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Abstract. Utilization of fixed point theory, especially to Engineering problems, is of prime concern

in recent times. In this article, we aim to firstly establish some original fixed point results in the

metric like spaces and then utilize the same to solve those problems which emphasize primarily
the applications for the existence of the solution of equations arising in Rocket science, Electrical

engineering and, Mechanical engineering. In this article, offered contractive conditions are of general

type, having index l ∈ N on underlying mapping which refine and expand various results in the
existing theory and thereby giving a pathway to applications-based problems. Moreover, to address

conceptual depth within this approach, we supply illustrative examples where necessary, which is,

of course, of interest of Engineers and Mathematicians. Computer simulation is adopted to verify
the contractive conditions giving more-in-depth insight. We suggest some open problems for future

work on the application of fixed point theory.
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1. Introduction and basic facts

These days fixed point theory plays an integral part in applied mathematics and
utilized in various disciplines of science and engineering e.g., optimization theory,
physics, chemistry, computer science, civil engineering, Mechanical Engineering, Eco-
nomics, Medical Science, etc. Recently many researchers focused on the applicative
approach of fixed point theorems. For noteworthy contributions we refer some of
them mentioned below:
• Halabi [4], utilizing the fixed point technique in the area of pattern recognition.
• Abdon and Baleanu [1] modified the nonlinear Schrodinger equation by using the
new Caputo-Liouville derivative with fractional order and established the stability of
the iteration scheme using the fixed point theorem.
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• Ozgur and Karaca [9] introduced the digital version of the Banach fixed point the-
orem and validated a vital application to digital images.
• M. K. Moghadam [7] established the existence of a non-trivial solution for fourth-
order elastic beam equations occurring in structure engineering problems.
• Jung et al. [5] developed fixed point results to ascertain the stability of a functional
equation of the spiral of Theodorus,

f(x+ 1) =

(
1 +

1√
x+ 1

)
f(x).

• Singh et al. [15] utilized their results to the equations arising in the Oscillation of
spring for Mechanical Engineering problem.
• Singh et al. in [14] invoked their results to establish the existence of solution of
first-order periodic boundary value problem

u′(t) = k(t, u(t)), t ∈ I = [0, T ], and u(0) = u(t).

Where T > 0 and k : I ×R→ R is a continuous function.
One of the most important generalizations of metric space is metric like space (in

short mls) introduced by Amini Harandi [3], where the authors replaced the triangular
inequality with the weaker one gives as follows.

Definition 1.1. [3] A function σ : X ×X → [0,∞) is called a metric-like if for all
x, y, z ∈ X, the following conditions are satisfied:
(σ1) σ(x, y) = 0 implies x = y;
(σ2) σ(x, y) = σ(y, x);
(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).
The pair (X,σ) is called a metric-like space. Note that, a metric-like satisfies all the
conditions of metric except that σ(x, x) may be positive for x ∈ X.

For more synthesis on the space along with the concept like Cauchy sequence,
convergence and example etc., we refer the reader to [3]. In 2012, Wardowski [16]
introduced a new contraction called F -contraction by defining certain properties
(F1, F2 and F3) of mapping F : R+ → R and proved a fixed point result as a
generalization of the Banach contraction principle in different way. On the same line
Secelean [13] changed the condition F2 of [16] by F ′2 and later on Piri and Kumam
[10] replaced condition F3 of [16] by F ′3.
In this present work, we take F1 of [16]) and F ′3 of [10] and denote the class of func-
tions satisfying F1 and F ′3 by ∆F .

We note some features of the present work in the following.
• We consider Boyd-Wong type l − F Suzuki contraction and its variants.
• We utilize Boyd-Wong type l − F Suzuki contraction and its variants for the exis-
tence of fixed point.
• We present some revolutionary examples which validate the hypothesis of proved
results.
• Theorems proved in this article generalize several findings in the existing literature.
• Utilizing obtained results, we establish the existence of solution of boundary value
problems, which are mathematical models of Electrical circuits, buckling of a tapered
column, the motion of rocket, and deformation of an elastica.
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• Finally, we discuss an open problem related to our results.
In the process, R, N and N∗ will represent the set of all real numbers, natural

numbers and {0} ∪ N, respectively.
Let Φ be the set of functions φ : [0,∞)→ [0,∞) such that

(1) φ is upper semi-continuous i.e. for any sequence {tn} in [0,∞) such that
tn → t as n→∞, we have lim sup

n→∞
φ(tn) ≤ φ(t);

(2) φ(t) < t for each t > 0.

Let Ψ is the collection of all continuous functions ψ : (0,∞)→ (0,∞).

2. Boyd-Wong type l − F Suzuki contractive mappings and fixed point
results

We start this section by introducing our very first and important subsequent defi-
nition.

Definition 2.1. Let (X,σ) be metric like space. A self mapping T : X → X is said
to be Boyd-Wong type l-F Suzuki contraction of type I, if there exists F ∈ ∆F , ψ ∈ Ψ
and φ ∈ Φ such that for all x, y ∈ X with σ(T l+1x, Ty) > 0,

1

2
σ(T lx, T l+1x) < σ(T lx, y)⇒ F (σ(T l+1x, Ty)) ≤ F

(
φ(Ml(x, y))

)
− ψ

(
Ml(x, y)

)
,

(2.1)
in which

Ml(x, y) = max
{
σ(T lx, y), σ(T lx, T l+1x), σ(y, Ty),

σ(T lx, Ty) + σ(T l+1x, y)

4

}
,

(2.2)
and l ∈ N∗(= {0} ∪ N), such that T 0x = Ix, where I is identity mapping.

Theorem 2.1. Let (X,σ) be a complete metric-like space. If T is Boyd-Wong type
l-F Suzuki contraction of type I . Then T has a unique fixed point x∗ ∈ X.
Proof. Let x0 ∈ X be arbitrary point in X. We construct a sequence {xn} by

Txn = xn+1. (2.3)

If there exists n0 ∈ N such that σ(xn0 , xn0+1) = 0, then xn0 is the desired fixed point
and proof is completed. Then for the subsequent discussion, suppose σ(xn, xn+1) > 0
for every n ∈ N∗ Thus for x = xn−1, y = xn+l, for all n ∈ N∗, we have

σ(T l+1x, Ty) = σ(T l+1xn−1, Txn+l) = σ(xn+l, xn+l+1) > 0, as n+ l ∈ N∗. (2.4)

Hence from (2.4), we have

1

2
σ(T lxn−1, T

l+1xn−1) =
1

2
σ(xn+l−1, xn+l) ≤ σ(xn+l−1, xn+l)

= σ(T lxn−1, xn+l) for all n, l ∈ N∗.
Then by the assumption of the theorem, we have

F (σ(xn+l, xn+l+1)) = F (σ(T l+1xn−1, Txn+l))

≤
(
F (φ(Ml(xn−1, xn+l)))

)
− ψ

(
Ml(xn−1, xn+l)

)
.

(2.5)
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Here

Ml(xn−1, xn+l) = max
{
σ(T lxn−1, xn+l), σ(T lxn−1, T

l+1xn−l), σ(xn+l, Txn+l),

σ(T lxn−1, Txn+l) + σ(T l+1xn−1, xn+l)

4

}
.

With routine calculation, we obtain that

Ml(xn−1, xn+l) = max
{
σ(xn+l−1, xn+l), σ(xn+l, xn+l+1)

}
.

Now, if max
{
σ(xn+l−1, xn+l), σ(xn+l, xn+l+1)

}
= σ(xn+l, xn+l+1). Then from (2.5),

one can get

F (σ(xn+l, xn+l+1)) ≤ F (φ(σ(xn+l, xn+l+1)))− ψ(σ(xn+l, xn+l+1))

< F (σ(xn+l, xn+l+1))− ψ(σ(xn+l, xn+l+1)).

Which is a contradiction in view of (2.4) and the hypothesis of ψ.
Thus we deduce that

max
{
σ(xn+l−1, xn+l), σ(xn+l, xn+l+1)

}
= σ(xn+l−1, xn+l). (2.6)

Then from (2.5) and by the concept of φ and ψ,

F (σ(xn+l, xn+l+1)) ≤ F (φ(σ(xn+l−1, xn+l)))− ψ(σ(xn+l−1, xn+l))

< F (σ(xn+l−1, xn+l)).
(2.7)

In view of F1, it immediately follows that

σ(xn+l, xn+l+1) < σ(xn+l−1, xn+l). (2.8)

Now we claim that u = 0. Suppose to the contrary that u > 0. On making n→∞ in
(2.7), we have F (u) ≤ F (φ(u))− ψ(u) < F (u)− ψ(u). This leads to a contradiction.
Then we must have u = 0. i.e.

lim
n→∞

σ(xn+l, xn+l+1) = 0. (2.9)

Further, we maintain that {xn} is a σ-Cauchy sequence.
Suppose on the contrary that {xn} is not a σ-Cauchy sequence, then there exists
ε > 0 and two sub-sequences {xn(k)} and {xm(k)} of {xn}, such that for every n(k) ≥
m(k) > k,

σ(xm(k)+l, xn(k)+l) ≥ ε (2.10)

or

σ(T l+1xn(k)−1, Txm(k)+l−1) ≥ ε
Now, corresponding to m(k), we can select n(k) in such a manner that it is the
smallest integer with n(k) > m(k) satisfying (2.10).
Thus, we have

σ(xm(k)+l, xn(k)+l−1) < ε.
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Utilizing (2.10), one can obtain

ε ≤ σ(xn(k)+l, xm(k)+l)

≤ σ(xn(k)+l, xn(k)+l−1) + σ(xn(k)+l−1, xm(k)+l)

< σ(xn(k)+l, xn(k)+l−1) + ε.

Thus, we obtain

ε ≤ σ(xn(k)+l, xm(k)+l) < σ(xn(k)+l, xn(k)+l−1) + ε. (2.11)

Passing limit n→∞ on (2.11) with (2.9), we have

lim
n→∞

σ(xn(k)+l, xm(k)+l) = ε. (2.12)

Again for all n ∈ N∗, we have

σ(xn(k)+l+1, xm(k)+l+1) ≤ σ(xn(k)+l+1, xm(k)+l) + σ(xm(k)+l, xm(k)+l+1)

≤ σ(xn(k)+l+1, xn(k)+l) + σ(xn(k)+l, xm(k)+l)

+ σ(xm(k)+l, xm(k)+l+1).

(2.13)

Letting n→∞ to (2.13), one can get

lim
n→∞

σ(xn(k)+l+1, xm(k)+l+1) = ε. (2.14)

From (2.10) and (2.14), we have

σ(T l+1xn(k), Txm(k)+l) > ε > 0

and from (2.9) and (2.11), we must have

1

2
σ(T lxn(k), T

l+1xn(k)) =
1

2
σ(xn(k)+1, xn(k)+l+1) <

ε

2
< σ(T lxn(k), xm(k)+l).

Then by assumption of theorem, we have

F (σ(xn(k)+l+1, xm(k)+l+1)) = F (σ(T l+1xn(k), Txm(k)+l))

≤ F
(
φ(Ml(xn(k), xm(k)+l))

)
− ψ

(
Ml(xn(k), xm(k)+l)

)
.

(2.15)

Here, with elementary calculation, we arrive at

lim
n→∞

Ml(xn(k), xm(k)+l) = max{ε, 0, 0} = ε. (2.16)

Then passing limit sup. as n→∞ to (2.15), one can get from (2.14) and (2.16) that

F (ε) ≤ F (φ(ε))− ψ(ε)

< F (ε)− ψ(ε),

a contradiction since ψ(ε) > 0 as ε > 0.
Hence {xn} is a σ-Cauchy sequence in X. Since (X,σ) is a complete metric-like space,
then there exists x∗ in X such that

lim
n→∞

xn = x∗ or lim
n→∞

xn+l = x∗, l ∈ N∗.

Then
σ(x∗, x∗) = lim

n→∞
σ(xn+l, x

∗) = lim
n,m→∞

σ(xn+l, xm+l) = 0. (2.17)
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Now we assert that, for every n ∈ N,

1

2
σ(xn+l, Txn+l) < σ(xn+l, x

∗) or
1

2
σ(Txn+l, T

2xn+l) < σ(Txn+l, x
∗). (2.18)

Arguing by contradiction, we assume that there exists p ∈ N such that

1

2
σ(xp+l, Txp+l) ≥ σ(xp+l, x

∗) and
1

2
σ(Txp+l, T

2xp+l) ≥ σ(Txp+l, x
∗). (2.19)

Therefore

2σ(xp+l, x
∗) ≤ σ(xp+l, Txp+l) ≤ σ(xp+l, x

∗) + σ(x∗, Txp+l),

this implies that

σ(xp+l, x
∗) ≤ σ(x∗, Txp+l). (2.20)

Utilizing (2.8) and (2.18), we have

σ(Txp+l, T
2xp+l) < σ(xp+l, Txp+l)

≤ σ(xp+l, x
∗) + σ(x∗, Txp+l)

= 2σ(Txp+l, x
∗)

(2.21)

Which is a contradiction in view of (2.19). Thus (2.18) holds.
Consider, if part I of (2.18) is true and σ(x∗, Tx∗) > 0, then one has

F (σ(xn+l+1, Tx
∗)) = F (σ(T l+1xn, Tx

∗))

≤ F (φ(Ml(xn, x
∗)))− ψ(Ml(xn, x

∗)).
(2.22)

Letting n→∞ and employing (2.9) and (2.17), we have

lim
n→∞

(Ml(xn, x
∗) = σ(x∗, Tx∗).

Then from (2.22), on passing limit sup. as n→∞, we get

F (σ(x∗, Tx∗)) ≤ F (φ(σ(x∗, Tx∗)))− ψ(σ(x∗, Tx∗))

< F (σ(x∗, Tx∗))− ψ(σ(x∗, Tx∗)),

which is a contradiction in light of F1 and ψ, thus we must have

σ(x∗, Tx∗) = 0 =⇒ Tx∗ = x∗

i.e. x∗ is a fixed point of T .
If part II of (2.18) is true and σ(x∗, Tx∗) > 0 then employing a similar approach as
above, we conclude that Tx∗ = x∗. Hence x∗ is a fixed point of T .
With elementary and regular calculation one can easily establish the uniqueness of
obtained fixed point. �
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2.1. Consequences of theorems. Subsequent result is an easy consequence of
Theorem 2.1

Corollary 2.1. Let (X,σ) be a complete metric-like space. A mapping T : X → X
be such that, for all x, y ∈ X with σ(T l+1x, Ty) > 0,

1

2
σ(T lx, T l+1x) < σ(T lx, y)⇒ F (σ(T l+1x, Ty)) ≤ F

(
αMl(x, y)

)
− ψ

(
Ml(x, y)

)
,

(2.23)
where Ml(x, y) is defined by (2.2), F ∈ ∆F , ψ ∈ Ψ, l ∈ N∗ and 0 ≤ α < 1. Then T
has a unique fixed point x∗ ∈ X.

Proof. Proof is immediate by putting φ(t) = αt for 0 ≤ α < 1 in Theorem 2.1. �

If we put ψ(t) = τ , where τ > 0 is constant in Theorem 2.1, then following corollary
is obtained which is considered as φ− l Wardowski type result in metric-like spaces.

Corollary 2.2. Let (X,σ) be a complete metric-like space. A mapping T : X → X
be such that, for all x, y ∈ X with σ(T l+1x, Ty) > 0,

1

2
σ(T lx, T l+1x) < σ(T lx, y)⇒ F (σ(T l+1x, Ty)) ≤ F

(
αφ(Ml(x, y)

)
− τ, (2.24)

where Ml(x, y) is defined by (2.2), F ∈ ∆F , φ ∈ Φ, l ∈ N∗, τ > 0 and 0 ≤ α < 1.
Then T has a unique fixed point x∗ ∈ X.

Remark 2.1. By choosing function φ, ψ and the value of l suitably in Theorem 2.1
and Corollaries 2.1, 2.2, one can deduce a multitude of results from the existing
literature which includes many celebrated results i.e., if we put ψ(t) = τ > 0 and
l = 0 in Corollary 2.1, we get Theorem(2.2) of [6] and accordingly other results. Due
to analogy, we skip the mentioning of all the effects here.

2.2. Validation of results. To show the substantiation of our findings, we expound
an example which demonstrates the superiority of our results.

Example 2.1. Let X = [0, 1] and let the function σ : X2 → [0,∞) be defined by
σ(x, y) = x2 + y2, for all x, y ∈ X. It is clear that σ(x, y) is a complete metric-like
space.

Let the mapping T : X → X be defined by Tx = x2

1+x . In order to check the validity

of condition (2.1) with F (p) = log p+ p, clearly F ∈ ∆F . Let φ : (0,∞)→ (0,∞) be
given by φ(t) = 50t

51 and function ψ : [0,∞)→ [0,∞) be defined by ψ(t) = t
200 . Here

we must notice that

σ(T l+1x, Ty) > 0 if (x = 0 ∧ y > 0) ∨ (x > 0 ∧ y = 0) ∨ (x > 0, y > 0).

Also for all l ∈ N∗ and x ∈ X, it is evident that T l+1x ≤ T lx, then we have

1

2
σ(T lx, T l+1x) < σ(T lx, y).

Then subsequent cases are discussed.
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Case I. When x = 0 and y > 0, then for sure T lx = 0 for l ∈ N∗. In this case we
calculate the terms involved in the inequality (2.1), we obtain that the left hand side
of (2.1) becomes

F (σ(T l+1x, Ty)) = log

(
y2

1 + y

)2

+

(
y2

1 + y

)2

and right hand side of (2.1) comes out

F
(
φ(Ml(x, y))

)
− ψ

(
Ml(x, y)

)
=

50

51

(
y2 +

(
y2

1 + y

)2)

+ log

(
50

51

(
y2 +

(
y2

1 + y

)2))
−
y2 +

(
y2

1+y

)2

200
.

From the following figure, it is verified that right hand side with red surface surpassing
the purple surface representing left hand side, thus left hand side is less than right
hand side and Condition (2.1) is verified in this case.

Figure 1. Domination of right hand side over left hand side for Case I

Case II. For x > 0 and y = 0. Calculating as above for l = 0, with routine calculation
one can easily observe that left hand side is dominated by right hand side for l = 0.
Similar result obtain when we substitute different values of l ∈ N in this case.
Case III. When x > 0, y > 0, then without loss of generality we assume that x > y,
then following sub-cases arise.
Sub-Case I. If x > y > T lx > Ty, then for l = 0,, then it is easily concluded that
for all x, y ∈ X, equation (2.1) is satisfied. Furthermore for all l ∈ N in this sub-case,
the same result is obtained.
Sub-Case II. If x > T lx > y > T l+1x, then the similar conclusion as in sub-case I
is obtained.
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Sub-Case III. If x > y > Ty > T lx, then Figure 2 is showing the validity of (2.1)
in this sub-case.

Figure 2. plot of left hand side and right hand side of contractive
condition for sub-case III when l=0

Similarly for other values of l ∈ N∗ and for all possible sub-cases, one can easily
deduce that condition (2.1) is satisfied.
Thus T is a Boyd-Wong type l−F - Suzuki contraction of type I.Thus all the conditions
of Theorem 2.1 are fulfilled and hence T has a unique fixed point x = 0 which is
demonstrated in the Figure 3.

Figure 3. Plot showing that x=0 is the unique fixed point in [0,1]
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3. Applications of fixed point results

3.1. Application to electrical engineering through a fractional differential
equation. We observe that many standard Engineering and physics models are today
employing fractional differential equations. In [2], the authors maintained the con-
nection between basic equations of electric circuits involving resistors, capacitors, and
inductors and fractional differential equations. They analysed the following equations
for three different types of circuits

I ′′(t) +
I(t)

LC
= 0 (3.1)

CV ′(t) +
V (t)

R
= 0 (3.2)

LI ′(t) +RI(t) = V (3.3)

where I(t) is the current in the circuit at time t, L is the inductance, C, the capaci-
tance, R is the resistance and V is the voltage drop across the circuit. Equation (3.1)
represents the LC (inductor-capacitor) circuit, equation (3.2) represents RC(resistor-
capacitor) circuit and equation (3.3) represents LR (inductor-resistor) circuit.
Using suitable replacements, authors [2] convert the above equations as fractional dif-
ferential equation of the type (3.4). Thus , in this section, we establish the existence
of solution of equation of various electrical circuits through the presence of solution
of fractional differential equation.
Firstly, some definitions from the theory of fractional calculus are provided.
The Reiman-Liouville fractional derivative of order β > 0 for a function u ∈ C[0, 1]
is defined by

Dβu(t) =
1

Γ(n− β)

dn

dtn

∫ t

0

u(s) ds

(t− s)β−n+1

provided that the right hand side is point-wise defined on [0,1]. Where n = [β] + 1
and [β] means the integral part of the number β and Γ is the Euler gamma function.
Next, consider the following fractional boundary value problem

cDαu(t) + f(t, u(t)) = 0, 0 ≥ t ≥ 1, 1 < α ≥ 2;
u(0) = u(1) = 0,

(3.4)

where f : [0, 1] × R → R is continuous function and cDα represents the Caputo
fractional derivative of order α and it is defined by

cDα =
1

Γ(n− α)

∫ t

0

u(n)(s) ds

(t− s)α−n+1
.

Consider the space X = C([0, 1],R) of continuous functions defined on [0,1] such that
X is endowed with the metric-like mapping

σ(u, v) = sup
t∈[0,1]

(|u(t)|+ |v(t)|) , u, v ∈ C([0, 1],R).

Clearly (X,σ)is a complete metric-like space.

Theorem 3.1. Consider, the nonlinear fractional differential equation (3.4). Assume
that the following assertions hold:
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(i) there exists τ > 0, ε ∈ [0, 1) and mapping T : X → X such that for all x, y ∈
C([0, 1],R) and for l ∈ N ,

|f l+1(t, x)|+ |f(t, y)| ≤ e−τ εmax{|T l(x)|+ |y|, |T l(x)|+ |T l+1(x)|,

|T l(y)|+ |y|, |T
l(x)|+ |T l+1(x)|+ |T l(y)|+ |y|

4
};

(3.5)

(ii) sup
t∈[0,1]

∫ 1

0

(G(t, s))
l+1

ds ≤ sup
t∈[0,1]

∫ 1

0

G(t, s) ds ≤ 1.

Then the problem (3.4) has a unique solution in X.

Proof. The problem (3.4) is equivalent to the integral equation

x(t) =

∫ 1

0

G(t, s)f(s, x(s)) ds,

for all x ∈ X and t ∈ [0, 1]. In which

G(t, s) =


[t(1− s)]α−1 − (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ T,

[t(1− s)]α−1

Γ(α)
, 0 ≤ t ≤ s ≤ T.

Consider the mapping T : X → X defined by

Tx(t) =

∫ 1

0

G(t, s)f(s, x(s)) ds.

It is easy to notice that if u∗ ∈ X is a fixed point of T then x∗ is a solution of the
problem (3.4).
Now, for x, y ∈ X, we obtain

|T l+1x(t)|+ |Ty(t)| =
[∣∣∣∣∫ 1

0

G(t, s)f(s, x(s)) ds

∣∣∣∣]l+1

+

∣∣∣∣∫ 1

0

G(t, s)f(s, y(s)) ds

∣∣∣∣
≤
∫ 1

0

G(t, s)|f l+1(s, x(s))|+ |f(s, y(s))|ds

≤
∫ 1

0

G(t, s) e−τ ε

max
{
|T l(x)|+ |y|, |T l(x)|+ |T l+1(x)|, |T l(y)|+ |y|, |T

l(x)|+|T l+1(x)|+|T l(y)|+|y|
4

}
ds

≤
(
εe−τ

∫ 1

0
G(t, s)ds

)
max

{
σ(T lx, y), σ(T lx, T l+1x), σ(y, Ty), σ(T

lx,Ty)+σ(T l+1x,y)
4

}
.

Now, on taking supremum over [0, 1], finally we get

σ(T l+1x, Ty) ≤ εe−τMl(x, y),

where Ml(x, y) is defined in (2.2). By passing through a logarithms, we have

log σ(T l+1x, Ty) ≤ log
(
εe−τMl(x, y)

)
,

which implies
log σ(T l+1x, Ty) ≤ log (εMl(x, y))− τ.
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This conclude that the contractive Condition (2.1) of Theorem 2.1 is satisfied with
F (t) = log(t), φ(u) = ε and ψ(p) = τ > 0. Hence T has a unique fixed point in X,
and therefore the fractional equation (3.4) has a unique solution. �

3.2. Application to buckling of a tapered column. Consider the stability of a
tapered column of length L fixed at the base x = 0 at the top x = L. Apply an axial
compressive load P at the top of the column. The cross-section of the column is of
circular, with radii r0 at the base and r1 < r0 at the top, respectively, varying linearly
along the length x. The modulus of elasticity for the column material is E. Then by
the routine calculation( please see [17]), the buckling load Pcr when the column loses
its stability is given by the following Bessel’s type differential equationξ

2 d
2η

dξ2
+ ξ

dη

dξ
= K(ξ, η(ξ));

η(0) = η(1) = 0,

(3.6)

where k : [0, 1]×R+ → R is a continuous function.
Utilizing the fixed point result obtained in this article, we can find the existence of
solution of (3.6).
Above problem (3.6) is equivalent to the integral equation

η(t) =

∫ 1

0

G(ξ, p)K(p, η(p))dp, ξ ∈ [0, 1], (3.7)

where G(ξ, p) is the Green’s function

G(ξ, p) =


p

2ξ
(1− ξ2), 0 ≤ p < ξ ≤ 1;

ξ

2p
(1− p2), 0 ≤ ξ < p ≤ 1.

(3.8)

Let X = C(I), (I = [0, 1]) be the space of all continuous functions defined on I. For
an arbitrary η ∈ X, we define

‖η1 − η2‖τ = sup
ξ∈[0,1]

{|η1(ξ)− η2(ξ)|} where τ > 0. (3.9)

Define metric-like σ : X ×X → R+ by

σ(x, y) = ‖x− y‖τ + ‖x‖τ + ‖y‖τ , for all x, y ∈ X, (3.10)

where ‖x− y‖τ is defined by (3.9).
It is clear that equivalent metric to metric-like space is given by

dσ(x, y) = 2σ(x, y)− σ(x, x)− σ(y, y) = 2 ‖x− y‖τ (by using (3.9)).

Clearly dσ(x, y) is complete and hence (X,σ) is also complete.
Consider the self map T : X → X defined by

T (η(ξ)) =

∫ 1

0

G(ξ, p)f(p, η(p))dp, ξ ∈ I and for all η ∈ X. (3.11)
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It is evident that η is a solution of (3.7) if and only if η is fixed point of T . Now
succeeding theorem is established for the guarantee of the existence of fixed point
of T .

Theorem 3.2. Suppose the following conditions hold:

(1) there exists τ > 0 and u : I → R+, such that

|f(p, η1)− f(p, η2)| ≤ 10e−τu(p)|η1 − η2| for every p ∈ I and η1, η2 ∈ R+;

(2) there exists a continuous function v : I → R+ such that

|f(p, η1)| ≤ 10e−τv(p)|η1| for every p ∈ I and η1 ∈ R+;

(3) sup
p∈[0,1]

u(p) = α1 <
1
3 and sup

p∈[0,1]
v(p) = α2 <

1
3 .

Then the integral equation has a solution in X.

Proof. With the routine calculation as in Theorem 3.1 . Subsequently T has a fixed
point which is the solution of Integral equation (3.7) and hence the equation represent
the buckling load when the column loses its stability has a solution. �

3.3. Application to ascending motion of Rocket. Consider the ascending mo-
tion of a rocket of initial motion m0. The fuel in the rocket consumed at a constant
rate q = −dm

dt and is expelled at a constant speed u relative to rocket. At any instance
t, the mass of rocket is m(t) = m0 − qt. Then the equation of motion of a rocket
moving upward at high speed during the propelled phase is given by (see [17]).

m(t)
dv(t)

dt
+ βv2(t) +m(t)g − qu = 0.

Which is further by utilizing the substitution v(t) = m(t)V̇ (t)
βV (t) , reduced to equation of

the form (3.6) (Please refer [17]). Thus on the similar line as in Application (3.2), one
can easily establish the existence of solution of the equation representing ascending
motion of rocket.

3.4. Application of fixed point theorem to deformation of an elastica. The
transverse deformation of a thin elastic in-extensional rod subjected to an axial loading
and clamped at its end is governed by the following boundary value problem.

−d
2η

ds2
= f(s, η(s)), 0 < s < 1;

η(0) = η(1) = 0,
(3.12)

here θ is the angle that the deformed rod makes with the initial undeformed axis and
f : [0, 1]×R→ R is a continuous function.
Aforementioned problem (3.12) is equivalent to the integral equation

θ(t) =

∫ 1

0

G(s, p)f(p, θ(p))dp, ∀ t ∈ [0, 1], (3.13)
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where G(s, p) is Green’s function, given by

G(s, p) =

{
s(1− p) if 0 ≤ s ≤ p ≤ 1,

p(1− s) if 0 ≤ p ≤ s ≤ 1
(3.14)

Let X = C(I), (I = [0, 1]) be the space of all continuous functions defined on I. For
an arbitrary θ ∈ X, we define

‖θ1 − θ2‖τ = sup
s∈[0,1]

{|θ1(s)− θ2(s)|} where τ > 0. (3.15)

Now onwards, following the process applied in Application (3.2), we conclude that the
function F : R+ → R defined by F (β) = log(β) for every β ∈ C(I) and for τ > 0 is in
∆F . Thus all the conditions of Corollary 2.2 are satisfied with θ(t) = α t, 0 ≤ α < 1
and for l = 0. Consequently T has a fixed point which is the solution of Integral
equation (3.13) and hence the equation represent the deformation of an elastica has
a solution.
Open problem: For further applications of results obtained in this article, an open
problem is suggested as follows:
Consider the functional differential equation of the form

x′(t) = −
∫ t

t−r(t)
p(t, v)G(v, x(v))dv,

where r(t) : [0,∞) → [0,∞) and p(t, v) : [0,∞) × [r0,∞) → R are continuous func-
tions. Moreover there exists an l > 0 such that G satisfies a Lipschitz condition
with respect to x on [r0,∞)× [0, l], that is, there exists a constant L > 0, such that
|G(v, x)−G(v, y)| ≤ L|x− y| for v ≥ r0 and x, y ∈ [0, l].
Whether from our results, the existence of the solution of the above functional differ-
ential equation can achieve.
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[12] I.A. Rus, A. Petruşel, M.A. Şerban, Weakly Picard operators: equivalent definitions, applica-

tions and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.

[13] N.A. Secelean, Iterated function system consisting of F -contractions, Fixed Point Theory Appl.,
2013(2013), 277.

[14] D. Singh, V. Chauhan, R. Wangkeeree, Geraghty type generalized F-contractions and related

applications in partial b-metric spaces, Int. J. Anal., 2017(2017), 14.
[15] D. Singh, V. Joshi, M. Imdad, P. Kumam, Fixed point theorems via generalized F-contraction

with applications to functional equations occurring in dynamic programming, J. Fixed Point

Theory Appl., 19(2)(2017), 1453-1479.
[16] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces,

Fixed Point Theory Appl., 2012(2012), 94.
[17] Wei-Chau Xie, Differential Equations for Engineers, Cambridge University Press, 2010.

Received: October 26, 2019; Accepted: December 20, 2019.



610 VISHAL JOSHI, DEEPAK SINGH AND ADITYA SINGH


