A HALPERN TYPE ITERATION WITH MULTIPLE ANCHOR POINTS IN COMPLETE GEODESIC SPACES WITH NEGATIVE CURVATURE

YASUNORI KIMURA* AND KAZUYA SASAKI**
*Department of Information Science, Toho University, Miyama
Funabashi, Chiba 274-8510, Japan
E-mail: yasunori@is.sci.toho-u.ac.jp
**Department of Information Science, Toho University, Miyama
Funabashi, Chiba 274-8510, Japan
E-mail: 6519005s@st.toho-u.jp

Abstract

In this paper, we define a new convex combination on a geodesic space with negative curvature, and show that an iterative sequence generated by using that convex combination converges to a common fixed point of mappings minimizing the specific function of that space. Key Words and Phrases: Fixed point, approximation, geodesic space. 2010 Mathematics Subject Classification: 47H09, 47H10.

1. Introduction

Approximation of fixed points has been studied in various spaces such as Hilbert spaces, Banach spaces, complete $\operatorname{CAT}(\kappa)$ spaces, and others. Halpern type iteration is one of the method to find a fixed point; see [2, 9, 8]. In 2010, Saejung [6] proved a Halpern type approximation theorem using a single mapping and a single anchor point in a complete CAT(0) space. In 2015, Kimura and Wada [4] showed the following theorem using Halpern type iterative scheme with three mappings and three anchor points in a complete $\mathrm{CAT}(0)$ space.
Theorem 1.1 (Kimura and Wada [4]). Let X be a complete CAT(0) space and R, S, T nonexpansive mappings from X into itself with $F=F(R) \cap F(S) \cap F(T) \neq \varnothing$. Let $\left.\left\{\alpha_{n}\right\} \subset\right] 0,1[$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty \text { and } \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty
$$

and $\left.\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \subset\right] a, b[\subset] 0,1[$ such that

$$
\left.\sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty, \lim _{n \rightarrow \infty} \beta_{n}=\beta \in\right] 0,1\left[, \sum_{n=1}^{\infty}\left|\gamma_{n+1}-\gamma_{n}\right|<\infty\right.
$$

and

$$
\left.\lim _{n \rightarrow \infty} \gamma_{n}=\gamma \in\right] 0,1[
$$

Let $u, v, w, x_{1} \in X$ and define an iterative sequence $\left\{x_{n}\right\} \subset X$ by

$$
\left\{\begin{array}{l}
r_{n}=\alpha_{n} u \oplus\left(1-\alpha_{n}\right) R x_{n} \\
s_{n}=\alpha_{n} v \oplus\left(1-\alpha_{n}\right) S x_{n} \\
t_{n}=\alpha_{n} w \oplus\left(1-\alpha_{n}\right) T x_{n} \\
x_{n+1}=\beta_{n} r_{n} \oplus\left(1-\beta_{n}\right)\left(\gamma_{n} s_{n} \oplus\left(1-\gamma_{n}\right) t_{n}\right)
\end{array}\right.
$$

for all $n \in \mathbb{N}$. Then the sequence $\left\{x_{n}\right\}$ converges to a point $p \in F$, which is a minimizer of the function $g(x)=\beta d(u, x)^{2}+(1-\beta)\left(\gamma d(v, x)^{2}+(1-\gamma) d(w, x)^{2}\right)$ on F.

In this theorem, the function g can be expressed as

$$
g(x)=\lambda d(u, x)^{2}+\mu d(v, x)^{2}+\nu d(w, x)^{2} \quad(\lambda, \mu, \nu>0, \lambda+\mu+\nu=1)
$$

We can consider the function g as a typical function of $\operatorname{CAT}(0)$ space, for the following formula is satisfied for any three points x, y, z in a $\operatorname{CAT}(0)$ space and $\alpha \in[0,1]$:

$$
d(\alpha x \oplus(1-\alpha) y, z)^{2} \leq \alpha d(x, z)^{2}+(1-\alpha) d(y, z)^{2}
$$

On the other hand, if X is a $\operatorname{CAT}(-1)$ space, the following inequality holds for any $x, y, z \in X$ and $\alpha \in[0,1]:$

$$
\cosh d(\alpha x \oplus(1-\alpha) y, z) \leq \alpha \cosh d(x, z)+(1-\alpha) \cosh d(y, z)
$$

So the following function can be regarded as a function specific to the CAT(-1) space:

$$
h(x)=\lambda \cosh d(u, x)+\mu \cosh d(v, x)+\nu \cosh d(w, x) \quad(\lambda, \mu, \nu>0, \lambda+\mu+\nu=1)
$$

In general, we know that all $\operatorname{CAT}(-1)$ spaces are also $\mathrm{CAT}(0)$ space. Therefore, the sequence generated by the same method converges to the same point also in a CAT (-1) space. That point is a minimizer of the function g, however, it is not a minimizer of the following function characteristic of the CAT (-1) space:

$$
h(x)=\beta \cosh d(u, x)+(1-\beta)(\gamma \cosh d(v, x)+(1-\gamma) \cosh d(w, x))
$$

We consider this problem to be caused by the relationship between convex combination and the geometric structure of $\operatorname{CAT}(0)$ space. In fact, the following formula holds for any three points u, v in a $\operatorname{CAT}(0)$ space and $\alpha \in[0,1]$:

$$
\alpha u \oplus(1-\alpha) v=\underset{x \in X}{\operatorname{argmin}}\left(\alpha d(u, x)^{2}+(1-\alpha) d(v, x)^{2}\right) .
$$

In this paper, we define a new convex combination on a $\operatorname{CAT}(-1)$ space in order to resolve that problem, and show that a sequence generated by using that convex combination converges to a minimizer of h in CAT (-1) spaces.

2. Preliminaries

Let (X, d) be a metric space. For $x, y \in X$, a mapping $\gamma:[0, l] \rightarrow X$ is called a geodesic joining x and y if γ satisfies $\gamma(0)=x, \gamma(l)=y$ and $d(\gamma(s)-\gamma(t))=|s-t|$ for $s, t \in[0, l]$, where $l=d(x, y)$. X is said to be a geodesic space if for any two points $x, y \in X$, there exists a geodesic joining x and y. Further, if a geodesic exists uniquely for any two points $x, y \in X$, then X is called a uniquely geodesic space. In a uniquely geodesic space, an image of geodesic joining x and y is said to be a geodesic segment and is denoted by $[x, y]$.

Let X be a uniquely geodesic space. For $x, y \in X$ and $t \in[0,1]$, there exists a unique point $z \in[x, y]$ such that $d(x, z)=(1-t) d(x, y)$ and $d(y, z)=t d(x, y)$. The point z is called a convex combination of x and y, and is denoted by $t x \oplus(1-t) y$. For three points $x, y, z \in X$, a geodesic triangle $\triangle(x, y, z) \subset X$ is defined as the union of geodesic segments joining each two points.

For $\kappa \in \mathbb{R}$, let M_{κ} be a two-dimensional model space with curvature κ. In particular, M_{0} is a two-dimensional Euclidean space \mathbb{R}^{2}, M_{1} is a two-dimensional unit sphere \mathbb{S}^{2}, and M_{-1} is a two-dimensional hyperbolic space \mathbb{H}^{2}. The diameter of M_{κ} is denoted by D_{κ}, that is, $D_{\kappa}=\infty$ for $\kappa \leq 0$ and $D_{\kappa}=\pi / \sqrt{\kappa}$ otherwise.

Let X be a uniquely geodesic space and let $\kappa \in \mathbb{R}$. For a geodesic triangle $\triangle(x, y, z) \subset X$ with $d(x, y)+d(y, z)+d(z, x)<2 D_{\kappa}$, a comparison triangle $\triangle(\bar{x}, \bar{y}, \bar{z}) \subset M_{\kappa}$ is defined by $[\bar{x}, \bar{y}] \cup[\bar{y}, \bar{z}] \cup[\bar{z}, \bar{x}]$, where $\bar{x}, \bar{y}, \bar{z}$ are points on M_{κ} which satisfies $d(x, y)=d(\bar{x}, \bar{y}), d(y, z)=d(\bar{y}, \bar{z})$, and $d(z, x)=d(\bar{z}, \bar{x})$. X is called a $\operatorname{CAT}(\kappa)$ space if for any two points $p, q \in \triangle(x, y, z)$ and their comparison points $\bar{p}, \bar{q} \in \bar{\triangle}(\bar{x}, \bar{y}, \bar{z})$, the inequality $d(p, q) \leq d(\bar{p}, \bar{q})$, which is called a $\operatorname{CAT}(\kappa)$ inequality, is satisfied for any $\triangle(x, y, z) \subset X$ and its comparison triangle $\bar{\triangle}(\bar{x}, \bar{y}, \bar{z}) \subset M_{\kappa}$. It is well known that any $\operatorname{CAT}(\kappa)$ space is also a $\operatorname{CAT}\left(\kappa^{\prime}\right)$ space whenever $\kappa<\kappa^{\prime}$.

Let X be a CAT (-1) space. Then the following inequality always holds for any $x, y, z \in X$ and $\alpha \in[0,1]:$

$$
\begin{aligned}
& \cosh d(\alpha x \oplus(1-\alpha) y, z) \sinh d(x, y) \\
& \quad \leq \cosh d(x, z) \sinh (\alpha d(x, y))+\cosh d(y, z) \sinh ((1-\alpha) d(x, y))
\end{aligned}
$$

This inequality is often called the CN-inequality. Moreover, the following inequality is easily obtained by this inequality:

$$
\cosh d(\alpha x \oplus(1-\alpha) y, z) \leq \alpha \cosh d(x, z)+(1-\alpha) \cosh d(y, z)
$$

Let C be a nonempty set. For $f: C \rightarrow \mathbb{R}$, the set of all minimizers of f is denoted by $\operatorname{argmin}_{x \in C} f(x)$. In this paper, if $\operatorname{argmin}_{x \in C} f(x)$ is a singleton, then the unique elements p is denoted by $p=\operatorname{argmin}_{x \in C} f(x)$.

Let X be a set and C a nonempty subset of X. For $T: C \rightarrow X$, the set of all fixed points of T is denoted by $F(T)$.

Let X be a metric space. An asymptotic center of a sequence $\left\{x_{n}\right\} \subset X$ is defined by $\operatorname{argmin}_{x \in X}\left(\limsup _{n \rightarrow \infty} d\left(x, x_{n}\right)\right)$. If the asymptotic center of any subsequences of $\left\{x_{n}\right\}$ is just one point $x \in X$, then $\left\{x_{n}\right\}$ is said to Δ-converge to x, and we denote it by $x_{n} \stackrel{\Delta}{\Delta} x$. A mapping T from X into itself is said to be Δ-demiclosed if for any sequences $\left\{x_{n}\right\} \subset X$ with $x_{n} \stackrel{\Delta}{\Delta} x, \lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$ implies $x \in F(T)$.

Theorem 2.1 (Kirk and Panyanak [5]). Let X be a complete CAT(0) space, and $\left\{x_{n}\right\}$ a bounded sequence on X. Then there exists a Δ-convergent subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$.
Theorem 2.2 (He, Fang, Lopez and Li [3]). Let X be a complete CAT(0) space, and $\left\{x_{n}\right\}$ a sequence on X such that $x_{n} \Delta x \in X$. Then for any $u \in X$,

$$
d(u, x) \leq \liminf _{n \rightarrow \infty} d\left(u, x_{n}\right)
$$

Let X be a CAT (-1) space and T a mapping from X into itself with $F(T) \neq \varnothing$. Then T is said to be quasinonexpansive if an inequality $d(T x, z) \leq d(x, z)$ is satisfied for all $x \in X$ and $z \in F(T)$. We know that the set of all fixed points of quasinonexpansive mapping is closed and convex. Further, T is said to be strongly quasinonexpansive if it is quasinonexpansive and, for any sequence $\left\{x_{n}\right\} \subset X$ and $z \in F(T)$, $\lim _{n \rightarrow \infty}\left(\cosh d\left(x_{n}, z\right)-\cosh d\left(T x_{n}, z\right)\right)=0$ implies that $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$.

Let X be a complete CAT (-1) space and C a nonempty closed convex subset of X. Then there exists a unique point $p_{x} \in C$ such that $d\left(x, p_{x}\right)=\inf _{y \in C} d(x, y)$ for each $x \in X$. So we can define the metric projection P_{C} from X onto C by $P_{C} x=p_{x}$ for any $x \in X$.

Now, we introduce some properties of hyperbolic functions.
Lemma 2.3. For any $a \in]-1,1[$,

$$
\sinh \left(\tanh ^{-1} a\right)=\frac{a}{\sqrt{1-a^{2}}},
$$

where $\left.\tanh ^{-1}:\right]-1,1[\rightarrow \mathbb{R}$ is an inverse function of the hyperbolic tangent function.
Lemma 2.4. For any $a, b \in]-1,1[$,

$$
\tanh ^{-1} a-\tanh ^{-1} b=\tanh ^{-1} \frac{a-b}{1-a b} .
$$

The following is an important lemma that forms the basis of the proof of the main result.
Lemma 2.5 (Aoyama, Kimura and Kohsaka [1]; Saejung and Yotkaew [7]). Let $\left\{a_{n}\right\}$ be a sequence of non-negative real numbers and $\left\{t_{n}\right\}$ a sequence of real numbers. Let $\left\{\beta_{n}\right\}$ be a sequence in $] 0,1\left[\right.$ such that $\sum_{n=1}^{\infty} \beta_{n}=\infty$. Suppose that

$$
a_{n+1} \leq\left(1-\beta_{n}\right) a_{n}+\beta_{n} t_{n}
$$

for all $n \in \mathbb{N}$. If $\liminf _{i \rightarrow \infty}\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right) \geq 0$ implies $\limsup _{i \rightarrow \infty} t_{\varphi(i)} \leq 0$ for any $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ such that nondecreasing and $\lim _{i \rightarrow \infty} \varphi(i)=\infty$, then $a_{n} \rightarrow 0$.

3. Main result

In this section, we prove a Halpern type approximation theorem with multiple anchor points of strongly quasinonexpansive mappings. To prove the main result, we define a new convex combination and introduce some lemmas.

Lemma 3.1. Let $\left\{s_{n}\right\},\left\{t_{n}\right\},\left\{u_{n}\right\}$ be sequences of non-positive real numbers. Then $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} u_{n}=0$ whenever $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}+u_{n}\right)=0$.

Lemma 3.2. Let X be a CAT(-1) space. For $u_{1}, u_{2}, u_{3} \in X$ and $\beta_{1}, \beta_{2}, \beta_{3} \in[0,1]$ with $\beta_{1}+\beta_{2}+\beta_{3}=1$, define a function $g: X \rightarrow[1, \infty[$ by

$$
g(x)=\beta_{1} \cosh d\left(u_{1}, x\right)+\beta_{2} \cosh d\left(u_{2}, x\right)+\beta_{3} \cosh d\left(u_{3}, x\right)
$$

for all $x \in X$. Then for any $x, y \in X$,

$$
g\left(\frac{1}{2} x \oplus \frac{1}{2} y\right) \cosh \frac{d(x, y)}{2} \leq \frac{g(x)+g(y)}{2}
$$

Proof. Let x, y be elements of X. It is obvious if $x=y$. Otherwise, we have

$$
\begin{aligned}
g\left(\frac{1}{2} x \oplus \frac{1}{2} y\right) \sinh d(x, y) & =\sum_{i=1}^{3} \beta_{i} \cosh d\left(u_{i}, \frac{1}{2} x \oplus \frac{1}{2} y\right) \sinh d(x, y) \\
& \leq \sum_{i=1}^{3} \beta_{i}\left(\cosh d\left(u_{i}, x\right)+\cosh d\left(u_{i}, y\right)\right) \sinh \frac{d(x, y)}{2} \\
& =(g(x)+g(y)) \sinh \frac{d(x, y)}{2}
\end{aligned}
$$

Since $\sinh d(x, y)=2 \sinh \frac{d(x, y)}{2} \cosh \frac{d(x, y)}{2}$, we obtain the desired result.
Lemma 3.3. Let X be a complete $\mathrm{CAT}(-1)$ space and C a nonempty closed convex subset of X. For $u_{1}, u_{2}, u_{3} \in X$ and $\beta_{1}, \beta_{2}, \beta_{3} \in[0,1]$ with $\beta_{1}+\beta_{2}+\beta_{3}=1$, define a function $g: X \rightarrow[1, \infty[$ by

$$
g(x)=\beta_{1} \cosh d\left(u_{1}, x\right)+\beta_{2} \cosh d\left(u_{2}, x\right)+\beta_{3} \cosh d\left(u_{3}, x\right)
$$

for all $x \in X$. Then g has a unique minimizer on C.
Proof. Put $L=\inf _{x \in C} g(x)$ and take a sequence $\left\{z_{n}\right\} \subset C$ with $L \leq g\left(z_{n}\right) \leq L+1 / n$ for all $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} g\left(z_{n}\right)=L$.

We show that $\left\{z_{n}\right\}$ is a Cauchy sequence on C. Let $m, n \in \mathbb{N}$ with $m \geq n$. From Lemma 3.2, we get

$$
g\left(\frac{1}{2} z_{m} \oplus \frac{1}{2} z_{n}\right) \cosh \frac{d\left(z_{m}, z_{n}\right)}{2} \leq \frac{g\left(z_{m}\right)+g\left(z_{n}\right)}{2}
$$

Since $1 \leq L \leq g\left(\frac{1}{2} z_{m} \oplus \frac{1}{2} z_{n}\right)$, we have

$$
\cosh \frac{d\left(z_{m}, z_{n}\right)}{2} \leq \frac{g\left(z_{m}\right)+g\left(z_{n}\right)}{2 g\left(\frac{1}{2} z_{m} \oplus \frac{1}{2} z_{n}\right)} \leq \frac{g\left(z_{m}\right)+g\left(z_{n}\right)}{2 L} \leq \frac{L+1 / n}{L} \rightarrow 1 \quad(n \rightarrow \infty)
$$

Therefore $\left\{z_{n}\right\}$ is a Cauchy sequence on C. From completeness of X and closedness of C, there exists $z \in C$ such that $z_{n} \rightarrow z$ and hence $g(z)=L=\inf _{x \in C} g(x)$. So z is a minimizer of g on C.

Next, we prove its uniqueness. Let $z, z^{\prime} \in C$ satisfying $g(z)=g\left(z^{\prime}\right)=L$. From Lemma 3.2, we have

$$
L \cosh \frac{d\left(z, z^{\prime}\right)}{2} \leq g\left(\frac{1}{2} z \oplus \frac{1}{2} z^{\prime}\right) \cosh \frac{d\left(z, z^{\prime}\right)}{2} \leq \frac{g(z)+g\left(z^{\prime}\right)}{2}=L
$$

Since $L \geq 1$, we get $\cosh \frac{d\left(z, z^{\prime}\right)}{2} \leq 1$ and hence $z=z^{\prime}$. Therefore we get the conclusion.

Lemma 3.4. Let X be a uniquely geodesic space. Then for $u, v \in X$ with $u \neq v$ and $\beta \in[0,1]$,

$$
\sigma u \oplus(1-\sigma) v=\underset{x \in[u, v]}{\operatorname{argmin}}(\beta \cosh d(u, x)+(1-\beta) \cosh d(v, x))
$$

if and only if

$$
\sigma=\frac{1}{d(u, v)} \tanh ^{-1} \frac{\beta \sinh d(u, v)}{1-\beta+\beta \cosh d(u, v)}
$$

Proof. It is obvious if $\beta=0$ or $\beta=1$. For $u, v \in X$ with $u \neq v$ and $\beta \in] 0,1[$, put $d=d(u, v)$,

$$
\begin{aligned}
& A=\underset{x \in[u, v]}{\operatorname{argmin}}(\beta \cosh d(u, x)+(1-\beta) \cosh d(v, x)), \\
& B=\underset{0 \leq t \leq 1}{\operatorname{argmin}}(\beta \cosh ((1-t) d)+(1-\beta) \cosh t d), \text { and } \\
& C=\underset{0 \leq t \leq d}{\operatorname{argmin}}(\beta \cosh (d-t)+(1-\beta) \cosh t)
\end{aligned}
$$

Then sets A, B and C consist of one point, respectively. We also have

$$
\begin{aligned}
& A=\{t u \oplus(1-t) v \mid t \in B\} \text { and } \\
& B=\underset{0 \leq t \leq 1}{\operatorname{argmin}}(\beta \cosh (d-t d)+(1-\beta) \cosh t d)=\left\{\left.\frac{1}{d} t \right\rvert\, t \in C\right\}
\end{aligned}
$$

Define a function $f: \mathbb{R} \rightarrow] 1, \infty[$ by $f(t)=\beta \cosh (d-t)+(1-\beta) \cosh t$ for all $t \in \mathbb{R}$, then f is infinitely differentiable and $f^{\prime}(0)<0, f^{\prime}(d)>0$ and $f^{\prime \prime}(t)>0$ for all $t \in[0, d]$. So there exists a unique real number $t \in] 0, d\left[\right.$ such that $f^{\prime}(t)=0$, that is, there exists a unique minimizer $t \in] 0, d\left[\right.$ of f and it satisfies $f^{\prime}(t)=0$. Then we have $f^{\prime}(t)=0$ if and only if

$$
t=\tanh ^{-1} \frac{\beta \sinh d}{1-\beta+\beta \cosh d}
$$

Thus we get

$$
C=\left\{\tanh ^{-1} \frac{\beta \sinh d}{1-\beta+\beta \cosh d}\right\} \text { and } B=\left\{\frac{1}{d} \tanh ^{-1} \frac{\beta \sinh d}{1-\beta+\beta \cosh d}\right\}
$$

So putting

$$
\sigma=\frac{1}{d} \tanh ^{-1} \frac{\beta \sinh d}{1-\beta+\beta \cosh d}
$$

we get $A=\{\sigma u \oplus(1-\sigma) v\}$, that is,

$$
\sigma u \oplus(1-\sigma) v=\underset{x \in[u, v]}{\operatorname{argmin}}(\beta \cosh d(u, x)+(1-\beta) \cosh d(v, x))
$$

Lemma 3.5. Let X be a uniquely geodesic space. Then for $u, v \in X$ with $u \neq v$ and $\beta \in[0,1]$,

$$
\begin{aligned}
& \underset{x \in[u, v]}{\operatorname{argmin}}(\beta \cosh d(u, x)+(1-\beta) \cosh d(v, x)) \\
= & \underset{x \in X}{\operatorname{argmin}}(\beta \cosh d(u, x)+(1-\beta) \cosh d(v, x)) .
\end{aligned}
$$

Proof. Let $u, v \in X$ with $u \neq v$ and $\beta \in[0,1]$, and define a function $f: X \rightarrow \mathbb{R}$ by $f(x)=\beta \cosh d(u, x)+(1-\beta) \cosh d(v, x)$ for all $x \in X$. Put $z=\operatorname{argmin}_{x \in[u, v]} f(x)$ and let $w \in X$. Further, put

$$
t=\frac{d(v, w)}{(d(u, w)+d(v, w))} \text { and } z^{\prime}=t u \oplus(1-t) v \in[u, v] .
$$

Then we get $f(z) \leq f\left(z^{\prime}\right)$. Moreover, we obtain

$$
d(u, w)=(1-t)(d(u, w)+d(v, w)) \geq(1-t) d(u, v)=d\left(u, z^{\prime}\right)
$$

Similarly, we also have $d(v, w) \geq d\left(v, z^{\prime}\right)$. Therefore we get $f\left(z^{\prime}\right) \leq f(w)$ and hence

$$
f(z)=\min _{w \in X} f(w)
$$

Using Lemma 3.4 and Lemma 3.5, we define a new convex combination.
Definition 3.6. Let X be a uniquely geodesic space. For $u, v \in X$ and $\alpha \in[0,1]$, we define a (-1)-convex combination of u and v by

$$
\alpha u \stackrel{-1}{\oplus}(1-\alpha) v \stackrel{\text { def }}{=} \underset{x \in X}{\operatorname{argmin}}(\alpha \cosh d(u, x)+(1-\alpha) \cosh d(v, x)) .
$$

From Lemma 3.4 and Lemma 3.5, it can be expressed by $\alpha u \stackrel{-1}{\oplus}(1-\alpha) v=\sigma u \oplus(1-\sigma) v$, where

$$
\sigma=\frac{1}{d(u, v)} \tanh ^{-1} \frac{\alpha \sinh d(u, v)}{1-\alpha+\alpha \cosh d(u, v)}
$$

whenever $u \neq v$.
Lemma 3.7. For any $\alpha \in[0,1]$ and $d>0$,

$$
\frac{1}{d} \tanh ^{-1} \frac{\alpha \sinh d}{1-\alpha+\alpha \cosh d}+\frac{1}{d} \tanh ^{-1} \frac{(1-\alpha) \sinh d}{\alpha+(1-\alpha) \cosh d}=1 .
$$

Proof. It is obvious if $\alpha=0$ or $\alpha=1$. We consider the case where $\alpha \in] 0,1[$. Let $\alpha \in] 0,1[$ and $d>0$. From Lemma 2.4, we have

$$
\begin{aligned}
1-\frac{1}{d} \tanh ^{-1} \frac{\alpha \sinh d}{1-\alpha+\alpha \cosh d} & =\frac{1}{d}\left(\tanh ^{-1} \frac{\sinh d}{\cosh d}-\tanh ^{-1} \frac{\alpha \sinh d}{1-\alpha+\alpha \cosh d}\right) \\
& =\frac{1}{d} \tanh ^{-1} \frac{\frac{\sinh d}{\cosh d}-\frac{\alpha \sinh d}{1-\alpha+\alpha \cosh d}}{1-\frac{\sinh d}{\cosh d} \cdot \frac{\alpha \sinh d}{1-\alpha+\alpha \cosh d}} \\
& =\frac{1}{d} \tanh ^{-1} \frac{(1-\alpha) \sinh d}{\alpha+(1-\alpha) \cosh d} .
\end{aligned}
$$

So we get the desired result.

Lemma 3.8. Let X be a $\operatorname{CAT}(-1)$ space and $x, y, z \in X, \alpha \in[0,1]$. Then

$$
\cosh d\left(\alpha x \stackrel{-1}{\oplus}^{-1}(1-\alpha) y, z\right) \leq \frac{\alpha \cosh d(x, z)+(1-\alpha) \cosh d(y, z)}{\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(x, y)+(1-\alpha)^{2}}}
$$

Proof. Let $x, y, z \in X$ and $\alpha \in[0,1]$. It is obvious if $x=y$. Suppose that $x \neq y$ and put

$$
\sigma=\frac{1}{d(x, y)} \tanh ^{-1} \frac{\alpha \sinh d(x, y)}{1-\alpha+\alpha \cosh d(x, y)}
$$

From Lemma 3.4, Lemma 3.7 and Lemma 2.3, we have

$$
\begin{aligned}
& \cosh d(\alpha x \oplus(1-\alpha) y, z) \sinh d(x, y) \\
= & \cosh d(\sigma x \oplus(1-\sigma) y, z) \sinh d(x, y) \\
\leq & \cosh d(x, z) \sinh (\sigma d(x, y))+\cosh d(y, z) \sinh ((1-\sigma) d(x, y)) \\
= & \cosh d(x, z) \sinh \left(\tanh ^{-1} \frac{\alpha \sinh d(x, y)}{1-\alpha+\alpha \cosh d(x, y)}\right) \\
& +\cosh d(y, z) \sinh \left(\tanh ^{-1} \frac{(1-\alpha) \sinh d(x, y)}{\alpha+(1-\alpha) \cosh d(x, y)}\right) \\
= & \cosh d(x, z) \cdot \frac{\alpha \sinh d(x, y)}{\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(x, y)+(1-\alpha)^{2}}} \\
& +\cosh d(y, z) \cdot \frac{(1-\alpha) \sinh d(x, y)}{\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(x, y)+(1-\alpha)^{2}}} \\
= & \frac{\alpha \cosh d(x, z)+(1-\alpha) \cosh d(y, z)}{\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(x, y)+(1-\alpha)^{2}} \cdot \sinh d(x, y)}
\end{aligned}
$$

and hence

$$
\cosh d\left(\alpha x{ }_{\oplus}^{-1}(1-\alpha) y, z\right) \leq \frac{\alpha \cosh d(x, z)+(1-\alpha) \cosh d(y, z)}{\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(x, y)+(1-\alpha)^{2}}}
$$

Thus we get the desired result.
Corollary 3.9. Let X be a CAT(-1) space and $x, y, z \in X, \alpha \in[0,1]$. Then

$$
\cosh d(\alpha x \stackrel{-1}{\oplus}(1-\alpha) y, z) \leq \alpha \cosh d(x, z)+(1-\alpha) \cosh d(y, z)
$$

Proof. Since $\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(x, y)+(1-\alpha)^{2}} \geq 1$, Lemma 3.8 implies the conclusion.

Lemma 3.10. Let X be a $\operatorname{CAT}(-1)$ space. Then for $u, y, z \in X$ and $\alpha \in] 0,1[$,

$$
\begin{aligned}
& \cosh d(\alpha u \stackrel{-1}{\oplus}(1-\alpha) y, z)-1 \leq(1-\beta)(\cosh d(y, z)-1) \\
+ & \beta\left(\frac{\left(1-\alpha+\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(u, y)+(1-\alpha)^{2}}\right) \cosh d(u, z)}{\alpha+2(1-\alpha) \cosh d(u, y)}-1\right)
\end{aligned}
$$

where

$$
\beta=1-\frac{1-\alpha}{\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(u, y)+(1-\alpha)^{2}}} .
$$

Proof. It is obvious if $u=y$. Otherwise, from Lemma 3.8, we have

$$
\begin{aligned}
& \cosh d(\alpha u \stackrel{-1}{\oplus}(1-\alpha) y, z)-1 \\
\leq & \frac{\alpha \cosh d(u, z)}{\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(u, y)+(1-\alpha)^{2}}}+(1-\beta) \cosh d(y, z)-1 \\
= & (1-\beta)(\cosh d(y, z)-1)+\beta\left(\frac{\alpha \cosh d(u, z)}{\beta \sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(u, y)+(1-\alpha)^{2}}}-1\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \frac{\alpha \cosh d(u, z)}{\beta \sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(u, y)+(1-\alpha)^{2}}} \\
= & \frac{\alpha \cosh d(u, z)}{\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(u, y)+(1-\alpha)^{2}}-(1-\alpha)} \\
= & \frac{\left(1-\alpha+\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cosh d(u, y)+(1-\alpha)^{2}}\right) \cosh d(u, z)}{\alpha+2(1-\alpha) \cosh d(u, y)}
\end{aligned}
$$

we get the conclusion.
Lemma 3.11. Let $\left\{\alpha_{n}\right\}$ be a sequence on $] 0,1[$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0
$$

and $\left\{s_{n}\right\},\left\{t_{n}\right\}$ sequences on $[0, \infty[$ such that

$$
\lim _{n \rightarrow \infty} s_{n}=d_{1} \in\left[0, \infty\left[, \lim _{n \rightarrow \infty} t_{n}=d_{2} \in[0, \infty[.\right.\right.
$$

Define sequences $\left.\left\{\sigma_{n}\right\},\left\{\tau_{n}\right\} \subset\right] 0,1[$ by

$$
\begin{aligned}
\sigma_{n} & =1-\frac{1-\alpha_{n}}{\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh s_{n}+\left(1-\alpha_{n}\right)^{2}}} \\
\tau_{n} & =1-\frac{1-\alpha_{n}}{\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh t_{n}+\left(1-\alpha_{n}\right)^{2}}}
\end{aligned}
$$

for all $n \in \mathbb{N}$, respectively. Then

$$
\lim _{n \rightarrow \infty} \frac{\tau_{n}}{\sigma_{n}}=\frac{\cosh d_{2}}{\cosh d_{1}}
$$

Proof. Put

$$
\begin{aligned}
& p_{n}=\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh s_{n}+\left(1-\alpha_{n}\right)^{2}}, \\
& q_{n}=\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh t_{n}+\left(1-\alpha_{n}\right)^{2}}
\end{aligned}
$$

for all $n \in \mathbb{N}$. Then we have

$$
\frac{\tau_{n}}{\sigma_{n}}=\frac{1-\frac{1-\alpha_{n}}{\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh t_{n}+\left(1-\alpha_{n}\right)^{2}}}}{1-\frac{1-\alpha_{n}}{\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh s_{n}+\left(1-\alpha_{n}\right)^{2}}}}=\frac{\frac{\alpha_{n}+2\left(1-\alpha_{n}\right) \cosh t_{n}}{q_{n}\left(q_{n}+1-\alpha_{n}\right)}}{\frac{\alpha_{n}+2\left(1-\alpha_{n}\right) \cosh s_{n}}{p_{n}\left(p_{n}+1-\alpha_{n}\right)}} .
$$

Since $\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} q_{n}=1$, we get the conclusion.

Now, we show the main result.
Theorem 3.12. Let X be a complete CAT(-1) space and R, S, T strongly quasinonexpansive and Δ-demiclosed mappings from X into itself with

$$
F=F(R) \cap F(S) \cap F(T) \neq \varnothing
$$

Let $\left.\left\{\alpha_{n}\right\} \subset\right] 0,1[$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0 \text { and } \sum_{n=1}^{\infty} \alpha_{n}=\infty
$$

and $\left.\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\} \subset\right] 0,1[$ such that

$$
\left.\lim _{n \rightarrow \infty} \beta_{n}=\beta \in\right] 0,1\left[, \lim _{n \rightarrow \infty} \gamma_{n}=\gamma \in\right] 0,1[
$$

Let $u, v, w, x_{1} \in X$ and define a iterative sequence $\left\{x_{n}\right\} \subset X$ by

$$
\left\{\begin{array}{l}
r_{n}=\alpha_{n} u \stackrel{-1}{\oplus}\left(1-\alpha_{n}\right) R x_{n} \\
s_{n}=\alpha_{n} v \stackrel{-1}{\oplus}\left(1-\alpha_{n}\right) S x_{n} \\
t_{n}=\alpha_{n} w \stackrel{-1}{\oplus}\left(1-\alpha_{n}\right) T x_{n} \\
x_{n+1}=\beta_{n} r_{n}-1 \oplus\left(1-\beta_{n}\right)\left(\gamma_{n} s_{n}{ }_{\oplus}^{-1}\left(1-\gamma_{n}\right) t_{n}\right)
\end{array}\right.
$$

for all $n \in \mathbb{N}$. Then the sequence $\left\{x_{n}\right\}$ converges to a point $p \in F$, which is a minimizer of the function $g(x)=\beta \cosh d(u, x)+(1-\beta)(\gamma \cosh d(v, x)+(1-\gamma) \cosh d(w, x))$ on F.

Proof. Since F is a closed convex subset of X and from Lemma 3.3, the existence and uniqueness of the elements of the set

$$
\underset{x \in F}{\operatorname{argmin}}(\beta \cosh d(u, x)+(1-\beta)(\gamma \cosh d(v, x)+(1-\gamma) \cosh d(w, x)))
$$

are guaranteed.
Let

$$
p=\underset{x \in F}{\operatorname{argmin}}(\beta \cosh d(u, x)+(1-\beta)(\gamma \cosh d(v, x)+(1-\gamma) \cosh d(w, x)))
$$

and put

$$
\begin{aligned}
& a_{n}=\cosh d\left(x_{n}, p\right)-1, \\
& b_{n}^{R}=\frac{\left(1-\alpha_{n}+\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh d\left(u, R x_{n}\right)+\left(1-\alpha_{n}\right)^{2}}\right) \cosh d(u, p)}{\alpha_{n}+2\left(1-\alpha_{n}\right) \cosh d\left(u, R x_{n}\right)}-1, \\
& b_{n}^{S}=\frac{\left(1-\alpha_{n}+\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh d\left(v, S x_{n}\right)+\left(1-\alpha_{n}\right)^{2}}\right) \cosh d(v, p)}{\alpha_{n}+2\left(1-\alpha_{n}\right) \cosh d\left(v, S x_{n}\right)}-1, \\
& b_{n}^{T}=\frac{\left(1-\alpha_{n}+\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh d\left(w, T x_{n}\right)+\left(1-\alpha_{n}\right)^{2}}\right) \cosh d(w, p)}{\alpha_{n}+2\left(1-\alpha_{n}\right) \cosh d\left(w, T x_{n}\right)}-1, \\
& \gamma_{n}^{R}=1-\frac{1-\alpha_{n}}{\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh d\left(u, R x_{n}\right)+\left(1-\alpha_{n}\right)^{2}}}, \\
& \gamma_{n}^{S}=1-\frac{1-\alpha_{n}}{\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh d\left(v, S x_{n}\right)+\left(1-\alpha_{n}\right)^{2}}}, \\
& \gamma_{n}^{T}=1-\frac{1-\alpha_{n}}{\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh d\left(w, T x_{n}\right)+\left(1-\alpha_{n}\right)^{2}}}
\end{aligned}
$$

for all $n \in \mathbb{N}$. Moreover, put

$$
\beta_{n}^{R}=\beta_{n}, \beta_{n}^{S}=\left(1-\beta_{n}\right) \gamma_{n}, \beta_{n}^{T}=\left(1-\beta_{n}\right)\left(1-\gamma_{n}\right)
$$

for all $n \in \mathbb{N}$ and put

$$
\beta^{R}=\beta, \beta^{S}=(1-\beta) \gamma, \beta^{T}=(1-\beta)(1-\gamma) .
$$

Then $\left\{\gamma_{n}^{R}\right\},\left\{\gamma_{n}^{S}\right\}$ and $\left\{\gamma_{n}^{T}\right\}$ are sequences on $] 0,1[$. From Lemmas 3.8 and 3.10, we have

$$
\begin{aligned}
a_{n+1} \leq & \beta_{n} \cosh d\left(r_{n}, p\right)+\left(1-\beta_{n}\right) \cosh d\left(\gamma_{n} s_{n} \oplus\left(1-\gamma_{n}\right) t_{n}, p\right)-1 \\
\leq & \beta_{n}^{R} \cosh d\left(r_{n}, p\right)+\beta_{n}^{S} \cosh d\left(s_{n}, p\right)+\beta_{n}^{T} \cosh d\left(t_{n}, p\right)-1 \\
= & \beta_{n}^{R}\left(\cosh d\left(r_{n}, p\right)-1\right)+\beta_{n}^{S}\left(\cosh d\left(s_{n}, p\right)-1\right)+\beta_{n}^{T}\left(\cosh d\left(t_{n}, p\right)-1\right) \\
\leq & \beta_{n}^{R}\left(\left(1-\gamma_{n}^{R}\right)\left(\cosh d\left(R x_{n}, p\right)-1\right)+\gamma_{n}^{R} b_{n}^{R}\right) \\
& +\beta_{n}^{S}\left(\left(1-\gamma_{n}^{S}\right)\left(\cosh d\left(S x_{n}, p\right)-1\right)+\gamma_{n}^{S} b_{n}^{S}\right) \\
& +\beta_{n}^{T}\left(\left(1-\gamma_{n}^{T}\right)\left(\cosh d\left(T x_{n}, p\right)-1\right)+\gamma_{n}^{T} b_{n}^{T}\right) \\
\leq \leq & \left(\beta_{n}^{R}\left(1-\gamma_{n}^{R}\right)+\beta_{n}^{S}\left(1-\gamma_{n}^{S}\right)+\beta_{n}^{T}\left(1-\gamma_{n}^{T}\right)\right) a_{n}+\beta_{n}^{R} \gamma_{n}^{R} b_{n}^{R}+\beta_{n}^{S} \gamma_{n}^{S} b_{n}^{S}+\beta_{n}^{T} \gamma_{n}^{T} b_{n}^{T} \\
= & \left(1-\left(\beta_{n}^{R} \gamma_{n}^{R}+\beta_{n}^{S} \gamma_{n}^{S}+\beta_{n}^{T} \gamma_{n}^{T}\right)\right) a_{n} \\
& +\left(\beta_{n}^{R} \gamma_{n}^{R}+\beta_{n}^{S} \gamma_{n}^{S}+\beta_{n}^{T} \gamma_{n}^{T}\right) \cdot \frac{\beta_{n}^{R} \gamma_{n}^{R} b_{n}^{R}+\beta_{n}^{S} \gamma_{n}^{S} b_{n}^{S}+\beta_{n}^{T} \gamma_{n}^{T} b_{n}^{T}}{\beta_{n}^{R} \gamma_{n}^{R}+\beta_{n}^{S} \gamma_{n}^{S}+\beta_{n}^{T} \gamma_{n}^{T}}
\end{aligned}
$$

for all $n \in \mathbb{N}$.
Now we show that the following conditions hold:
(i) $\sum_{n=1}^{\infty}\left(\beta_{n}^{R} \gamma_{n}^{R}+\beta_{n}^{S} \gamma_{n}^{S}+\beta_{n}^{T} \gamma_{n}^{T}\right)=\infty$,
(ii) for any $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ satisfying that φ is nondecreasing and

$$
\lim _{i \rightarrow \infty} \varphi(i)=\infty, \liminf _{i \rightarrow \infty}\left(a_{\varphi(i)+1}-a_{\varphi(i)}\right) \geq 0
$$

implies

$$
\limsup _{i \rightarrow \infty} \frac{\beta_{\varphi(i)}^{R} \gamma_{\varphi(i)}^{R} b_{\varphi(i)}^{R}+\beta_{\varphi(i)}^{S} \gamma_{\varphi(i)}^{S} b_{\varphi(i)}^{S}+\beta_{\varphi(i)}^{T} \gamma_{\varphi(i)}^{T} b_{\varphi(i)}^{T}}{\beta_{\varphi(i)}^{R} \gamma_{\varphi(i)}^{R}+\beta_{\varphi(i)}^{S} \gamma_{\varphi(i)}^{S}+\beta_{\varphi(i)}^{T} \gamma_{\varphi(i)}^{T}} \leq 0
$$

First, we show (i). Since

$$
\sqrt{\alpha_{n}^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right) \cosh d\left(u, R x_{n}\right)+\left(1-\alpha_{n}\right)^{2}} \geq 1
$$

we have $\gamma_{n}^{R} \geq \alpha_{n}$. Similarly, we also obtain $\gamma_{n}^{S} \geq \alpha_{n}$ and $\gamma_{n}^{T} \geq \alpha_{n}$. So we get

$$
\sum_{n=1}^{\infty}\left(\beta_{n}^{R} \gamma_{n}^{R}+\beta_{n}^{S} \gamma_{n}^{S}+\beta_{n}^{T} \gamma_{n}^{T}\right) \geq \sum_{n=1}^{\infty}\left(\beta_{n}^{R} \alpha_{n}+\beta_{n}^{S} \alpha_{n}+\beta_{n}^{T} \alpha_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n}=\infty
$$

Next, we consider (ii). We show boundedness of $\left\{x_{n}\right\}$. By Corollary 3.9, we obtain

$$
\begin{aligned}
\cosh d\left(x_{n+1}, p\right) \leq & \beta_{n}^{R} \cosh d\left(r_{n}, p\right)+\beta_{n}^{S} \cosh d\left(s_{n}, p\right)+\beta_{n}^{T} \cosh d\left(t_{n}, p\right) \\
\leq & \beta_{n}^{R}\left(\alpha_{n} \cosh d(u, p)+\left(1-\alpha_{n}\right) \cosh d\left(R x_{n}, p\right)\right) \\
& +\beta_{n}^{S}\left(\alpha_{n} \cosh d(v, p)+\left(1-\alpha_{n}\right) \cosh d\left(S x_{n}, p\right)\right) \\
& +\beta_{n}^{T}\left(\alpha_{n} \cosh d(w, p)+\left(1-\alpha_{n}\right) \cosh d\left(T x_{n}, p\right)\right) \\
\leq & \beta_{n}^{R} \alpha_{n} \cosh d(u, p)+\beta_{n}^{S} \alpha_{n} \cosh d(v, p)+\beta_{n}^{T} \alpha_{n} \cosh d(w, p) \\
& +\left(\beta_{n}^{R}\left(1-\alpha_{n}\right)+\beta_{n}^{S}\left(1-\alpha_{n}\right)+\beta_{n}^{T}\left(1-\alpha_{n}\right)\right) \cosh d\left(x_{n}, p\right) \\
\leq & \max \left\{\cosh d(u, p), \cosh d(v, p), \cosh d(w, p), \cosh d\left(x_{n}, p\right)\right\}
\end{aligned}
$$

for all $n \in \mathbb{N}$. So we have

$$
d\left(x_{n}, p\right) \leq \max \left\{d(u, p), d(v, p), d(w, p), d\left(x_{1}, p\right)\right\}
$$

for all $n \in \mathbb{N}$ and hence $\left\{x_{n}\right\}$ is bounded.
Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ be a nondecreasing function with

$$
\lim _{i \rightarrow \infty} \varphi(i)=\infty
$$

and put $n_{i}=\varphi(i)$ for all $i \in \mathbb{N}$. Assume that

$$
\liminf _{i \rightarrow \infty}\left(a_{n_{i}+1}-a_{n_{i}}\right) \geq 0
$$

then we get

$$
\begin{aligned}
0 \leq & \liminf _{i \rightarrow \infty}\left(a_{n_{i}+1}-a_{n_{i}}\right) \\
= & \liminf _{i \rightarrow \infty}\left(\cosh d\left(x_{n_{i}+1}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right) \\
\leq & \liminf _{i \rightarrow \infty}\left(\beta_{n_{i}}^{R} \cosh d\left(r_{n_{i}}, p\right)+\beta_{n_{i}}^{S} \cosh d\left(s_{n_{i}}, p\right)+\beta_{n_{i}}^{T} \cosh d\left(t_{n_{i}}, p\right)\right. \\
& \left.-\cosh d\left(x_{n_{i}}, p\right)\right) \\
\leq & \liminf _{i \rightarrow \infty}\left(\beta_{n_{i}}^{R}\left(\alpha_{n_{i}} \cosh d(u, p)+\left(1-\alpha_{n_{i}}\right) \cosh d\left(R x_{n_{i}}, p\right)\right)\right. \\
& +\beta_{n_{i}}^{S}\left(\alpha_{n_{i}} \cosh d(v, p)+\left(1-\alpha_{n_{i}}\right) \cosh d\left(S x_{n_{i}}, p\right)\right) \\
& \left.+\beta_{n_{i}}^{T}\left(\alpha_{n_{i}} \cosh d(w, p)+\left(1-\alpha_{n_{i}}\right) \cosh d\left(T x_{n_{i}}, p\right)\right)-\cosh d\left(x_{n_{i}}, p\right)\right) \\
= & \liminf _{i \rightarrow \infty}\left(\beta^{R}\left(\cosh d\left(R x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right)\right. \\
& +\beta^{S}\left(\cosh d\left(S x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right) \\
& \left.+\beta^{T}\left(\cosh d\left(T x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right)\right) \\
\leq & \limsup _{i \rightarrow \infty}\left(\beta^{R}\left(\cosh d\left(R x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right)\right. \\
& +\beta^{S}\left(\cosh d\left(S x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right) \\
& \left.+\beta^{T}\left(\cosh d\left(T x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right)\right) \\
\leq & 0 .
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
\lim _{i \rightarrow \infty}\left(\beta^{R}\left(\cosh d\left(R x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right)\right. & +\beta^{S}\left(\cosh d\left(S x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right) \\
& \left.+\beta^{T}\left(\cosh d\left(T x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right)\right)=0
\end{aligned}
$$

From Lemma 3.1, we have

$$
\begin{aligned}
& \lim _{i \rightarrow \infty}\left(\cosh d\left(R x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right)=0 \\
& \lim _{i \rightarrow \infty}\left(\cosh d\left(S x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right)=0 \\
& \lim _{i \rightarrow \infty}\left(\cosh d\left(T x_{n_{i}}, p\right)-\cosh d\left(x_{n_{i}}, p\right)\right)=0
\end{aligned}
$$

Since R, S, T are strongly quasinonexpansive, we obtain

$$
\begin{equation*}
\lim _{i \rightarrow \infty} d\left(x_{n_{i}}, R x_{n_{i}}\right)=\lim _{i \rightarrow \infty} d\left(x_{n_{i}}, S x_{n_{i}}\right)=\lim _{i \rightarrow \infty} d\left(x_{n_{i}}, T x_{n_{i}}\right)=0 \tag{1}
\end{equation*}
$$

Take a subsequence $\left\{x_{n_{i_{j}}}\right\}$ of $\left\{x_{n_{i}}\right\}$ satisfying

$$
\begin{aligned}
& \limsup _{i \rightarrow \infty} \frac{\beta_{n_{i}}^{R} \gamma_{n_{i}}^{R} b_{n_{i}}^{R}+\beta_{n_{i}}^{S} \gamma_{n_{i}}^{S} b_{n_{i}}^{S}+\beta_{n_{i}}^{T} \gamma_{n_{i}}^{T} b_{n_{i}}^{T}}{\beta_{n_{i}}^{R} \gamma_{n_{i}}^{R}+\beta_{n_{i}}^{S} \gamma_{n_{i}}^{S}+\beta_{n_{i}}^{T} \gamma_{n_{i}}^{T}} \\
&=\lim _{j \rightarrow \infty} \frac{\beta_{n_{i_{j}}}^{R} \gamma_{n_{i_{j}}}^{R} b_{n_{i_{j}}}^{R}+\beta_{n_{i_{j}}}^{S} \gamma_{n_{i_{j}}}^{S} b_{n_{i_{j}}}^{S}+\beta_{n_{i_{j}}}^{T} \gamma_{n_{i_{j}}}^{T} b_{n_{i_{j}}}^{T}}{\beta_{n_{i_{j}}}^{R} \gamma_{n_{i_{j}}}^{R}+\beta_{n_{i_{j}}}^{S} \gamma_{n_{i_{j}}}^{S}+\beta_{n_{i_{i}}}^{T} \gamma_{n_{i_{j}}}^{T}} .
\end{aligned}
$$

Moreover, take a subsequence $\left\{z_{r}\right\}$ of $\left\{x_{n_{i_{j}}}\right\}$ with

$$
\liminf _{j \rightarrow \infty} d\left(u, x_{n_{i_{j}}}\right)=\lim _{r \rightarrow \infty} d\left(u, z_{r}\right)
$$

and a subsequence $\left\{z_{r_{s}}\right\}$ of $\left\{z_{r}\right\}$ satisfying

$$
\liminf _{r \rightarrow \infty} d\left(v, z_{r}\right)=\lim _{s \rightarrow \infty} d\left(v, z_{r_{s}}\right)
$$

Furthermore, take a subsequence $\left\{z_{r_{s_{t}}}\right\}$ of $\left\{z_{r_{s}}\right\}$ such that

$$
\liminf _{s \rightarrow \infty} d\left(w, z_{r_{s}}\right)=\lim _{t \rightarrow \infty} d\left(w, z_{r_{s_{t}}}\right)
$$

and a subsequence $\left\{v_{k}\right\}$ of $\left\{z_{r_{s_{t}}}\right\}$ which satisfies $v_{k} \Delta \Delta z \in X$. Then from the formula (1), we have

$$
\lim _{k \rightarrow \infty} d\left(v_{k}, R v_{k}\right)=\lim _{k \rightarrow \infty} d\left(v_{k}, S v_{k}\right)=\lim _{k \rightarrow \infty} d\left(v_{k}, T v_{k}\right)=0
$$

and hence $z \in F$. Further, since

$$
\begin{aligned}
\lim _{k \rightarrow \infty} d\left(u, v_{k}\right)=\liminf _{j \rightarrow \infty} d\left(u, x_{n_{i_{j}}}\right) & \leq \liminf _{j \rightarrow \infty}\left(d\left(u, R x_{n_{i_{j}}}\right)+d\left(R x_{n_{i_{j}}}, x_{n_{i_{j}}}\right)\right) \\
& =\liminf _{j \rightarrow \infty} d\left(u, R x_{n_{i_{j}}}\right) \\
& \leq \liminf _{k \rightarrow \infty} d\left(u, R v_{k}\right) \\
& \leq \limsup _{k \rightarrow \infty} d\left(u, R v_{k}\right) \\
& \leq \limsup _{k \rightarrow \infty}\left(d\left(u, v_{k}\right)+d\left(v_{k}, R v_{k}\right)\right) \\
& =\lim _{k \rightarrow \infty} d\left(u, v_{k}\right)
\end{aligned}
$$

we get

$$
\lim _{k \rightarrow \infty} d\left(u, v_{k}\right)=\lim _{k \rightarrow \infty} d\left(u, R v_{k}\right)
$$

Similarly, we also obtain

$$
\lim _{k \rightarrow \infty} d\left(v, v_{k}\right)=\lim _{k \rightarrow \infty} d\left(v, S v_{k}\right) \text { and } \lim _{k \rightarrow \infty} d\left(w, v_{k}\right)=\lim _{k \rightarrow \infty} d\left(w, T v_{k}\right)
$$

By Theorem 2.2, we have the following formulas:

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} d\left(u, R v_{k}\right)=\lim _{k \rightarrow \infty} d\left(u, v_{k}\right) \geq d(u, z) \\
& \lim _{k \rightarrow \infty} d\left(v, S v_{k}\right)=\lim _{k \rightarrow \infty} d\left(v, v_{k}\right) \geq d(v, z) \\
& \lim _{k \rightarrow \infty} d\left(w, T v_{k}\right)=\lim _{k \rightarrow \infty} d\left(w, v_{k}\right) \geq d(w, z)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left(\beta^{R} \cosh d\left(u, R v_{k}\right)+\beta^{S} \cosh d\left(v, S v_{k}\right)+\beta^{T} \cosh d\left(w, T v_{k}\right)\right) \\
\geq & \beta^{R} \cosh d(u, z)+\beta^{S} \cosh d(v, z)+\beta^{T} \cosh d(w, z) \\
\geq & \beta^{R} \cosh d(u, p)+\beta^{S} \cosh d(v, p)+\beta^{T} \cosh d(w, p)
\end{aligned}
$$

Let

$$
d_{1}=\lim _{k \rightarrow \infty} d\left(u, R v_{k}\right), d_{2}=\lim _{k \rightarrow \infty} d\left(v, S v_{k}\right), d_{3}=\lim _{k \rightarrow \infty} d\left(w, T v_{k}\right)
$$

and put $m_{k}=n_{i_{r_{s_{t_{k}}}}}$ for all $k \in \mathbb{N}$. Then from Lemma 3.11, we obtain

$$
\lim _{k \rightarrow \infty} \frac{\gamma_{m_{k}}^{S}}{\gamma_{m_{k}}^{R}}=\frac{\cosh d_{2}}{\cosh d_{1}}, \quad \lim _{k \rightarrow \infty} \frac{\gamma_{m_{k}}^{T}}{\gamma_{m_{k}}^{R}}=\frac{\cosh d_{3}}{\cosh d_{1}}
$$

Put

$$
\begin{aligned}
\mu^{R} & =\frac{\beta^{R} \cosh d_{1}}{\beta^{R} \cosh d_{1}+\beta^{S} \cosh d_{2}+\beta^{T} \cosh d_{3}} \\
\mu^{S} & =\frac{\beta^{S} \cosh d_{2}}{\beta^{R} \cosh d_{1}+\beta^{S} \cosh d_{2}+\beta^{T} \cosh d_{3}} \\
\mu^{T} & =\frac{\beta^{T} \cosh d_{3}}{\beta^{R} \cosh d_{1}+\beta^{S} \cosh d_{2}+\beta^{T} \cosh d_{3}}
\end{aligned}
$$

Then we get

$$
\begin{aligned}
& \limsup _{i \rightarrow \infty} \frac{\beta_{n_{i}}^{R} \gamma_{n_{i}}^{R} b_{n_{i}}^{R}+\beta_{n_{i}}^{S} \gamma_{n_{i}}^{S} b_{n_{i}}^{S}+\beta_{n_{i}}^{T} \gamma_{n_{i}}^{T} b_{n_{i}}^{T}}{\beta_{n_{i}}^{R} \gamma_{n_{i}}^{R}+\beta_{n_{i}}^{S} \gamma_{n_{i}}^{S}+\beta_{n_{i}}^{T} \gamma_{n_{i}}^{T}} \\
= & \lim _{k \rightarrow \infty} \frac{\beta_{m_{k}}^{R} \gamma_{m_{k}}^{R} b_{m_{k}}^{R}+\beta_{m_{k}}^{S} \gamma_{m_{k}}^{S} b_{m_{k}}^{S}+\beta_{m_{k}}^{T} \gamma_{m_{k}}^{T} b_{m_{k}}^{T}}{\beta_{m_{k}}^{R} \gamma_{m_{k}}^{R}+\beta_{m_{k}}^{S} \gamma_{m_{k}}^{S}+\beta_{m_{k}}^{T} \gamma_{m_{k}}^{T}} \\
= & \lim _{k \rightarrow \infty} \frac{\beta^{R} b_{m_{k}}^{R}+\beta^{S} \cdot \frac{\cosh d_{2}}{\cosh d_{1}} \cdot b_{m_{k}}^{S}+\beta^{T} \cdot \frac{\cosh d_{3}}{\cosh d_{1}} \cdot b_{m_{k}}^{T}}{\beta^{R}+\beta^{S} \cdot \frac{\cosh d_{2}}{\cosh d_{1}}+\beta^{T} \cdot \frac{\cosh d_{3}}{\cosh d_{1}}} \\
= & \lim _{k \rightarrow \infty}\left(\mu^{R} b_{m_{k}}^{R}+\mu^{S} b_{m_{k}}^{S}+\mu^{T} b_{m_{k}}^{T}\right) \\
= & \lim _{k \rightarrow \infty}\left(\mu^{R}\left(\frac{\cosh d(u, p)}{\cosh d\left(u, R v_{k}\right)}-1\right)+\mu^{S}\left(\frac{\cosh d(v, p)}{\cosh d\left(v, S v_{k}\right)}-1\right)\right. \\
& \left.+\mu^{T}\left(\frac{\cosh d(w, p)}{\cosh d\left(w, T v_{k}\right)}-1\right)\right) \\
= & \lim _{k \rightarrow \infty}\left(\mu^{R} \cdot \frac{\cosh d(u, p)-\cosh d\left(u, R v_{k}\right)}{\cosh d_{1}}+\mu^{S} \cdot \frac{\cosh d(v, p)-\cosh d\left(v, S v_{k}\right)}{\cosh d_{3}}\right. \\
& \left.+\mu^{T} \cdot \frac{\cosh d(w, p)-\cosh d\left(w, T v_{k}\right)}{\beta^{R} \cosh d_{1}+\beta^{S} \cosh d_{2}+\beta^{T} \cosh d_{3}}\right) \leq 0 . \\
= & \lim _{k \rightarrow \infty}\left(\frac{\beta^{R} \cosh d(u, p)+\beta^{S} \cosh d(v, p)+\beta^{T} \cosh d(w, p)}{\beta^{R} \cosh d_{1}+\beta^{S} \cosh d_{2}+\beta^{T} \cosh d_{3}}\right. \\
& \left.-\frac{\beta^{R} \cosh d\left(u, R v_{k}\right)+\beta^{S} \cosh d\left(v, S v_{k}\right)+\beta^{T} \cosh d\left(w, T v_{k}\right)}{\beta^{R}}\right) \leq 0 .
\end{aligned}
$$

Thus we have (ii). Hence, using Lemma 2.5, we obtain the desired result.

References

[1] K. Aoyama, Y. Kimura, F. Kohsaka, Strong convergence theorems for strongly relatively nonexpansive sequences and applications, J. Nonlinear Anal. Optim., Theory and Applications, 3(2012), 67-77.
[2] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73(1967), 957-961.
[3] J.S. He, D.H. Fang, G. Lopez, C. Li, Mann's algorithm for nonexpansive mappings in CAT(к) spaces, Nonlinear Anal., 75(2012), 445-452.
[4] Y. Kimura, H. Wada, Halpern type iteration with multiple anchor points in a Hadamard space, J. Inequal. Appl., $2015(2015), 11$ pages.
[5] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68(2008), no. 12, 3689-3696.
[6] S. Saejung, Halpern's iteration in CAT(0) spaces, Fixed Point Theory Appl., 2010(2010), 13 pages.
[7] S. Saejung, P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75(2012), 742-750.
[8] N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125(1997), 3641-3645.
[9] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel), 58(1992), 486-491.

Received: September 15, 2019; Accepted: November 23, 2019.

