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and Lipschitz continuous mappings and system of unrelated hierarchical fixed point problems for
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1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and induced norm ‖ · ‖.

For each i = 1, 2, ...., N , let K,Ki be nonempty, closed and convex sets and
N⋂
i=1

Ki 6= ∅.

Recall that a mapping T : K → K is nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖, ∀x, y ∈ K.
We denote the fixed point set of T by Fix(T ) := {x ∈ T : Tx = x}. It is well known
that Fix(T ) is closed and convex.
We consider the following new class of hierarchical fixed point problems called the
system of unrelated hierarchical fixed point problems (in short, SUHFPP) for non-

expansive mappings {Ti : Ki → Ki}Ni=1 such that
N⋂
i=1

Fix(Ti) 6= ∅ with respect to
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another nonexpansive mappings {Si : Ki → Ki}Ni=1: Find x ∈
N⋂
i=1

Fix(Ti) such that

〈x− Six, x− yi〉 ≤ 0, ∀yi ∈ Fix(Ti). (1.1)

The solution set of SUHFPP(1.1) is denoted by Φ.

For each i = 1, 2, .., N , SUHFPP(1.1) is reduced to the hierarchical fixed point prob-
lem (in short, HFPP): Find x ∈ Fix(Ti) such that

〈x− Six, x− yi〉 ≤ 0, ∀yi ∈ Fix(Ti). (1.2)

This amounts to saying that x ∈ Fix(Ti) satisfies a variational inequality depending
on a given criterion Si, namely: Find x ∈ Ki such that

0 ∈ (Ii − Si)x+NFix(Ti)(x), (1.3)

where NFix(Ti) is the normal cone to Fix(Ti). The solution set of HFPP (1.2) is given
by Φi := {x ∈ Ki : x = (PFix(Ti) ◦ Si)x}. The solution set of HFPP (1.2) is denoted
by Φi, where PFix(Ti) is the metric projection of H onto Fix(Ti). We easily observe

that Φ =
⋂N
i=1 Φi.

The motivation to study SUHFPP(1.1) comes from the fact that it contains, as par-
ticular cases, various problems considered in the literature. Below we present some
examples of such problems.

If for each i = 1, 2, .., N , we set Si = Ii, the identity mapping on Ki, then
SUHFPP(1.1) is reduced to the common fixed point problem (in short, CFPP) for a

finite family of nonexpansive mappings Ti: Find x ∈
N⋂
i=1

Fix(Ti) which an extension

of convex feasibility problem ( in short, CFP). We note that SUHFPP(1.1) covers
the following systems of unrelated monotone variational inequalities on fixed point
sets, minimization problems over equilibrium constraints, hierarchical minimization
problems:

If, for each i = 1, 2, .., N , let Mi be a maximal monotone operator, by setting

Ti = JMi

λ := (Ii + λMi)
−1 and Si = Ii − γi∇ψi,

where ψi is a convex function such that ∇ψi is ηi-Lipschitzian with

γi ∈

0,
2

max
i
{ηi}

 ,
and using the fact that Fix(JMi

λ ) = M−1
i (0), SUHFPP(1.1) is reduced to the following

system of unrelated mathematical programming problems with generalized equation
constraints:

min
0∈Mi(x)

ψi(x), (1.4)

which is a generalization of the problem studied by Luo et al. [10]. By taking
Mi = ∂ϕi, where ∂ϕi is the subdifferential of a lower semicontinuous convex function,
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then problem (1.4) is reduced to the system of unrelated hierarchical minimization
problem considered by Cabot [2] with N = 1.

If we set N = 1 then SUHFPP(1.1) is reduced to the hierarchical fixed point problem
(in short, HFPP) considered and studied by Moudafi and Mainge [12]. For further
work on HFPP, see [7, 8, 11, 13].

On the other hand, we consider another new class of problems so called the system
of unrelated generalized mixed equilibrium problems (in short, SUGMEP):

Find x ∈
N⋂
i=1

Ki such that

Gi(x, yi) + 〈Bix, yi − x〉+ φi(x, yi)− φi(x, x) ≥ 0, ∀yi ∈ Ki, i = 1, 2, ..., N, (1.5)

where Bi : Ki → H is a nonlinear mapping and Gi : Ki ×Ki → R, φi : Ki ×Ki → R
are bifunctions for each i = 1, 2, .., N , where R is the set of real numbers. The

solution set of SUGMEP(1.5) is denoted by Θ =
N⋂
i=1

Γi, where Γi is the solution set

of generalized mixed equilibrium problem (in short, GMEPi): Find x ∈ Ki such that
(1.5) holds.

The significance of studying the SUGMEP(1.5) lies in the fact that besides its enabling
a unified treatment of such well-known problems as the CFP and the CFPP, the
variational inequality problem (in short, VIP), the SUGMEP(1.5) also opens a path
to a variety of new system of problems that are created from various special cases of
the SUGMEP(1.5).

If we set φi = 0 and Gi = 0 then SUGMEP(1.5) is reduced to the system of unrelated
variational inequality problems (in short, SUVIP) considered and studied by Censor

et al. [3] for set-valued version of mappings Bi: Find x ∈
N⋂
i=1

Ki such that

〈Bix, yi − x〉 ≥ 0, ∀yi ∈ Ki, i = 1, 2, ..., N. (1.6)

We denote the solution set of SUVIP (1.6) by Θ1 =
N⋂
i=1

Ψi where Ψi is the solution

set of variational inequality problem (in short, VIP(Ki, Bi)): Find x ∈ Ki such that
(1.6) holds.

If we set N = 1,

Gi(x, yi) = j0
i (x; yi − x)− < f, yi − x >,∀x, yi ∈ Ki,

where j0
i (x; yi) is the Clarke’s generalized directional derivative of j at x in the di-

rection yi for a locally Lipschitz continuous function j : H → R at a given point
x ∈ H and v be any other vector in H and f ∈ H∗ then SUGMEP(1.5) is reduced to
the following variational-hemivariational inequality problem of second kind which is
a model of contact problem with normal compliance (See Problems 19,44 on pp. 142,
213 [17]): Find x ∈ K1 such that

〈B1x, y1 − x〉+ φ1(x, y1)− φ1(x, x) + j0
1(x; y1 − x) ≥< f, y1 − x >, ∀y1 ∈ K1. (1.7)
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Further, if we set j = 0 then SUGMEP(1.5) is reduced to the elliptic quasivariational
inequality problem of second kind which is model of frictional contact problem with
normal compliance (see (2.58), Problem 5.36, (5.187) [16]).

In 2006, by combining a hybrid iterative method due to Nakajo and Takahashi [15]
with the extra-gradient iterative method due to Korpelevich [9], Nadezhkina and
Takahashi [14] introduced the following extra-gradient hybrid iterative method for
approximating a common solution of a fixed point problem for a nonexpansive map-
ping T1 and VIP(K1, B1) for a monotone and Lipschitz continuous mapping and
proved a strong convergence theorem: The sequences {xn}, {yn} and {zn} generated
by iterative schemes:

x0 = x ∈ K1,

yn = PK1
(xn − λnB1x

n),

zn = αnxn + (1− αn)T1PK1(xn − λnB1y
n),

Cn = {z ∈ K1 : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ K1 : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qnx, ∀n ≥ 0.

(1.8)

For the related work, see Djafari-Rouhani et al. [5]

Motivated by the work of Nadezhkina and Takahashi[14], we propose a hybrid extra-
gradient iterative method for approximating a common solution to SUGMEP(1.5) for
monotone and Lipschitz continuous mappings and SUHFPP(1.1) for nonexpansive
mappings in Hilbert space. We prove that the sequences generated by the proposed it-
erative method converge strongly to the common solution to these problems. Further,
we give some applications of our main result. Furthermore, we discuss a theoretical
numerical example to demonstrate the applicability of the iterative algorithm of the
main result. Our iterative algorithm is new and different from the iterative algorithm
due to Nadezhkina and Takahashi[14]. We also give a comparison of a particular case
of our iterative algorithm with the iterative algorithm due to [14]. The method and
results presented in this paper extend and unify the related known results of this area,
see for example [6].

2. Preliminaries

We recall some concepts and results which are needed in the sequel. Let the symbols
→ and ⇀ denote strong and weak convergence, respectively, and ωw(xn) denote the
set of all weak limits of the sequence {xn}.

Definition 2.1. A mapping A : H → H is said to be:

(i) monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ H;

(ii) λ-Lipschitz continuous if there exists a constant λ > 0 such that

‖Ax−Ay‖ ≤ λ‖x− y‖, ∀x, y ∈ H;



UNRELATED GENERALIZED MIXED EQUILIBRIUM PROBLEMS 615

(iii) β-inverse strongly monotone if there exists a constant β > 0 such that

〈Ax−Ay, x− y〉 ≥ β‖Ax−Ay‖2, ∀x, y ∈ H.
We note that β-inverse strongly monotone mapping is monotone and 1

β -Lipschitz

continuous but converse need not be true in general.

Lemma 2.1. [1]

(i) Let M be a maximal monotone operator then {(tn)
−1
M} graph converges to

NM−1(0) as tn → 0 provided that M−1(0) 6= ∅;
(ii) Let {Bn} be a sequence of maximal monotone operators which graph converges

to an operator B. If M is a Lipschitz maximal monotone operator then
{M +Bn} graph converges to M +B and M +B is maximal monotone.

Assumption 2.1. The bifunctions G : K ×K −→ R and φ : K ×K → R satisfy the
following assumptions:

(i) G(x, x) = 0, ∀x ∈ K;
(ii) G is monotone, i.e., G(x, y) +G(y, x) ≤ 0, ∀x, y ∈ K;
(iii) For each y ∈ K, x → G(x, y) is hemi-upper semicontinuous, i.e., for each

x, y, z ∈ K, lim sup
t→0+

G(tz + (1− t)x, y) ≤ G(x, y);

(iv) For each x ∈ K, y → G(x, y) is convex and lower semicontinuous;
(v) φ(·, ·) is weakly continuous and convex;
(vi) φ is skew symmetric, i.e.,

φ(x, x)− φ(x, y) + φ(y, y)− φ(y, x) ≥ 0, ∀x, y ∈ K;
(vii) for each z ∈ H and for each x ∈ K, there exists a bounded subset Dx ⊆ K

and zx ∈ K such that for any y ∈ K \Dx,

G(y, zx) + φ(zx, y)− φ(y, y) +
1

r
〈zx − y, y − z〉 < 0.

Assumption 2.2. [5] The bifunction G : K ×K −→ R is 2-monotone, i.e.,

G(x, y) +G(y, z) +G(z, x) ≤ 0, ∀x, y, z ∈ K. (2.1)

In particular, if we set z = x or x = y or y = z in (2.1) then 2-monotone bifunction
becomes a monotone bifunction. For example, if G(x, y) = x(y − x) then G is a
2-monotone bifunction.

Now, we give the concept of 2-skew-symmetric bifunction.

Definition 2.2. The bifunction φ : K ×K → R is said to be 2-skew-symmetric if

φ(x, x)− φ(x, y) + φ(y, y)− φ(y, z) + φ(z, z)− φ(z, x) ≥ 0, ∀x, y, z ∈ K. (2.2)

We observe that if we set z = x or x = y or y = z in (2.2) then 2-skew-symmetric
bifunction becomes a skew-symmetric bifunction.

Theorem 2.1. [4] Let K be a nonempty, closed and convex subset of a real Hilbert
space H. Let the bifunctions G : K × K −→ R and φ : K × K → R satisfying
Assumption 2.1. For r > 0 and z ∈ H, define a mapping Tr : H → K as follows:

Tr(z) = {x ∈ K : G(x, y) + φ(y, x)− φ(x, x) +
1

r
〈y − x, x− z〉 ≥ 0, ∀y ∈ K},
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for all z ∈ H. Then the following conclusions hold:

(a) Tr(z) is nonempty for each z ∈ H;
(b) Tr is single valued;
(c) Tr is firmly nonexpansive mapping, i.e., for all z1, z2 ∈ H,

‖Trz1 − Trz2‖2 ≤ 〈Trz1 − Trz2, z1 − z2〉;

(d) Fix(Tr) = Sol(GMEP(1.7));
(e) Sol(GMEP(1.7)) is closed and convex.

Remark 2.1. It follows from Theorem 2.1 (a)-(b) that

rG(Trx, y)+rφ(y, Tr(x))−rφ(Tr(x), Tr(x))+〈Tr(x)−x, y−Tr(x)〉 ≥ 0, ∀y ∈ K, x ∈ H.
(2.3)

Further, Theorem 2.1 (c) implies the nonexpansivity of Tr, i.e.,

‖Tr(x)− Tr(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H. (2.4)

Furthermore, (2.3) implies the following inequality

‖Tr(x)− y‖2 ≤ ‖x− y‖2 − ‖Tr(x)− x‖2 + 2rG(Tr(x), y)

+2r[φ(y, Tr(x))− φ(Tr(x), Tr(x))], ∀y ∈ K,x ∈ H. (2.5)

3. Main results

We prove a strong convergence theorem to approximate a common solution to
SUGMEP(1.5) for monotone and Lipschitz continuous mappings and SUHFPP(1.1)
for nonexpansive mappings in Hilbert space. First, we prove the following Minty type
lemma.

Lemma 3.1. Let K be a nonempty, closed and convex subset of a real Hilbert space
H. Let the bifunctions G : K ×K −→ R and φ : K ×K −→ R satisfy Assumption
2.1(i)-(iv) and Assumption 2.1(v)-(vi), respectively and let B : K → H be a monotone
and Lipschitz continuous mapping. Then the solution set of problem: Find x ∈ K
such that

G(x, y) + 〈Bx, y − x〉+ φ(x, y)− φ(x, x) ≥ 0, ∀y ∈ K, (3.1)

is closed and convex. Further, it is also the solution set of problem: Find x ∈ K such
that

G(y, x)− 〈By, y − x〉 − φ(y, y) + φ(y, x) ≤ 0, ∀y ∈ K. (3.2)

Proof. Under the given assumptions on G,B and φ, we can easily prove that the
solution set of problem (3.1) is closed and convex. Next, we show that both problems
have the same solution set. In order to prove this, we prove that problem (3.1) is
equivalent to problem (3.2). By the monotonicity of G, B and skew-symmetry of φ,
it immediately follows that the inequality (3.1) implies inequality (3.2). Hence the
solution of problem (3.1) is the solution of the problem (3.2).

Conversely, let x ∈ K be a solution of problem (3.2) then we have

G(y, x)− 〈By, y − x〉 − φ(y, y) + φ(y, x) ≤ 0, ∀y ∈ K.
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For t with 0 < t ≤ 1 and y ∈ K, let yt = ty + (1− t)x ∈ K, we have

G(yt, x)− 〈Byt, yt − x〉 − φ(yt, yt) + φ(yt, x) ≥ 0.

Further, by the convexity of G and φ, we have

0 = G(yt, yt)

≤ tG(yt, y) + (1− t)G(yt, x)

≤ tG(yt, y) + (1− t)[〈Byt, yt − x〉+ φ(yt, yt)− φ(yt, x)]

≤ t[G(yt, y) + (1− t)〈Byt, y − x〉+ φ(yt, y)− φ(yt, x)]

and therefore, dividing by t > 0, we get

0 ≤ G(yt, y) + (1− t)〈Byt, y − x〉+ φ(yt, y)− φ(yt, x).

Letting t → 0+, and using the hemi-upper semicontinuity of G in the first variable
and continuity of B, we get

G(x, y) + 〈Bx, y − x〉+ φ(x, y)− φ(x, x) ≥ 0, ∀y ∈ K,

and hence we get the desired result. �

Theorem 3.1. For each i = 1, 2, ..., N , let Ki be a nonempty, closed and convex

subset of a real Hilbert space H with
N⋂
i=1

Ki 6= ∅. Let Gi : Ki × Ki −→ R be a

2-monotone bifunction, let φi : Ki × Ki −→ R be a 2-skew symmetric bifunction
satisfying Assumption 2.1(i),(iii)-(v),(vii) and let Bi : Ki → H be a monotone and
Lipschitz continuous mapping with Lipschitz constant ρi > 0. For each i, let Si :
Ki → Ki and Ti : Ki → Ki be nonexpansive mappings. Assume that Ω = Θ

⋂
Φ 6= ∅.

Let the sequences {xn}, {yni } and {zni } be generated by the following iterative schemes:

x0 = x ∈ K =
N⋂
i=1

Ki,

yni = Trni (xn − rni Bixn),

uni = Trni (xn − rni Biyni ),

zni = (1− αni )uni + αni [σni Siu
n
i + (1− σni )Tiu

n
i ],

Cni = {z ∈ Ki : ‖zni − z‖2 ≤ (1− αni σni )‖xn − z‖2 + αni σ
n
i ‖Siuni − z‖2},

Cn =
⋂N
i=1 C

n
i ,

Qn = {z ∈ K : 〈x− xn, xn − z〉 ≥ 0},
xn+1 = PCn

⋂
Qnx, n ≥ 0,

(3.3)

for each i = 1, 2, ..., N , where {rni } ⊂ [a, b] for some a, b ∈ (0, 1
2ρ ), ρ = max

1≤i≤N
ρi, and

{αni }, {σni } are real sequences in (0, 1). If the following conditions:

(i) lim
n→∞

σni = 0;

(ii) lim
n→∞

‖un
i −z

n
i ‖

αn
i σ

n
i

= 0, for each i,
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hold, then the sequences {xn}, {yni } and {zni } converge strongly to x̂ ∈ Ω, where
x̂ = PΩx, a metric projection of H onto Ω.

Proof. We divide the proof into several steps.

Step I. Ω and Cn ∩ Qn for all n ≥ 0 both are closed and convex and {xn} is well
defined.

Proof of Step I. In order to prove that Ω is closed and convex, it is enough to show
that for each i = 1, 2, ..., N the solution set Γi of GMEPi (3.1), i.e.,

Γi = {x ∈ Ki : Gi(x, yi) + 〈Bix, yi − x〉+ φi(x, yi)− φi(x, x) ≥ 0, ∀yi ∈ Ki}

is closed and convex, which is followed by Lemma 3.1. Further, it is evident that Φ is
closed and convex, since Φ = Fix(P⋂N

i=1 Fix(Ti)
◦ Si) 6= ∅. Thus Ω is nonempty, closed

and convex and PΩx is then well defined. Next, we show that Cn ∩Qn is closed and
convex. From the definition of Qn, it is clear that Qn is closed and convex for each
n ≥ 0. Next we show that Cn is closed and convex for all n ≥ 0. It suffices to show
that, for any fixed but arbitrary i, Cni is closed and convex for every n ≥ 0. Indeed,
for any z ∈ Cni , we see that z ∈ Ki and

‖zni − z‖2 ≤ (1− αni σni )‖xn − z‖2 + αni σ
n
i ‖Siuni − z‖2

⇔ ‖zni −xn‖2+‖xn−z‖2+2〈zni −xn, xn−z〉 ≤ (1−αni σni )‖xn−z‖2+αni σ
n
i [‖Siuni −xn‖2

+‖xn − z‖2 + 2〈Siuni − xn, xn − z〉]

⇔ ‖zni − xn‖2 + 2〈zni − xn, xn − z〉 − αni σni 〈Siuni − xn, Siuni + xn − 2z〉 ≤ 0,

which implies that Cni is closed and convex for all n ≥ 0 and i = 1, 2, .., N . Conse-
quently, Cn

⋂
Qn is closed and convex for all n ≥ 0, and hence xn+1 = PCn

⋂
Qnx is

well defined.

Step II. Ω ⊂ Cn ∩ Qn for each n ≥ 0 and the sequences {xn}, {uni } and {zni } are
bounded.

Proof of Step II. Let x̄ ∈ Ω then x̄ ∈ Θ which implies that

Gi(x̄, y
n
i ) + 〈Bix̄, yni − x̄〉+ φi(y

n
i , x̄)− φi(x̄, x̄) ≥ 0, ∀yni ∈ Ki, i = 1, 2, ..., N. (3.4)

Applying (2.5) with xn − rni Biyni and x̄, we get

‖uni − x̄‖2 = ‖Trni (xn − rni Biyni )− x̄‖2

≤ ‖xn − rni Biyni − x̄‖2 − ‖uni − (xn − rni Biyni ‖2 + 2rni Gi(u
n
i , x̄)

+2rni [φi(x̄, u
n
i )− φi(uni , uni )]

≤ ‖xn − x̄‖2 − ‖uni − xn‖2 + 2rni 〈Biyni , x̄− uni 〉+ 2rni Gi(u
n
i , x̄)

+2rni [φi(x̄, u
n
i )− φi(uni , uni )]

≤ ‖xn − x̄‖2 − ‖uni − xn‖2 + 2rni [〈Biyni −Bix̄, x̄− yni 〉
+〈Bix̄, x̄− yni 〉+ 〈Biyni , yni − uni 〉+ 2rni Gi(u

n
i , x̄)

+2rni [φi(x̄, u
n
i )− φi(uni , uni )]. (3.5)
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Now, using monotonicity of Bi and (3.4) in above inequality, we obtain

‖uni − x̄‖2 ≤ ‖xn − x̄‖2 − ‖uni − xn‖2 + 2rni 〈Biyni , yni − uni 〉
+ 2rni [Gi(x̄, y

n
i ) +Gi(u

n
i , x̄)] + 2rni [φi(x̄, u

n
i )− φi(uni , uni )

+ φi(y
n
i , x̄)− φi(x̄, x̄)]

≤ ‖xn − x̄‖2 − ‖xn − yni ‖2 − ‖yni − uni ‖2 − 2〈xn − yni , yni − uni 〉
+ 2rni 〈Biyni , yni − uni 〉+ 2rni [Gi(x̄, y

n
i ) +Gi(u

n
i , x̄)]

+ 2rni [φi(x̄, u
n
i )− φi(uni , uni ) + φi(y

n
i , x̄)− φi(x̄, x̄)]

≤ ‖xn − x̄‖2 − ‖xn − yni ‖2 − ‖yni − uni ‖2

− 2〈yni − (xn − rni Bixn), uni − yni 〉+ 2rni 〈Bixn −Biyni , uni − yni 〉
+ 2rni [Gi(x̄, y

n
i ) +Gi(u

n
i , x̄)] + 2rni [φi(x̄, u

n
i )− φi(uni , uni )

+ φi(y
n
i , x̄)− φi(x̄, x̄)]

≤ ‖xn − x̄‖2 − ‖xn − yni ‖2 − ‖yni − uni ‖2 + 2rni 〈Bixn −Biyni , uni − yni 〉
+ 2rni [Gi(x̄, y

n
i ) +Gi(y

n
i , u

n
i ) +Gi(u

n
i , x̄)] + 2rni [φi(x̄, u

n
i )− φi(uni , uni )

+ φi(y
n
i , x̄)− φi(x̄, x̄) + φi(u

n
i , y

n
i )− φi(yni , yni )]. (3.6)

For each i, since Gi is 2-monotone and φi is 2-skew symmetric then it follows from
(3.6) that

‖uni − x̄‖2 ≤ ‖xn − x̄‖2 − ‖xn − yni ‖2 − ‖yni − uni ‖2 + 2rni 〈Bixn −Biyni , uni − yni 〉
≤ ‖xn − x̄‖2 − ‖xn − yni ‖2 − ‖yni − uni ‖2 + 2rni ρ‖xn − yni ‖‖uni − yni ‖
≤ ‖xn − x̄‖2 − (1− rni ρ)‖xn − yni ‖2 − (1− rni ρ)‖yni − uni ‖2, (3.7)

where we have used ρ-Lipschitz continuity of Bi with ρ = max
1≤i≤N

ρi in the second

inequality.

Further, since rni ∈ [a, b] and a, b ∈ (0, 1
2ρ ), we obtain

‖uni − x̄‖2 ≤ ‖xn − x̄‖2. (3.8)

Again, since x̄ ∈ Ω then x̄ ∈ Ki and x̄ ∈ Φ which implies that x̄ = Tix̄ for each
i = 1, 2, ..., N. Then using (3.3) and (3.8), we get

‖zni − x̄‖2 = ‖(1− αni )uni + αni (σni Siu
n
i + (1− σni )Tiu

n
i )− x̄‖2

= ‖(1− αni )(uni − x̄) + αni (σni Siu
n
i + (1− σni )Tiu

n
i − x̄)‖2

≤ (1− αni )‖uni − x̄‖2 + αni (σni ‖Siuni − x̄‖2 + (1− σni )‖Tiuni − x̄‖2)

≤ (1− αni )‖uni − x̄‖2 + αni (σni ‖Siuni − x̄‖2 + (1− σni )‖uni − x̄‖2)

≤ (1− αni σni )‖uni − x̄‖2 + αni σ
n
i ‖Siuni − x̄‖2 (3.9)

≤ (1− αni σni )‖xn − x̄‖2 + αni σ
n
i ‖Siuni − x̄‖2. (3.10)

This implies that x̄ ∈ Cn and hence Ω ⊂ Cn, ∀n ≥ 0. Further, since Ω ⊂ C0 and
Ω ⊂ Q0 = H, we have Ω ⊂ C0 ∩Q0. Now, suppose that Ω ⊂ Cn−1 ∩Qn−1 for some
n > 1. Since Ω is nonempty, Cn−1 ∩Qn−1 is a nonempty, closed and convex set.
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So there exists a unique element xn ∈ Cn−1 ∩Qn−1 such that

xn = PCn−1∩Qn−1x.

Again, since Ω ⊆ Cn and for any x̄ ∈ Ω, it follows from (2.4) that

〈x− xn, xn − x̄〉 = 〈x− PCn−1∩Qn−1x, PCn−1∩Qn−1x− x̄〉 ≥ 0,

and hence x̄ ∈ Qn. Therefore Ω ⊂ Cn ∩Qn, ∀n ≥ 0.

Next, let d = PΩx. From xn+1 = PCn∩Qnx and d ∈ Ω ⊂ Cn ∩Qn, we have

‖xn+1 − x‖ ≤ ‖d− x‖, ∀n ≥ 0. (3.11)

Therefore {xn} is bounded. It also follows from (3.8) that the sequence {uni } is
bounded for each i = 1, 2, ..., N . Further the nonexpansivity of Si and Ti imply
that the sequences {Siuni } and {Tiuni } are bounded for each i = 1, 2, ..., N . Since
{αni }, {σni } are bounded, it follows from (3.10) that the sequence {zni } is bounded
for each i = 1, 2, ..., N .

Step III. lim
n→∞

‖xn+1 − xn‖ = 0; lim
n→∞

‖xn − zni ‖ = 0; lim
n→∞

‖xn − yni ‖ = 0;

lim
n→∞

‖xn − uni ‖ = 0; lim
n→∞

‖uni − yni ‖ = 0; lim
n→∞

‖zni − uni ‖ = 0.

Proof of Step III. Since xn+1 ∈ Cn ∩Qn and xn = PQnx, we have

‖xn − x‖ ≤ ‖xn+1 − x‖, ∀n ≥ 0. (3.12)

Therefore, it follows from (3.12) that the sequence {‖xn − x‖} is monotonically in-
creasing and bounded, and hence convergent. Therefore, lim

n→∞
‖xn − x‖ exists and

finite. Now, the characterization of PQnx with xn = PQnx and xn+1 ∈ Qn gives

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2, ∀n ≥ 0,

which implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.13)

Since xn+1 ∈ Cni , we have

‖zni − xn+1‖2 ≤ (1− αni σni )‖xn − xn+1‖2 + αni σ
n
i ‖Siuni − xn+1‖2. (3.14)

Since {xn}, {uni } and {Siuni } are bounded, there exists a number L > 0 such that
‖Siuni − xn+1‖ ≤ L, ∀n. Hence, it follows from (3.13), (3.14) and lim

n→∞
σni = 0 that

lim
n→∞

‖zni − xn+1‖ = 0. (3.15)

Further, it follows from the inequality

‖xn − zni ‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zni ‖, (3.16)

(3.13) and (3.15) that

lim
n→∞

‖xn − zni ‖ = 0. (3.17)
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Since (1− αni σni ) < 1, it follows from (3.7) and (3.9) that

‖zni − x̄‖2 ≤ ‖uni − x̄‖2 + αni σ
n
i ‖Siuni − x̄‖2

≤ ‖xn − x̄‖2 − (1− rni ρ)‖xn − yni ‖2 − (1− rni ρ)‖yni − uni ‖2

+αni σ
n
i ‖Siuni − x̄‖2,

which implies that

(1− rni ρ)‖xn − yni ‖2 ≤ ‖xn − zni ‖(‖xn − x̄‖+ ‖zni − x̄‖) + αni σ
n
i ‖Siuni − x̄‖2

≤ ‖xn − zni ‖M1 + αni σ
n
i M2 (3.18)

and

(1− rni ρ)‖yni − uni ‖2 ≤ ‖xn − zni ‖M1 + αni σ
n
i M2 (3.19)

where M1 := max
i

sup
n
{‖xn− x̄‖+ ‖zni − x̄‖} and M2 := max

i
sup
n
{‖Siuni − x̄‖2}. Since

{xn}, {uni } and {zni } are bounded, {rni } ⊂ [a, b] for some a, b ∈ (0, 1
2ρ ), ρ = max

1≤i≤N
ρi

then it follows from (3.17), (3.18), (3.19) and lim
n→∞

σni = 0 that

lim
n→∞

‖xn − yni ‖ = 0, for each i = 1, 2, ..., N. (3.20)

lim
n→∞

‖uni − yni ‖ = 0, for each i = 1, 2, ..., N. (3.21)

Since

‖xn − uni ‖ ≤ ‖xn − yn‖+ ‖yn − uni ‖, (3.22)

it follows from (3.20), (3.21) and (3.22), we have

lim
n→∞

‖xn − uni ‖ = 0, for each i = 1, 2, ..., N. (3.23)

Now, it follows from (3.17) and (3.23) that

lim
n→∞

‖zni − uni ‖ = 0, for each i = 1, 2, ..., N. (3.24)

Step IV: lim
n→∞

‖uni − Tiuni ‖ = 0 for each i = 1, 2, ..., N.

Proof of Step IV. We have

‖uni − Tiuni ‖ ≤ ‖uni − zni ‖+ ‖zni − Tiuni ‖. (3.25)

Since {Siuni } and {Tiuni } are bounded for each i = 1, 2, ..., N then there exists a
L1 > 0 such that ‖Siuni − Tiuni ‖ ≤ L1, ∀n ≥ 0. Now, by making use of (3.25), we
estimate

‖zni − Tiuni ‖ = ‖(1− αni )uni + αni (σni Siu
n
i + (1− σni )Tiu

n
i )− Tiuni ‖

= ‖(1− αni )(uni − Tiuni ) + αni (σni Siu
n
i − σni Tiuni )‖

≤ (1− αni )‖uni − Tiuni ‖+ αni σ
n
i ‖Siuni − Tiuni ‖

≤ (1− αni )‖uni − zni ‖+ (1− αni )‖zni − Tiuni ‖+ αni σ
n
i ‖Siuni − Tiuni ‖,

which implies that

‖zni − Tiuni ‖ ≤
‖uni − zni ‖

αni
+ σni L1. (3.26)
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Since lim
n→∞

‖zni −u
n
i ‖

αn
i σ

n
i

= 0, then lim
n→∞

‖zni −u
n
i ‖

αn
i

= lim
n→∞

σni
‖zni −u

n
i ‖

αn
i σ

n
i

= 0 and hence, using

(3.24) and lim
n→∞

σni = 0 in (3.26), we have

lim
n→∞

‖zni − Tiuni ‖ = 0, for each i = 1, 2, ..., N. (3.27)

Thus, it follows from (3.24), (3.25) and (3.27) that

lim
n→∞

‖uni − Tiuni ‖ = 0, for each i = 1, 2, ..., N. (3.28)

Step V: x̂ ∈ Ω.

Proof of Step V. Since {xn} is bounded, there exists a x̂ ∈ ωw(xn). Further, since every
Hilbert space satisfies Opial’s condition, Opial’s condition guarantees that ωw(xn) is
singleton. Thus, {xn} converges weakly to x̂. Further, it follows from (3.17), (3.20)
and (3.23) that the sequences {xn}, {yni }, {uni } and {zni } all have same asymptotic
behavior and hence {yni }, {uni } and {zni } converge weakly to x̂.

Now, it follows from demiclosed principle and (3.28) that x̂ ∈ Fix(Ti) for each i =
1, 2, ..., N . Next, we show that x̂ ∈ Φ. It follows from algorithm (3.3) that

zni − uni = αni (σni (Siu
n
i − uni ) + (1− σni )(Tiu

n
i − uni )),

and hence
1

αni σ
n
i

(uni − zni ) =

(
(I − Si) +

1− σni
σni

(
I − Ti

))
uni . (3.29)

Since, for each i = 1, 2, ..., N , Si, Ti are nonexpansive, we have that (I −Si), (I − Ti)
are maximal monotone operators [1] and hence Lemma 2.1(i) assures that the opera-

tor sequence

{(
1− σni
σni

(
I − Ti

))}
graph converges to NFix(Ti) and hence it fol-

lows from Lemma 2.1(ii) that the operator sequence

{
(I − Si) +

1− σni
σni

(
I − Ti

)}
graph converges to (I − Si) +NFix(Ti).

Now, passing to the limit in (3.29) as n→∞ and by taking into account the fact that
‖uni − zni ‖
αni σ

n
i

→ 0 and that the graph of (I − Si) + NFix(Ti) is weakly-strongly closed,

we obtain 0 ∈ (I − Si)x̂+NFix(Ti)x̂ and thus x̂ ∈ Φ.

Next, we show that x̂ ∈ Θ. Since Ki is closed and convex, yni ∈ Ki and yni ⇀ x̂, it

follows that x̂ ∈ Ki and hence x̂ ∈
N⋂
i=1

Ki. Now, the relation yni = Trni (xn − rni Bixn)

is equivalent to

Gi(y
n
i , yi)+〈Bixn, yi−yni 〉+φi(yi, yni )−φi(yni , yni )+

1

rni
〈yi−yni , yni −xn〉 ≥ 0, ∀yi ∈ Ki.

Since Gi is 2-monotone and hence monotone, the above inequality implies

〈Bixn, yi−yni 〉+φi(yi, y
n
i )−φi(yni , yni ) +

1

rni
〈yi−yni , yni −xn〉 ≥ Gi(yi, yni ), ∀yi ∈ Ki.
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For t with 0 < t ≤ 1 and yi ∈ Ki, let yi,t := tyi + (1− t)x̂ ∈ Ki, we have

〈yi,t − yni , Biyi,t〉 ≥ 〈yi,t − yni , Biyi,t〉 − φi(yi,t, yni ) + φi(y
n
i , y

n
i )− 〈yi,t − yni , Bixn〉

−
〈
yi,t − yni ,

yni − xn

rni

〉
+Gi(yi,t, y

n
i )

= 〈yi,t − yni , Biyi,t −Biyni 〉+ 〈yi,t − yni , Biyni −Bixn〉

− φi(yi,t, yni ) + φi(y
n
i , y

n
i )−

〈
yi,t − yni ,

yni − xn

rni

〉
+Gi(yi,t, y

n
i ).

Since lim
n→∞

‖yni − xn‖ = 0 and Bi is Lipschitz continuous, we have

lim
n→∞

‖Biyni −Bixn‖ = 0, for each i = 1, 2, ...., N.

Further, from the monotonicity of Bi, the convexity and lower semicontinuity of Gi
in the second variable and the weak lower semi-continuity of φi and the fact that
‖yni − xn‖

rni
→ 0 and yni ⇀ x̂, by letting n→∞, we deduce that

〈yi,t − x̂, Biyi,t〉 ≥ −φi(yi,t, x̂) + φi(x̂, x̂) +Gi(yi,t, x̂). (3.30)

Further, by the convexity of Gi, we have

0 = Gi(yi,t, yi,t)

≤ tGi(yi,t, yi) + (1− t)Gi(yi,t, x̂)

≤ tGi(yi,t, yi) + (1− t)[φi(yi,t, x̂)− φi(x̂, x̂) + 〈yi,t − x̂, Biyi,t〉]
≤ tGi(yi,t, yi) + (1− t)t[φi(yi, x̂)− φi(x̂, x̂)] + (1− t)t〈yi − x̂, Biyi,t〉

and therefore, dividing by t > 0, we get

0≤ Gi(yi,t, yi)+(1−t)[φi(yi, x̂)−φi(x̂, x̂)]+(1−t)〈yi−x̂, Biyi,t〉, for each i = 1, 2, ..., N.

Letting t → 0+ and using the hemi-upper semicontinuity of Gi in the first variable,
we get

Gi(x̂, yi) + 〈yi − x̂, Bix̂〉+ φi(yi, x̂)− φi(x̂, x̂) ≥ 0, ∀yi ∈ Ki.

This implies that x̂ ∈ Θ.

Step VI: Finally, we show that xn → x̂, where x̂ = PΩx.

Proof of Step VI. Since xn = PQnx and x̂ ∈ Ω ⊂ Qn, we have

‖xn − x‖ ≤ ‖x̂− x‖.
It follows from d = PΩx, (3.11) and lower semicontinuity of the norm that

‖d− x‖ ≤ ‖x̂− x‖ ≤ lim inf
n→∞

‖xn − x‖ ≤ lim sup
n→∞

‖xn − x‖ ≤ ‖d− x‖.

Thus, we have
lim
n→∞

‖xn − x‖ = ‖d− x‖ = ‖x̂− x‖.

Since xn − x ⇀ x̂ − x and ‖xn − x‖ → ‖x̂ − x‖ then from the Kadec-Klee property
of Hilbert space, we have lim

n→∞
xn = x̂ = d. Thus, we conclude that {xn} converges

strongly to x̂, where x̂ = PΩx. �
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4. Application

We have the following strong convergence theorem for an iterative method to ap-
proximate a common solution of SUVIP(1.6) and a common fixed point problem
(CFPP) for a finite family of nonexpansive mappings Ti.

Theorem 4.1. For each i = 1, 2, ..., N , let Ki be a nonempty, closed and convex

subset of a real Hilbert space H with
N⋂
i=1

Ki 6= ∅. Let Bi : Ki → H be a monotone

and Lipschitz continuous mapping with Lipschitz constant ρi > 0. For each i, let
Ti : Ki → Ki be a nonexpansive mapping. Assume that

Ω2 = Θ1 ∩

(
N⋂
i=1

Fix(Ti)

)
6= ∅.

Let the sequences {xn}, {yni } and {zni } be generated by the following iterative schemes:

x0 = x ∈ K =
N⋂
i=1

Ki,

yni = PKi(x
n − rni Bixn),

uni = PKi
(xn − rni Biyni ),

zni = (1− αni )uni + αni [σni u
n
i + (1− σni )Tiu

n
i ],

Cni = {z ∈ Ki : ‖zni − z‖2 ≤ (1− αni σni )‖xn − z‖2 + αni σ
n
i ‖uni − z‖2},

Cn =
⋂N
i=1 C

n
i ,

Qn = {z ∈ K : 〈x− xn, xn − z〉 ≥ 0},
xn+1 = PCn

⋂
Qnx, n ≥ 0,

(4.1)

for each i = 1, 2, ..., N , where {rni } ⊂ [a, b] for some a, b ∈ (0, 1
2ρ ), ρ = max

1≤i≤N
ρi, and

{αni }, {σni } are real sequences in (0, 1). If the following conditions:

(i) lim
n→∞

σni = 0;

(ii) lim
n→∞

‖un
i −z

n
i ‖

αn
i σ

n
i

= 0, for each i,

hold, then the sequences {xn}, {yni } and {zni } converge strongly to x̂ ∈ Ω2, where
x̂ = PΩ2

x.

Proof. For each i = 1, 2, ..., N , set Gi = 0, φi = 0 and Si = Ii then Trni = PKi
and

hence by Theorem 3.1 we obtain the desired result. �

Remark 4.1. The iterative algorithm (4.1) with N = 1 approximates a common
element of the solution set of VIP(K1, B1) and the fixed point set of T1. This is new
and different from the iterative algorithm (1.8) due to Nadezhkina and Takahashi [14].
Further, we observe through an example (see Remark 5.1 ) that it is more rapidly
convergent than the iterative algorithm (1.8) [14].
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Finally, if we set N = 1, Gi = 0, φi = 0 and Si = Ti = Ii then Trni = PKi

in Theorem 3.1 we obtain the result due to Iiduka et al. [6] for the case when the
mapping Bi is βi-inverse strongly monotone.

5. Numerical example

Now, we give a theoretical numerical example which justifies Theorem 3.1.

Example 5.1. Let H = R with the usual inner product < ·, · > and induced norm
| · |. Let i = 1, 2, 3, ...., 10 and let Ki = (−∞, 1

3 ] so that

K =
⋂

1≤i≤10

Ki = (−∞, 1

3
].

For each i, let the mappings Gi : Ki ×Ki → R and φi : Ki ×Ki → R be defined by

Gi(x, y) = i(x+ 1)(y − x) and φi(x, y) = i(x− y),∀x, y ∈ Ki,

respectively; let the mapping Bi : Ki → R be defined by

Bi(x) = i(2x− 3),∀x ∈ Ki

and let the mappings Si, Ti : Ki → Ki be defined by

Six =
x+ 2i

1 + 6i
, Tix =

x+ i

1 + 3i
∀x ∈ Ki,

respectively. Setting αni = 0.9
i
√
n

and σn = 0.9
in , ∀n ≥ 1. Then the sequence {xn}

generated by iterative scheme (3.3) converges to x̂ = 1
3 ∈ Ω.

Proof. We observe that, for each i, Gi and φi both satisfy all the conditions given
in Theorem 3.1. Further, it is easy to prove that Bi is monotone and 2i-Lipschitz
continuous and hence ρ = max

1≤i≤10
ρi = 20. Now, we can choose a = 0.01, b = 2.4

and therefore, choose rni = 1
5i ∈ [a, b] for a, b ∈ (0, 1

2ρ ). We observe that Si, Ti are

nonexpansive mappings with Fix(Si) = Fix(Ti) =
{

1
3

}
. Furthermore, it is easy to

prove that Γ = Φ =
{

1
3

}
and hence Ω = { 1

3}. Now, the iterative scheme (3.3) is
reduced to the following scheme:

x0 = x ∈ K,
yni = 3xn+1

6 ,

uni =
5xn−2yni +1

6 ,

zni = (1− αni )uni + αni [σni Siu
n
i + (1− σni )Tiu

n
i ],

Cni = [eni ,+∞) where eni =
zni

2−xn2+αn
i σ

n
i

(
xn2−

(
un
i +2i

1+6i

)2
)

2(zni −xn)+2αn
i σ

n
i

(
xn−

(
un
i
+2i

1+6i

)) ,
Cn =

10⋂
i=1

Cni ,

Qn = [xn,+∞),

xn+1 = PCn
⋂
Qnx, n ≥ 0.

(5.1)
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Next, using the software Matlab 7.8, we have following table and figures which show
that the sequence {xn} converges to x̂ = 1

3 ∈ Ω. Denote

sn1 :=
‖un1 − zn1 ‖
αn1σ

n
1

and sn10 :=
‖un10 − zn10‖
αn10σ

n
10

.

xn sn1 sn10 xn sn1 sn10

n x0 = −2 n x0 = 0.1
1 -0.995000 1.185000 0.135684 1 0.125351 0.118500 0.013568
5 -0.052812 0.041445 0.005215 5 0.212394 0.012720 0.001601
10 0.125809 0.010675 0.001360 10 0.268338 0.003343 0.000426
15 0.218102 0.003915 0.000501 15 0.297243 0.001226 0.000157
20 0.268076 0.001654 0.000212 20 0.312895 0.000518 0.000066
25 0.295871 0.000757 0.000097 25 0.321600 0.000237 0.000030
30 0.311610 0.000365 0.000047 30 0.326530 0.000114 0.000015
35 0.320636 0.000182 0.000023 35 0.329357 0.000057 0.000007
40 0.325864 0.000094 0.000012 40 0.330994 0.000029 0.000004
45 0.328916 0.000049 0.000006 45 0.331950 0.000015 0.000002
46 0.329355 0.000043 0.000006 46 0.332087 0.000014 0.000002
47 0.329749 0.000038 0.000005 47 0.332211 0.000012 0.000002
48 0.330103 0.000034 0.000004 48 0.332322 0.000011 0.000001
49 0.330422 0.000030 0.000004 49 0.332422 0.000009 0.000001
50 0.330709 0.000026 0.000003 50 0.332512 0.000008 0.000001

0 5 10 15 20 25 30 35 40 45 50

Number of iterations

0

0.05

0.1

0.15

0.2
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0.35
Fig. 1: Convergence of { x n } when x 0 = 0.1
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n
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1
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Fig. 2: Convergence of { x n } when x 0 = -2

xn

s1
n

s10
n

This completes the proof. �

Remark 5.1. For the N = 1, we demonstrate that the iterative algorithm (4.1) with
conditions given in Theorem4.1, approximates a common element of the solution set
of VIP(K1, B1) and the fixed point set of T1. Further, we observe that it is faster
than the iterative algorithm (1.8) due to Nadezhkina and Takahashi[14].
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Set N = 1 and Si = Ii, the identity operators, in Example 5.1, we have
K1 = (−∞, 1

3 ], Bix = B1x = 3x − 1, Tix = T1x = x+1
4 , αn1 = 0.9√

n
and

σn = 0.9
n , ∀n ≥ 1, rn1 = 1

8 ∈ [a, b] for a, b ∈ (0, 1
2ρ ), ∀n ≥ 1.. We easily observe

that the B1, T1, α
n
1 , σ

n
1 satisfy all the conditions given in Theorem 4.1 and in Theo-

rem 3.1[14]. It is clear that Sol(VIP(K1,B1)) = { 1
3}, Fix(T1) = { 1

3} and hence

Ω = Sol(VIP(K1,B1)))
⋂

Fix(T1) = { 1
3}. In this case, the iterative algorithm (4.1)

and the iterative algorithm (1.8) reduce to the following iterative algorithms:

Iterative Algorithm 5.2:

x0 = x ∈ K1,

yn1 = PK1
(xn − rn1B1x

n) =


0, ifx < 0,

1, ifx > 1,

xn − 1
8 (3xn − 1), otherwise,

un1 = PK1(xn − rn1B1y
n
1 )) =


xn + 1

8 , ifx < 0,

xn − 1
4 , ifx > 1,

xn − 1
8 (3yn1 − 1), otherwise,

zn1 = (1− αn1 )un1 + αn1 [σn1 u
n
1 + (1− σn1 )T1u

n
1 ],

Cn1 = [en1 ,+∞) where en1 =
zn1

2−xn2+αn
1 σ

n
1 (xn2−un

1
2)

2(zn1−xn)+2αn
1 σ

n
1 (xn−zn1 ) ,

Cn =
⋂
Cn1 ,

Qn = [xn,+∞),

xn+1 = PCn
⋂
Qnx, n ≥ 0.

(5.2)

and
Iterative Algorithm 5.3:

x0 = x ∈ K1,

yn1 = PK1(xn − rn1B1x
n) =


0, ifx < 0,

1, ifx > 1,

xn − 1
8 (3xn − 1), otherwise,

un1 = PK1
(xn − rn1B1y

n
1 )) =


xn + 1

8 , ifx < 0,

xn − 1
4 , ifx > 1,

xn − 1
8 (3yn1 − 1), otherwise,

zn1 = αn1x
n + (1− αn1 )T1u

n
1 ,

Cn1 = [en1 ,+∞) where en1 =
zn1 +xn

2 ,

Cn =
⋂
Cn1 ,

Qn = [xn,+∞),

xn+1 = PCn
⋂
Qnx, n ≥ 0,

(5.3)

respectively.
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Hence, the sequence {xn} defined by Iterative Algorithm 5.2 as well as defined by
Iterative Algorithm 5.3 converges strongly to x̂ = 1

3 .

Finally, using the software Matlab 7.8, we have following figures which show that the
sequences {xn}, {zn} converges to x̂ = 1

3 ∈ Ω. Figure 3 shows the convergence of

{xn} and {zn} when x0 = 0.1 and αn1 = 0.9√
n

, while Figure 4 shows the convergence

of {xn} and {zn} when x0 = 0.1 and αn1 = 0.9

n
1
4
. It is evident from figures that the

sequence {xn} obtained by Iterative Algorithm 5.2 converges faster than the sequence
{xn} obtained by Iterative Algorithm 5.3.
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0.32
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n
},

 {
z n

}

Fig.3: Convergence of {x n}, {zn} when x0=0.1 and 
1
n=0.9/n1/2

xn

zn

xn

zn

                      Algorithm (4.1) with N=1
                       Algorithm (1.8)
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Fig.4: Convergence of {x n}, {zn} when x0=0.1 and 
1
n=0.9/n1/4

                  Algorithm (4.1) with N=1
                   Algorithm (1.8)

xn

zn

xn

zn

6. Conclusion

Future directions to be pursued in the context of this research include the inves-
tigation of the problem when the mappings Bi are set-valued mappings as in [3] as
well as the investigation of the problem to extend the hybrid extra-gradient iterative
method to find the common solution of HFPP (1.2) and monotone variational inclu-
sion problem ([8], inclusion (1.8)) for monotone and Lipschitz continuous mapping.
Acknowledgments. The authors are very thankful to the anonymous referees for
their critical comments and helpful suggestions which led to substantial improvements
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