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Abstract. In this paper we consider the following system of differential equations,

y′ = f(x, y), y(x0) = y1 and z′ = g(x, z), z(x0) = z1,

where f, g are bounded L1 functions defined on a rectangle in R2. We give sufficient conditions for

the existence of two functions φ and ψ, on an interval I containing x0, such that

|y1 +

∫ x

x0

f(t, φ(t))dt− φ(x)| ≤ |y1 − z1|,

|z1 +

∫ x

x0

g(t, ψ(t))dt− ψ(x)| ≤ |y1 − z1|

for all x ∈ I. To establish the same, we introduce a notation of c-cyclic contractive mapping and

prove the existence of best proximity pairs for such a mapping.
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1. Introduction

Let (A,B) be a pair of subsets of a metric space and T be a mapping from A
into B. Fixed point theorems analyze conditions for the existence of a solution for
the fixed point equation d(x, Tx) = 0. If the fixed point equation does not posses
any solution then it is natural to explore the optimal solution for the real valued
function x→ d(x, Tx) on a suitable domain space A. Ky Fan in 1969 [6] established
a fundamental result for the existence of a point x0 ∈ A, under certain conditions,
such that

‖x0 − Tx0‖ = dist(Tx0, A).

The most optimal solution for the problem of minimizing the real valued function
x→ d(x, Tx) is the one which attains the value at

dist(A,B) := {d(u, v) : u ∈ A, v ∈ B}.
A pair (x, Tx) ∈ A × B is said to be a best proximity pair for the map T if

d(x, Tx) = dist(A,B). Such a point x, if it exists, is said to be best proximity point
of T . In view of this stand point, many researchers [2, 3, 5, 7, 10, 12, 14] expound
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the condition that asserts the existence of a best proximity point for a similar kind
of mappings.

Suppose T : A ∪ B → A ∪ B satisfying TA ⊆ B and TB ⊆ A. In the application
point of view, it is natural interest to explore the necessary conditions, either on A
and B or on T , for the sequence(s) {T 2nx} (and/or {T 2n+1x}), for any x ∈ A ∪ B,
converge to best proximity points. In this manuscript we introduce a class mappings
called c-contractive mappings and prove the existence of best proximity pairs for such
a mapping. Our results include some known existence theorems from the existing
literature.

As an application, we consider the following system of differential equations:

y′ = f(x, y), y(x0) = y1 and z′ = g(x, z), z(x0) = z1,

where f, g are functions on a suitable rectangle in R containing (x0, y1) and (x0, z1).
If f = g, then we have y1 = z1. In this case, the both IVPs considers and Picard’s
existence and uniqueness theorem for the existence of the solution of the IVP, if f and
g are Lipschitz functions. Also the celebrated Piano’s theorem ensures the existence
of solution for a differential equation, if the functions f and g is continuous (for
more details reader can refer [1, 4, 8]). In any case, there exists a function φ on a
neighborhood I of x0 such that∫ x

x0

f(t, φ(t))dt− φ(x) = y1,

It is to be noted that, if |y1 − z1| > 0, then it is natural to explore the optimal
solution for the real valued function

θ(x) =

∣∣∣∣y1 − ∫ x

x0

f(t, φ(t))dt− φ(x)

∣∣∣∣ .
In this stand point we consider f and g are two bounded functions on L1, the space of
absolute integrable functions on the rectangle. We prove that there exists an interval
I containing x0 and two continuous functions φ and ψ on I such that∣∣∣∣y1 +

∫ x

x0

f(t, φ(t))dt− φ(x)

∣∣∣∣ ≤ |y1 − z1| for all x ∈ I,∣∣∣∣z1 +

∫ x

x0

g(t, ψ(t))dt− ψ(x)

∣∣∣∣ ≤ |y1 − z1| for all x ∈ I.

It is to be noted that if y1 = z1 then (φ, ψ) turns out to be a solution the system of
differential equations (y′, z′).

2. Existence of best proximity pairs

Let A and B be two subsets of a metric space (X, d). Let T is a mapping on
A ∪ B satisfying TA ⊆ B and TB ⊆ A. If T is a contractive mapping, that is
d(Tx, Ty) < d(x, y) for all x, y in A ∪ B and further if A and B are compact then
it is easy to notice that A ∩ B 6= ∅ and T has a unique fixed point in A ∩ B. Also if
d(Tx, Ty) < d(x, y), for all x ∈ A and y ∈ B and A, B are compact, then A ∩B 6= ∅
and T has a unique fixed point in A∩B. In [9], the authors defined cyclic contractive
mappings and proved the existence of a best proximity pair for such a mapping in the
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setting a strictly convex Banach space. Also it is to be noted that the existing best
proximity results mostly depend on the concept of strictly convex space. Motivated
by this fact, we present the following definition.

Definition 2.1. Let A and B be subsets of metric space (X, d). A mapping T :
A ∪ B → A ∪ B with TA ⊆ B and TB ⊆ A is said to be c-contractive mapping if T
is continuous and

d(Tx, Ty) < d(x, y), whenever d(x, y) > dist(A,B) for x ∈ A, y ∈ B.

It is observed form the continuity property of the c-contractive mapping on A∪B
that, d(Tx, Ty) = dist(A,B), for every x ∈ A and y ∈ B with d(x, y) = dist(A,B).
Hence, if T is c-contractive mapping on A∪B then TA0 ⊆ B0 and TB0 ⊆ A0, where

A0 = {x ∈ A : d(x, y) = dist(A,B), for some y ∈ B} and

B0 := {y ∈ B : d(x, y) = dist(A,B) for some x ∈ A}.

Therefore, we have d(Tx, Ty) ≤ d(x, y) for all x ∈ A, y ∈ B.

Definition 2.2. [13] A nonempty subset A of a metric space (X, d) is said to be
approximatively compact if for any y in X and any sequence {xn} in A with d(xn, y)
converges to dist(y,A) then {xn} has a convergent subsequence.

It is evident from the above definition that every boundedly compact subset of
a metric space is approximatively compact. Also it was proved in [9] that, if B is
compact and A is approximatively compact subsets of a metric space, then A0, B0

are nonempty compact subsets of X.

Definition 2.3. [11] A pair (A,B) of nonempty subsets of a metric space (X, d) is
said to have projectional property if for (x, y) ∈ A× B with d(x, y) = dist(A,B) and
for any sequences {xn} in A, {yn} in B satisfying

d(xn, y)→ dist(A,B), d(x, yn)→ dist(A,B) as n→∞,

then xn → x and yn → y.

It is to be observed that if (A,B) satisfies projectional property, then for any x ∈ A
there exists atmost one y ∈ B such that d(x, y) = dist(A,B)

Lemma 2.4. Let A be an approximatively compact and B is compact be subsets of
a metric space (X, d). Suppose that (A,B) satisfies projectional property. If T is a
cyclic contractive map, then T is c-contractive on A0 ∪B0.

Proof. Suppose {un} converges to u in A0 (or in B0), then there exists a unique v in
B0 (or in A0) such that d(u, v) = dist(A,B). Now

d(Tun, T v) ≤ d(un, v)

≤ d(un, u) + d(u, v)→ dist(A,B).

Hence d(Tun, (Tu)′) → dist(A,B). In a similar fashion one can prove that
d((Tun)′, Tu) → dist(A,B). Since (A,B) has projectional property, Tun → Tu.
Hence T is c-contractive. �
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Let X = R2 with ‖ · ‖∞. If

A := {(0, x) : 0 ≤ x ≤ 1} and

B := {(0, x) : 1 ≤ x ≤ 1}
then every cyclic map on A∪B is cyclic contractive. Also it is to be noted that every
point on A ∪B is a best proximity point for T .

Now we prove the existence of a best proximity pair for such a map in the setting
of a metric space.

Theorem 2.5. Let A be an approximatively compact and B be a compact subsets of
a metric space (X, d). Suppose T is a c-contractive map on A ∪B. Then there exists
a best proximity pair of T . Further for any sub-sequence of xn, where xn = T (xn−1)
for any x0 ∈ A, converges to x in A with (x, Tx) is a best proximity pair.

Proof. Define f : A0 → R+ as

f(u) = d(u, Tu), for all u ∈ A0.

As f is continuous and A0 is compact, there exists v ∈ A0 such that

d(v, Tv) = inf{d(u, Tu) : u ∈ A}.
Now we claim that d(v, Tv) = dist(A,B). Suppose not. Then we have

d(Tv, T 2v) < d(v, Tv).

Now T 2v ∈ A0 and so

d(v, Tv) = inf
u∈A0

d(u, Tu)

≤ d(T 2v, T 3v)

≤ d(Tv, T 2v)

< d(v, Tv),

a contradiction. Hence (v, Tv) is a best proximity point of T in A. Now choose an
x0 ∈ A0 and define xn = T (xn−1) for all n ∈ N. As A0 ∪B0 is compact, the sequence
{xn} convergent subsequence say {xnk

} that converges to x. Suppose both

{nk : d ∈ N} ∩ {2n : n ∈ N} and {nk : d ∈ N} ∩ {2n+ 1 : n ∈ N}
are infinite sets, then A ∪ B 6= ∅. Hence dist(A,B) = 0 and in this case x turn outs
to be a fixed point of T and this completes the proof. Hence without loss generality
assume that nk is even for all k ∈ N and lim

k→∞
xnk

= x. Then x ∈ A0. Also,if

d(Txnk
, Tx) = dist(A,B) for all nk except finitely many, then we have

d(x, Tx) = dist(A,B),

which completes the proof. So we assume that d(Txnk
, Tx) > dist(A,B) for all nk.

This gives us that d(T (xnk
), T (xnk+1)) > dist(A,B) for all k. Suppose

α = dist(x, Tx) := inf{d(T (xnk
), T (xnk+1)} < dist(A,B).

Then now
dist(x, Tx) > dist(Tn1x, Tn1+1x),
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which is a contradiction. Hence d(x, Tx) = dist(A,B). This completes the proof. �

Now we state an alternate statement of the above, which we use in the sequel.

Theorem 2.6. Let A and B be two closed closed convex subsets of a normed linear
space with dist(A,B) > 0 and T is a c-contractive map on A ∪ B. Suppose TA
lies in compact subest of X and TB lies in a compact subset of X. Then T has a
best proximity pair. Further for any x0 ∈ A, define xn = Txn−1 for n ∈ N. Then
{x2n} has a convergent subsequence that converges to x and {x2n+1} has a convergent
subsequence that converges to y such that (x, Tx) and (y, Ty) best proximity pairs
of T .

As an immediate consequence of Theorem 2.5, we have the following:

Corollary 2.7. Let A and B be nonempty subsets of metric space X with either A
or B be compact and let T be a cyclic map. If T is a cyclic contractive map on A∪B,
then their exists x ∈ A and y ∈ B such that d(x, Tx) = dist(A,B) = d(x, y).

Following example shows that the assumption of compactness on the sets A and
B can not be dropped in Theorem 2.5.

Example 2.8. Let X = `p, 1 ≤ p ≤ ∞ and

A :=

{
(1 + 1)e1,

(
1 +

1

3

)
e3, . . .

}
,

B :=

{(
1 +

1

2

)
e2,

(
1 +

1

4

)
e4, . . .

}
,

where en the sequence consisting of 1 at nth place and rest of them are 0’s. Define T
on A ∪B by

T

((
1 +

1

n

)
en

)
=

(
1 +

1

n+ 1

)
en+1.

It is clear that T is a cyclic map for odd n and even m.∥∥∥∥T ((1 +
1

n

)
en

)
− T

((
1 +

1

m

)
em

)∥∥∥∥ =

∥∥∥∥(1 +
1

n+ 1

)
en+1 −

(
1 +

1

m+ 1

)
em+1

∥∥∥∥
=

((
1 +

1

n+ 1

)p

+

(
1 +

1

m+ 1

)p) 1
p

<

((
1 +

1

n

)p

+

(
1 +

1

m

)p) 1
p

=

∥∥∥∥(1 +
1

n

)
en −

(
1 +

1

m

)
em

∥∥∥∥
Also it is to be observed that, either if X is strictly convex Banach space or if (A,B)
has the projectional property, then we have a unique best proximity pair of T . Further
for any sub-sequence of xn, where xn = T (xn−1) for some x0 ∈ A, converges to the
best proximity point x of T in A (see [9]). With this observation and Example 2.8 we
conjuncture the following:
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Conjecture 2.9. Let A and B be two convex compact subsets of a normed linear
space X and T be a c-contractive map on A ∪B. Suppose

dist(A,B) < δ(A,B) := sup{d(x, y) : x ∈ A, y ∈ B}.
Then there exists a unique best proximity pair of T . Further for any sub-sequence of
xn, where xn = T (xn−1) for any x0 ∈ A, converges to the best proximity point x of T
in A.

3. Application to system of differential equations

Let x0 and y0 in R and a, b > 0 and let S := [x0 − a, x0 + a] × [y0 − b, y0 + b].
Consider a pair of differential equations with initial conditions:

y′ = f(x, y) with initial condition y(x0) = y1 and

z′ = f(x, z) with initial condition y(x0) = z1.

where f, g are integrable functions from S to R and x, z, z1 ∈ [y0 − b, y0 + b].
Now we discuss the existence of the best proximity solution for the system, if it

does not posses any solution. We say that Φ and Ψ is a best proximity solution for
the system, if it satisfying the following:

(1) Φ and Ψ are continuous functions on a neighborhood I of x0

(2)

∣∣∣∣y1 +

∫ x

x0

f(t, Φ(t))dt− Φ(x)

∣∣∣∣ ≤ |y1 − z1|, for all x ∈ I

(3)

∣∣∣∣z1 +

∫ x

x0

g(t,Φ(t))dt− Φ(x)

∣∣∣∣ ≤ |y1 − z1|, for all x ∈ I and

It is easy to see that if y0 = z1 then a best proximity solution turns out to be a
common solution for the system.

The following theorem ensures the existence of a best proximity solution.

Theorem 3.1. Let x0, y0, y1, z1, a, b, S be as stated above. Suppose f and g are
bounded L1 functions on S satisfying satisfies

|f(x, t1)− g(x, t2)| ≤ |(t1 − t2)− (y1 − z1)|,
for all x ∈ [x0 − a, x0 + a] and t1, t2 ∈ [y0 − b, y0 + b] with |t1 − t2| ≥ |y1 − z1|. Then
there exists β > 0 and continuous functions φ and ψ on [x0 − β, x + β] such that φ
and ψ is a best proximity solution for the system.

Proof. Let

β =
1

2
min

{
1, a,

b− |y1 − y0|
M

,
b− |z1 − y0|

M

}
,

where M be a common bounded of f and g. Then it is easy to β > 0. Let

I = [x0 − β, x0 + β]

and X = C[I] be the space of all real valued continuous functions on I with supremum
norm and set

A : {h ∈ X : h(x0) = y1 and |h(x)− y1| < b, ∀ x ∈ I},
B : {h ∈ X : h(x0) = z1 and |h(x)− z1| < b, ∀ x ∈ I}.
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Then it is easy see that A and B are closed convex subsets of X with

dist(A,B) = |y1 − z1|.

Now let us define a map T on A ∪B by

Th(x) =


z1 +

∫ x

x0

g(u, h(u))du if f ∈ A

y1 +

∫ x

x0

f(u, h(u))du if f ∈ B

It is evident from the above that Th ∈ X for all h ∈ X. Also for h ∈ A, We have

Th(x0) = z1

and

|Th(x)− y0| = |z1 +

∫ x

x0

g(u, h(u))du− y0|

≤ |z1 − y0|+ |
∫ x

x0

g(u, h(u))du|

≤ |z1 − y0|+Mβ

< b,

therefore Th ∈ B. In a similar way one can show that Th ∈ A, if for h ∈ B. Also it
is to be noted that, as the integral operator is continuous, T is continuous. Now for
any h ∈ A and k ∈ B with ‖h− k‖ > |y1 − z1|.

|Th(x)− Tk(x)| = |z1 +

∫ x

x0

g(u, h(u))du− y1 +

∫ x

x0

f(u, k(u))du|

≤ |z1 − y1|+
∫ x

x0

|g(u, h(u))− f(u, k(u))|du

< |z1 − y1|+
∫ x

x0

(
‖h− k‖ − |y1 − z1|

)
du

≤ |z1 − y1|+ β
(
‖h− k‖ − |y1 − z1|

)
≤ β‖h− k‖+ (1− β)|z1 − y1|
< β‖h− k‖+ (1− β)‖h− k‖.

Therefore |Th(x)− Tk(x)| < ‖h− k‖+ (1− β)‖h− k‖, so

‖Tf − Tg‖ ≤ ‖h− k‖+ (1− β)‖h− k‖.

As ‖h− k‖ > |y1 − z1|, we have

‖Tf − Tg‖ < ‖h− k‖.

This show that T is a c-contractive map on A ∪B.
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Now for h ∈ A, we have |Th(x)| ≤ z1 + Mβ. Therefore {Th : h ∈ A} is a uniformly
bounded subset of X. Also for x1 < x2 ∈ I and for h ∈ A, we have

|Tf(x1)− Tf(x2)| =

∣∣∣∣z1 +

∫ x1

x0

g(u, h(u))du− z1 +

∫ x2

x0

g(u, h(u))du

∣∣∣∣
=

∣∣∣∣∫ x1

x1

g(u, h(u))du

∣∣∣∣
≤

∫ x1

x1

|g(u, h(u))|du

= M(x2 − x1).

Therefore {Th : h ∈ A} is a equi-continuous family. Therefore by Ascoli theorem,
T (A) lies in a compact subset of X. In a similar way one can show that T (B) lies
in a compact subset of X. Hence by Theorem 2.6, there exists continuous functions
φ and ψ on I such that φ and ψ is a best proximity solution for the system. For
h ∈ A, define hn = Thn−1. Then by Theorem 2.5, we have a subsequence of h2n that
converges to φ and a subsequence of h2n+1 that converges to ψ. �
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