant $\beta \in (0,1)$, a function $\varepsilon : X \to (0,\infty)$ and sequences (α_n) on $(\mathbb{R}^+)^X$, (U_n) on X^X such that

(a) the sets $V_y := \{v \in X : \eta(d(x, v)) \le \delta(||Sx - Sv||), Sv = y\}$ are nonempty for all $y \in B(Sx, \varepsilon(x)) \cap S[X]$,

- (b) $\|(\alpha_n(x))(SU_nx Sx) (y_0 Sx)\| \le \beta \|y_0 Sx\|$ for all $n \in \mathbb{N}$,
- (c) $(SU_n x) \to Sx$,
- (d) $SU_n x \neq Sx$ for each $n \in \mathbb{N}$.

Then $y_0 \in S[X]$.

Proof. Assume that $y_0 \notin S[X]$. Let $x \in X$. By (c), there exists an $n_1 \in \mathbb{N}$ such that $||SU_n x - Sx|| < \varepsilon(x)$ for all $n \ge n_1$. On the other hand, since

$$\|(\alpha_n(x))(SU_nx - Sx) - (y_0 - Sx)\| \le \beta \|y_0 - Sx\|$$

and $y_0 \notin S[X]$, we have

$$0 \neq (1 - \beta) \|y_0 - Sx\| \le \alpha_n(x) \cdot \|SU_n x - Sx\|$$

and $||SU_n x - Sx|| \to 0$ implies $\alpha_n(x) \to \infty$. Pick $n_2 \in \mathbb{N}$ such that $\alpha_n(x) \ge 1$ for all $n \ge n_2$, and say $n_0 := \max\{n_1, n_2\}$. Then $SU_{n_0}x \ne Sx$ and $\alpha_{n_0}(x) \ge 1$. We have

$$0 < \|SU_{n_0}x - Sx\| \le \frac{1+\beta}{1-\beta} \left(\|Sx - y_0\| - \|SU_{n_0}x - y_0\| \right)$$

by Lemma 3.1. Also, $SU_{n_0}x \in B(Sx, \varepsilon(x)) \cap S[X]$ and $V_{SU_{n_0}x} \neq \emptyset$ by (a). Let $T: X \to X$ be a choice function for the family of nonempty sets $\{V_{SU_{n_0}x}: x \in X\}$. Then, $\eta(d(x, Tx)) \leq \delta(\|Sx - STx\|)$ and $STx = SU_{n_0}x$, which give

$$||STx - Sx|| \le \frac{1+\beta}{1-\beta} (||Sx - y_0|| - ||STx - y_0||).$$

We define a mapping $\psi: S[X] \times S[X] \to \mathbb{R}$ such that

$$\psi(a,b) = \delta\left(\frac{1+\beta}{1-\beta} \left(\|b-y_0\| - \|a-y_0\|\right)\right)$$

for all $a, b \in S[X]$. Noting that $\delta \in \Gamma$, we observe that $\psi \in \Psi_{S[X]}$. In addition, we have

$$\eta(d(x,Tx)) \le \delta(\|Sx - STx\|) \le \psi(STx,Sx),$$

which may be written as

$$\max\{\eta(d(Tx,x)), \theta(\rho(STx,Sx))\} \le \psi(STx,Sx),$$

where $\theta = \delta \in \Gamma \subseteq \Omega_{\delta}$ and ρ is the metric induced by the norm on Y. Then by Theorem 2.3, T has a fixed point. However, if x_* is a fixed point of T, then $Sx_* = STx_* = SU_{n_0}x$ contradicts with (d). This completes the proof. **Theorem 3.4.** Let X and Y be Banach spaces and $S : X \to Y$ be a Gâteaux differentiable mapping with a closed graph. Also suppose that given $\delta \in \Gamma$ and $\varepsilon : X \to (0, \infty)$ such that

(i) the sets $V_y := \{v \in X : \eta(||x - v||)\} \le \delta(||Sx - Sv||), Sv = y\}$ are nonempty for all $y \in B(Sx, \varepsilon(x)) \cap S[X]$,

(ii) $N(dS'_x) = \{0\}$ for each $x \in X$.

Then S is a surjective mapping.

Proof. We assume the contrary. Then there exists a $y_0 \in Y$ such that $y_0 \neq Sx$ for each $x \in X$. Clearly, (i) is equivalent to the condition (a) of Lemma 3.3.

Let $x \in X$. By $N(dS'_x) = \{0\}$, we have $N(dS'_x)^{\perp} = Y$ and by Lemma 3.2 we also have $D_x(S) = Y$, in particular $y_0 - Sx \in D_x(S)$. Then for every $\varepsilon > 0$, $y_0 - Sx \in \overline{D_x(S,\varepsilon)}$ and for each $n \in \mathbb{N}$, there exists a $(\alpha_n(x))(SU_n(x) - Sx)$ with $\alpha_n(x) \ge 0$, $U_n(x) \in X$, $||SU_n(x) - Sx|| < \frac{1}{n}$ such that

$$\|((\alpha_n(x))(SU_n(x) - Sx)) - (y_0 - Sx)\| < \frac{\|y_0 - Sx\|}{2n}$$

This procedure defines the sequences (α_n) on $(\mathbb{R}^+)^X$ and (U_n) on X^X such that the conditions (b), (c) and (d) in Lemma 3.3 are satisfied for $\beta = \frac{1}{2}$. Thus $y_0 \in Y$, which is a contradiction. Hence S is surjective.

References

- Ö. Acar, İ. Altun, Some generalizations of Caristi type fixed point theorem on partial metric spaces, Filomat, 26(2012), no. 4, 833-837.
- [2] R.P. Agarwal, M.A. Khamsi, Extension of Caristi's fixed point theorem to vector valued metric space, Nonlinear Anal., 74(2011) 141-145.
- [3] C. Alegre, J. Marin, A Caristi fixed point theorem for complete quasi-metric spaces by using mw-distances, Fixed Point Theory, 19(2018), no. 1, 25-32.
- [4] S. Al-Homidan, Q.H. Ansari, J.C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal., 69(2008), no. 1, 126-139.
- [5] A. Amini-Harandi, Some generalizations of Caristi's fixed point theorem with applications to the fixed point theory of weakly contractive set-valued maps and the minimization problem, Nonlinear Anal., 72(2010), no. 12, 4661-4665.
- [6] Q.H. Ansari, Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory, J. Math. Anal. Appl., 334(2007), no. 1, 561-575.
- [7] J.S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl., 284(2003), no. 2, 690-697.
- [8] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3(1922) 133-181.
- J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215(1976), 241-251.
- [10] S.H. Cho, Some generalizations of Caristi's fixed point theorem with applications, Int. J. Math. Analysis, 7(2013), no. 12, 557-564.
- [11] L. Cirić, A generalization of Caristi's fixed point theorem, Math. Pannonica, 3(1992), no. 2, 51-57.
- [12] D. Downing, W.A. Kirk, A generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacific J. Math., 69(1977), 339-346.
- [13] I. Ekeland, Remarques sur les problémes variationnels I, C.R. Acad. Sci. Paris, 276(1972), 1057-1059.

- [14] M.R. Gâteaux, Sur les fonctionnelles continues et les fonctionnelles analytiques, C.R. Acad. Sci. Paris, 157(1913), no. 65, 325-327.
- [15] E. Karapınar, Generalizations of Caristi Kirk's theorem on partial metric spaces, Fixed Point Theory Appl., 2011(2011), no. 1, 4.
- [16] M.A. Khamsi, Remarks on Caristi's fixed point theorem, Nonlinear Anal., 71(2009), no. 1-2, 227-231.
- [17] A. Latif, Generalized Caristi's fixed point theorems, Fixed Point Theory Appl., 2009(2009), no.
 1, ID 170140 (7 pages).
- [18] S. Park, On generalizations of the Ekeland-type variational principles, Nonlinear Anal., 39(2000), no. 7, 881-889.
- [19] A. Petruşel, Caristi type operators and applications, Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz., XLVIII(2002), no. 3, 297-302.
- [20] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, 2008.
- [21] T. Suzuki, Generalized Caristi's fixed point theorems by Bae and others, J. Math. Anal. Appl., 302(2004), no. 2, 502-508.
- [22] W.C. Weston, A characterization of metric completeness, Proc. Amer. Math. Soc., 64(1977), no. 1, 186-188.

Received: June 18, 2018; Accepted: January 10, 2019.