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Abstract. It has been asked by Lau several times whether a Banach space with weak fixed point

property has weak fixed point property for left reversible semigroups. This problem is known as

Bruck generalized conjecture (BGC). The aim of this note is to propose a new approach to tackle
the BGC. Our approach uses the order structure of the semigroup for the first time in literature to

construct an ultra-product structure. Then, we use this ultra-product structure to give an affirmative

answer to BGC for the case of nearly uniformly convex (NUC) Banach spaces. One should note that
alternatives proofs are available in the case of NUC Banach spaces, but what we hope for is that the

originality of our method could pave the way for studying the BGC in its utmost generality.
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1. Introduction

Let K be a subset of a Banach space E. A self mapping T on K is said to be
non-expansive if ‖T (x) − T (y)‖ ≤ ‖x − y‖ for all x, y ∈ K. We say that E has the
weak fixed point property (weak fpp) if for every weakly compact convex non-empty
subset K of E, any non-expansive self mapping on K has a fixed point.

Let S be a semi-topological semigroup, i.e., S is a semigroup with a Hausdorff
topology such that for each a ∈ S, the mappings s 7→ sa and s 7→ as from S into
S are continuous. S is called left reversible if any two closed right ideals of S have
non-void intersection.

An action of S on a subset K of a topological space E is a mapping (s, x) 7→ s(x)
from S × K into K such that (st)(x) = s(t(x)) for s, t ∈ S, x ∈ K. The action is
separately continuous if it is continuous in each variable when the other is kept fixed.
We say that S has a common fixed point in K if there exists a point x in K such
that sx = x for all s ∈ S. When E is a normed space, the action of S on K is
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non-expansive if ‖s(x) − s(y)‖ ≤ ‖x − y‖ for all s ∈ S and x, y ∈ K. There are also
other types of action for a semi-topological semigroup (see [1] and [4]).

We say that a Banach space E has the weak fpp for left reversible semigroups
if for every weakly compact convex non-empty subset K of E, any non-expansively
separately continuous action of a semi-topological semigroup S on K has a fixed point.

One of the celebrated results in fixed point theory is due to Bruck [2]. He has shown
that if a Banach space E has weak fpp, then it has weak fpp for abelian semigroups.
Now, we call the following statement Bruck’s Generalized Conjecture (BGC):

(BGC) If a Banach space E has weak fpp, then it has weak fpp for any left reversible
semi-topological semigroup S.

The above statement has been brought up as an open problem several times by
Lau, for example see [5]. In [7], it has been shown that BGC is true for the preduals
of von Neumann algebras. It turns out that to study BGC one should use the order
structure of the given semigroup in certain ways. For the first time, we have done
this by using a new method for a special class of Banach spaces. What is important
for us here is the method of the proof not the theorem itself since alternative proofs
are available for our theorem. But, our proof uses the natural order structure of the
semigroup for the first time and construct an ultra-product of the Banach space based
on the order of the semigroup. We hope that our approach can be altered to tackle
Bruck’s generalized conjecture in its full statement.

2. Weak fixed point property of Bruck type

A Banach space E is called nearly uniformly convex (NUC), if for each ε > 0 there
exists a δ > 0 such that for every sequence (xn) in the closed unit ball of E with
sep(xn) := inf{‖ xn − xm‖ : n 6= m} > ε the distance dist(0, co{xn}) is strictly less
than 1− δ where co{xn} denotes the convex hull of the sequence.

When S is a left reversible semigroup, we make it to a directed set by declaring:
α ≥ β if and only if αS ⊆ βS. Thus, we can use S as an index set for nets and
speak about limit and limit-supremum with respect to this directed set. Also, note
that when S acts on a weakly compact subset K of Banach space E, each α acts
non-expansively on K and sometimes we use the notation Tα instead of α; even, we
may use α.β to denote the composition Tα ◦ Tβ .

Let l∞(E) = {x = (xα) : xα ∈ E; ‖x‖ = sup‖xα‖ <∞}, and

N = {x = (xα) : xα ∈ E; lim
α
‖xα‖ = 0}.

Put Ẽ = l∞(E)/N and endow it with the quotient norm ‖[(xα)]‖ = lim supα‖xα‖.
One can embed E and its subsets into Ẽ by using constant classes. For example,
for x ∈ K let ẋ = [(x)] denotes the equivalence class containing the constant net

(..., x, x, x, ...). So, K̇ = {ẋ : x ∈ K} is a subset of Ẽ. Also, we define

K̃ = {[(kα)] ∈ Ẽ : kα ∈ K for each α}

and note that, K̇ ⊆ K̃. The process of embedding preserves the properties of being
closed, bounded and convex for subsets of E. If each Tα is non-expansive on K, then

the mega mapping T̃ : K̃ −→ K̃ defined by T̃ [(xα)] = [(Tαxα)] is also non-expansive.
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Another piece of notation, when (xk) is a sequence in E, then fk = [(α.xk)α] is a

sequence in Ẽ.

Definition 2.1. (a) Let K be a non-empty subset of a Banach space E and (xα)α∈S
be a bounded net in E. Noting that k ∈ K,α ∈ S define

r(K, (xα)) = inf{lim sup
α
‖ xα − k ‖: k ∈ K}

AC(K, (xα)) = {k ∈ K : lim sup
α
‖ xα − k ‖= r(K, (xα))}

The set AC(K, (xα)) (the number r(K, (xα)) ) will be called the asymptotic center
(asymptotic radius) of (xα)α∈S in K. These are the generalizations of Chebyshev
center and radius and are due to Edelstein[3]. The asymptotic center is always non-
empty for weakly compact set K.

(b) When viewed in Ẽ, these notions are seen as:

r(K̇, [(xα)]) = inf{‖ [(xα)]− k̇ ‖ k ∈ K},

AC(K̇, [(xα)]) = {k̇ ∈ K̇ :‖ [(xα)]− k̇ ‖= r(K̇, [(xα)])}.

The proof of the following theorem uses some ideas from [8, section 5]. As we
mentioned earlier, it is the method of the proof which is important for us not the
theorem itself!

Theorem 2.2. Let K be a bounded closed convex non-empty subset of a Banach
space E, and let S be a left reversible semigroup acting non-expansively and separately
continuous on K. Suppose there exists a λ ∈ [0, 1) such that for each net (xα) in K
and each net (yα) in AC(K, (xα)) we have r(K, (yα)) ≤ λr(K, (xα)). Then, S has a
common fixed point in K.

Proof. Let x0 ∈ K. Put r0 = r(K, (α.x0)) and A1 = AC(K, (α.x0)). Let x1 ∈
A1. Since the action is non-expansive we see that α.x1 ∈ A1 and [(α.x1)] ∈ Ã1.
Put r1 = r(K, (α.x1)) and A2 = AC(K, (α.x1)). By induction, we get a sequence

xk such that xk ∈ Ak, [(α.xk)] ∈ Ãk, rk = r(K, (α.xk)), Ak+1 = AC(K, (α.xk))
and rk ≤ λkr0. As in the proof of [8, Theorem 5.3], there exists a u ∈ K such

that the sequence fk = [(α.xk)] converges to u̇ in K̃. Note that the use of α ∈ S
instead of n ∈ N in those theorems for the part we need, cause no problem since the
convergence occurs in k. So, the limit of [(α.xk)] is [(u)] regardless of the indexing
αs. Let β ∈ S be arbitrary and consider the elements [(β.α.xk)] and the constant
element [(β.u)] which are indexed by αs. Since the action is non-expansive we get the
‖[(β.α.xk)] − [(β.u)]‖ ≤ ‖[(α.xk)] − [(u)]‖. Hence, the sequence [(β.α.xk)] converges

to [(β.u)] in K̃. But, β.α ∈ S, so by the first part of the current proof, [(β.α.xk)] is a
another sequence like [(α.xk)] with the same limit. That is, by the same discussion,
[(β.α.xk)] must have the limit [(β.u)] = [(u)]. Hence, (β.u − u)α ∈ N . Therefore,
β · u = u, which is the desired result. �

Now, we are ready to prove an important theorem in light of Theorem 2.2. We
give two proofs of it. The first one is new and is based on Theorem 2.2 while the
second proof is a classic one based on Lim’s fixed point theorem [6].



696 FOUAD NADERI

Corollary 2.3. Let K be a weakly compact convex non-empty subset of a nearly
uniformly convex Banach space E, and let S be a left reversible semigroup acting
non-expansively and separately continuous on K. Then, S has a common fixed point
in K.

Proof 1. The set K is closed, bounded and convex. Also, nearly uniformly convex
Banach spaces satisfy the inequality in Theorem 2.2. So, the result follows.

Proof 2. Every nearly uniformly convex Banach space has normal structure. So, an
application of Lim’s fixed point theorem [6] will do the job. �

Though the above corollary is an extension of Kirk’s classic theorem and is a special
case of Lim’s fixed point theorem, one should not underestimate the method of its
proof. Above all, it is a common practice in mathematics to prove an old problem
from a new perspective and it turns out the new view has many ramifications.
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