Fixed Point Theory, 21(2020), No. 2, 549-560

DOI: 10.24193/fpt-ro.2020.2.39

 $http://www.math.ubbcluj.ro/^{\sim}nodeacj/sfptcj.html$

HALPERN TYPE ITERATION WITH TWO MAPPINGS IN A COMPLETE GEODESIC SPACE

HIROYUKI HIRONO* AND YASUNORI KIMURA**

*Department of Information Science, Toho University Miyama, Funabashi, Chiba 274-8510, Japan E-mail: 6519007h@st.toho-u.jp

**Department of Information Science, Toho University Miyama, Funabashi, Chiba 274-8510, Japan E-mail: yasunori@is.sci.toho-u.ac.jp

Abstract. In this paper, we show a strong convergence theorem for the Halpern iteration procedure in a complete CAT(1) space with two quasinonexpansive Δ -demiclosed mappings. We consider a sequence of coefficients for convex combination in the iterative scheme and find a certain discontinuity of the limit.

Key Words and Phrases: CAT(1) space, quasinon expansive mapping, Δ -demiclosed mapping, Halpern iteration.

2010 Mathematics Subject Classification: 47H09, 47H10.

1. Introduction

Halpern type method is a technique to approximate a fixed point of a nonlinear mapping and has been studied by many mathematicians in various spaces. In 1992, strong convergence of a Halpern type iteration with a nonexpansive mapping was obtained by Wittmann [8] in a Hilbert space. In 2010, Saejung [6] proved a convergence theorem in a complete CAT(0) space. In 2013, Kimura and Satô [4] proved the same result in the setting of a complete CAT(1) space.

On the other hand, in 2015 Nakagawa [5] proved the following theorem with two strongly quasinonexpansive and Δ -demiclosed mappings in complete CAT(1) space:

Theorem 1.1. Let X be a complete CAT(1) space with $d(v,v') < \pi/2$ for all $v,v' \in X$ and S,T strongly quasinonexpansive and Δ -demiclosed mappings from X into itself with $F = F(S) \cap F(T) \neq \emptyset$. Let P_F be a metric projection from X onto F. Let $\{\alpha_n\}, \{\beta_n\} \subset [0,1[$ be real sequences satisfying $\alpha_n \to \alpha \in [0,1[$, $\beta_n \to 0$ and

$$\sum_{n=1}^{\infty} \beta_n = \infty.$$

Define $\{x_n\} \subset X$ by $x_1 = u \in X$ and

$$x_{n+1} = \alpha_n(\beta_n u \oplus (1 - \beta_n)Sx_n) \oplus (1 - \alpha_n)(\beta_n u \oplus (1 - \beta_n)Tx_n)$$

for all $n \in \mathbb{N}$. Then $\{x_n\}$ converges to $P_F u$.

In the studies of this kind of iterative schemes, we often consider the conditions of the coefficient sequences generating the approximating sequence. We focus on the limit $\alpha \in]0,1[$ of a sequence $\{\alpha_n\}$, and we attempt to deal with the extremal cases $\alpha=0$ or 1, and other cases, simultaneously.

In this paper, we obtain that $\{x_n\}$ converges to a fixed point of T or S and its limit point depend on the limit of the coefficient sequence $\{\alpha_n\}$. From this result, we find a certain discontinuity of the limit of the iterative sequence concerning the coefficient sequence at the endpoints of [0,1].

2. Preliminaries

Let X be a metric space. For $x,y\in X$, a mapping $\gamma:[0,l]\to X$ is called a geodesic with endpoints x,y if γ satisfies $\gamma(0)=x,$ $\gamma(l)=y$ and $d(\gamma(s),\gamma(t))=|s-t|$ for all $s,t\in[0,l]$. If a geodesic with endpoints x,y exists for any $x,y\in X$, then we call X a geodesic metric space. Moreover, if a geodesic exists uniquely for each $x,y\in X$, then we call X a uniquely geodesic space. In this case, the image [x,y] of γ is uniquely detarmined for every $x,y\in X$ and it is called a geodesic segment joining x and y.

Let X be a uniquely geodesic metric space such that $d(v,v') < \pi/2$ for all $v,v' \in X$. A geodesic triangle is defined by $\triangle(x,y,z) = [x,y] \cup [y,z] \cup [z,x]$. Let \mathbb{S}^2 be the two-dimentional unit sphere in \mathbb{R}^3 . For $\bar{x},\bar{y},\bar{z} \in \mathbb{S}^2$, a triangle $\overline{\triangle}(\bar{x},\bar{y},\bar{z})$ in \mathbb{S}^2 is called a camparison triangle for $\triangle(x,y,z)$ if

$$d_{\mathbb{S}^2}(\bar{x},\bar{y}) = d(x,y), \ d_{\mathbb{S}^2}(\bar{y},\bar{z}) = d(y,z), \ d_{\mathbb{S}^2}(\bar{z},\bar{x}) = d(z,x).$$

A point $\bar{p} \in \overline{\Delta}(\bar{x}, \bar{y}, \bar{z})$ is called a comparison point for $p \in [y, z]$ on the edge of $\Delta(x, y, z)$ if $\bar{p} \in [\bar{y}, \bar{z}]$ and $d(y, p) = d(\bar{y}, \bar{p})$. If, for any $p, q \in \Delta(x, y, z)$ and their comparison points $\bar{p}, \bar{q} \in \overline{\Delta}(\bar{x}, \bar{y}, \bar{z})$, the inequality $d(p, q) \leq d_{\mathbb{S}^2}(\bar{p}, \bar{q})$ is satisfied for all triangles in X, then X is called a CAT(1) space.

Let X be a geodesic metric space and $\{x_n\} \subset X$ a bounded sequence. For $x \in X$, we put

$$r(x,\{x_n\}) = \limsup_{n \to \infty} d(x,x_n) \text{ and } r(\{x_n\}) = \inf_{x \in X} r(x,\{x_n\}).$$

If there exists $x \in X$ such that $r(x, \{x_n\}) = r(\{x_n\})$, we call x an asymptotic center of $\{x_n\}$. Let $\{x_n\}$ be a bounded sequence of X and $x_0 \in X$. If x_0 is a unique asymptotic center of all subsequences of $\{x_n\}$, then we say that $\{x_n\}$ is Δ -converges to x_0 . We denote it by $x_n \stackrel{\Delta}{\longrightarrow} x_0$. Let X be a CAT(1) space and T a mapping from X into itself. If $x_n \stackrel{\Delta}{\longrightarrow} x_0 \in X$ and $\lim_{n\to\infty} d(Tx_n, x_n) = 0$ imply $x_0 \in F(T)$, we say T is Δ -demiclosed.

Let X be a metric space and $T: X \to X$. The set of all fixed points of T is denoted by F(T), that is $F(T) = \{z \in X : Tz = z\}$. A mapping T with $F(T) \neq \emptyset$ is said to be quasinonexpansive if $d(Tx,z) \leq d(x,z)$ for any $x \in X$ and F(T). Further, T is said to be strongly quasinonexpansive if it is quasinonexpansive and, for every

 $p \in F(T)$ and every sequence $\{x_n\}$ in X satisfying that $\sup_{n \in \mathbb{N}} d(x_n, p) < \pi/2$ and $\lim_{n \to \infty} (\cos d(x_n, p) / \cos d(Tx_n, p)) = 1$, it follows that $\lim_{n \to \infty} d(x_n, Tx_n) = 0$.

Let X be a CAT(1) space such that $d(v,v') \leq \pi/2$ for every $v,v' \in X$. Let F be a nonempty closed convex subset of X. Then, for any $x \in X$, there exists unique $p_x \in F$ such that $d(x,p_x) = \inf_{y \in F} d(x,y)$. Therefore we can define a mapping $P_F : X \to F$ by $P_F x = p_x$ for $x \in X$, and it is called a metric projection onto F.

3. Tools for the main results

In this section, we introduce some tools for the main theorems.

Lemma 3.1 ([1], [7]). Let $\{\alpha_n\} \subset [0, \infty[, \{d_n\} \subset \mathbb{R} \text{ and } \{\gamma_n\} \subset]0, 1[\text{ such that }$

$$\sum_{n=1}^{\infty} \gamma_n = \infty.$$

Define a set $\Phi = \{\varphi : \mathbb{N} \to \mathbb{N}, \text{ nondecreasing and } \lim_{i \to \infty} \varphi(i) = \infty\}$. Suppose that

$$a_{n+1} \leq (1 - \gamma_n)a_n + \gamma_n d_n$$

for any $n \in \mathbb{N}$. If $\overline{\lim}_{i \to \infty} d_{\varphi(i)} \leq 0$ for any $\varphi \in \Phi$ satisfying

$$\underline{\lim_{i \to \infty}} (a_{\varphi(i+1)} - a_{\varphi(i)}) \ge 0,$$

then $\lim_{n\to\infty} a_n = 0$.

Lemma 3.2 (Kimura and Satô [4]). Let X be a complete CAT(1) space such that $d(v, v') < \pi/2$ for every $v, v' \in X$. Let $\alpha \in [0, 1]$ and $u, y, z \in X$. Then

$$1 - \cos d(\alpha u \oplus (1 - \alpha)y, z)$$

$$\leq (1-\beta)(1-\cos d(y,z)) + \beta \left(1 - \frac{\cos d(u,z)}{\sin d(u,y)\tan(\frac{\alpha}{2})d(u,y)) + \cos d(u,y)}\right),$$

where

$$\beta = \begin{cases} 1 - \frac{\sin((1-\alpha)d(u,y))}{\sin d(u,y)} & (u \neq y), \\ \alpha & (u = y). \end{cases}$$

Lemma 3.3 (Nakagawa [5]). Let θ be a real number in $]0, \pi/2[$ and $\{\beta_n\}$ a real sequence in]0,1[such that $\lim_{n\to\infty}\beta_n=0$. Then the following holds:

$$\lim_{n \to \infty} \frac{1 - \cos(\beta_n \theta)}{\beta_n} = 0.$$

Lemma 3.4 (Nakagawa [5]). Suppose $\{s_n\}$ and $\{t_n\} \subset [-\infty, 0]$ satisfy

$$\lim_{n \to \infty} (s_n + t_n) = 0.$$

Then $\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n = 0$.

Lemma 3.5 (He, Fang, Lopez, and Li [3]). Let X be a complete CAT(1) space and $u \in X$. If a sequence $\{x_n\}$ in X satisfies that $\overline{\lim}_{n\to\infty} d(u,x_n) < \pi/2$ and $x_n \stackrel{\triangle}{\to} x \in X$, then

$$\underline{\lim_{n\to\infty}} d(u,x_n) \ge d(u,x).$$

Lemma 3.6 (Kimura and Satô [4]). Let $\triangle(x,y,z)$ be a geodecic triangle in a CAT(1) space such that $d(x,y)+d(y,z)+d(z,x)<2\pi$. Let $u=tx\oplus(1-t)y$ for some $t\in[0,1]$. Then

$$\cos d(u,z) \ge t \cos d(x,z) + (1-t) \cos d(y,z).$$

Lemma 3.7 (Nakagawa [5]). Let X be a complete CAT(1) space such that $d(v,v') < \pi/2$ for every $v,v' \in X$ and $u \in X$. Let T be a Δ -demiclosed mapping from X into itself such that $F(T) \neq \emptyset$ is closed and convex. Let $\{x_n\} \subset X$ such that $\overline{\lim}_{n\to\infty} d(u,x_n) < \pi/2$. If $d(x_n,Tx_n) \to 0$, then

$$\underline{\lim}_{n \to \infty} d(u, x_n) \ge d(u, P_{F(T)}u),$$

where $P_{F(T)}$ is a metric projection from X onto F(T).

4. Main results

In this section, we prove our main results. We begin with the following lemma, which is essentially obtained by Nakagawa [5].

Lemma 4.1. Let $\{\alpha_n\}, \{\beta_n\} \in]0,1[$ such that $\sum_{n=1}^{\infty} \beta_n = \infty$, and let $\{d_n\} \in [0,\pi/2[$ such that $M = \sup_{n \in \mathbb{N}} d_n < \pi/2$. Then

$$\sum_{n=1}^{\infty} (\alpha_n \sigma_n + (1 - \alpha_n) \tau_n) = \infty,$$

where

$$\sigma_{n} = \begin{cases} 1 - \frac{\sin(1 - \beta_{n})d_{n}}{\sin d_{n}} & (d_{n} \neq 0), \\ \beta_{n} & (d_{n} = 0), \end{cases}$$

$$\tau_{n} = \begin{cases} 1 - \frac{\sin(1 - \beta_{n})d'_{n}}{\sin d'_{n}} & (d'_{n} \neq 0), \\ \beta_{n} & (d'_{n} = 0). \end{cases}$$

The following Theorem generalizes Theorem 1.1. We do not assume $\{\alpha_n\}$ to be convergent.

Theorem 4.2. Let X be a complete CAT(1) space such that $M = \sup_{p,q \in X} d(p,q) < \pi/2$. Let S,T be strongly quasinonexpansive and Δ -demiclosed mappings from X into itself with $F = F(S) \cap F(T) \neq \emptyset$. Let P_F be a metric projection from X onto F. Let

$$\{\alpha_n\} \subset [a,b] \subset]0,1[$$
 and $\{\beta_n\} \subset]0,1[$ satisfying $\beta_n \to 0$ and $\sum_{n=1}^{\infty} \beta_n = \infty$. Define $\{x_n\} \subset X$ by $x_1 = u \in X$ and

$$s_n = \beta_n u \oplus (1 - \beta_n) S x_n,$$

$$t_n = \beta_n u \oplus (1 - \beta_n) T x_n,$$

$$x_{n+1} = \alpha_n s_n \oplus (1 - \alpha_n) t_n$$

for all $n \in \mathbb{N}$. Then $\{x_n\}$ converges to $P_F u$.

Proof. Put $p = P_F u$,

$$a_{n} = 1 - \cos d(x_{n}, p),$$

$$b_{n} = 1 - \frac{\cos d(u, p)}{\sin d(u, Sx_{n}) \tan(\frac{\beta_{n}}{2} d(u, Sx_{n})) + \cos d(u, Sx_{n})},$$

$$c_{n} = 1 - \frac{\cos d(u, p)}{\sin d(u, Tx_{n}) \tan(\frac{\beta_{n}}{2} d(u, Tx_{n})) + \cos d(u, Tx_{n})},$$

$$\sigma_{n} = \begin{cases} 1 - \frac{\sin(1 - \beta_{n}) d(u, Sx_{n})}{\sin d(u, Sx_{n})} & (u \neq Sx_{n}), \\ \beta_{n} & (u = Sx_{n}), \end{cases}$$

$$\tau_{n} = \begin{cases} 1 - \frac{\sin(1 - \beta_{n}) d(u, Tx_{n})}{\sin d(u, Tx_{n})} & (u \neq Tx_{n}), \\ \beta_{n} & (u = Tx_{n}), \end{cases}$$

for $n \in \mathbb{N}$. Since $\alpha_n \sigma_n + (1 - \alpha_n) \tau_n > 0$ for any $n \in \mathbb{N}$, by Lemmas 3.2 and 3.6, we have

$$\begin{aligned} a_{n+1} &= 1 - \cos d(\alpha_n s_n \oplus (1 - \alpha_n) t_n, p) \\ &\leq 1 - (\alpha_n \cos d(s_n, p) + (1 - \alpha_n) \cos d(t_n, p)) \\ &= \alpha_n (1 - \cos d(s_n, p)) + (1 - \alpha_n) (1 - \cos d(t_n, p)) \\ &\leq \alpha_n ((1 - \sigma_n) a_n + \sigma_n b_n) + (1 - \alpha_n) ((1 - \tau_n) a_n + \tau_n c_n) \\ &= (1 - (\alpha_n \sigma_n + (1 - \alpha_n) \tau_n)) a_n \\ &+ (\alpha_n \sigma_n + (1 - \alpha_n) \tau_n) \left(\frac{\alpha_n \sigma_n b_n + (1 - \alpha_n) \tau_n c_n}{\alpha_n \sigma_n + (1 - \alpha_n) \tau_n} \right) \end{aligned}$$

for any $n \in \mathbb{N}$. To apply Lemma 3.1, we will show the following:

(i)
$$\sum_{n=1}^{\infty} (\alpha_n \sigma_n + (1 - \alpha_n) \tau_n) = \infty,$$

(ii)
$$\overline{\lim}_{i\to\infty} \left(\frac{\alpha_{\varphi(i)}\sigma_{\varphi(i)}b_{\varphi(i)} + (1-\alpha_{\varphi(i)})\tau_{\varphi(i)}c_{\varphi(i)}}{\alpha_{\varphi(i)}\sigma_{\varphi(i)} + (1-\alpha_{\varphi(i)})\tau_{\varphi(i)}} \right) \leq 0$$
 for any nondecreasing functions $\varphi: \mathbb{N} \to \mathbb{N}$ satisfying $\lim_{i\to\infty} \varphi(i) = \infty$ and
$$\lim_{i\to\infty} (a_{\varphi(i)+1} - a_{\varphi(i)}) \geq 0.$$

The condition (i) is a direct result from Lemma 4.1. We consider (ii). For $\varphi : \mathbb{N} \to \mathbb{N}$ satisfying the conditions in (ii), we write $n_i = \varphi(i)$ for any $i \in \mathbb{N}$. Then it follows that $\underline{\lim}_{i \to \infty} (a_{n_i+1} - a_{n_i}) \geq 0$, and we get

$$\begin{split} 0 &\leq \varliminf_{i \to \infty} \left(\alpha_{n_i+1} - a_{n_i} \right) \\ &= \varliminf_{i \to \infty} \left(\cos d(x_{n_i}, p) - \cos d(x_{n_i+1}, p) \right) \\ &\leq \varliminf_{i \to \infty} \left(\cos d(x_{n_i}, p) - \left(\alpha_{n_i} \cos d(s_{n_i}, p) + (1 - \alpha_{n_i}) \cos d(t_{n_i}, p) \right) \right) \\ &= \varliminf_{i \to \infty} \left(\alpha_{n_i} \left(\cos d(x_{n_i}, p) - \cos d(s_{n_i}, p) \right) \right) \\ &+ (1 - \alpha_{n_i}) \left(\cos d(x_{n_i}, p) - \cos d(t_{n_i}, p) \right) \right) \\ &\leq \varliminf_{i \to \infty} \left(\alpha_{n_i} \left(\cos d(x_{n_i}, p) - \cos d(Sx_{n_i}, p) \right) \right) \\ &+ (1 - \alpha_{n_i}) \left(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p) \right) \right) \\ &= \varliminf_{i \to \infty} \left(\alpha_{n_i} \left(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p) \right) \right) \\ &\leq \varlimsup_{i \to \infty} \left(\alpha_{n_i} \left(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p) \right) \right) \\ &\leq \varlimsup_{i \to \infty} \left(\alpha_{n_i} \left(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p) \right) \right) \\ &\leq \varlimsup_{i \to \infty} \left(\alpha_{n_i} \left(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p) \right) \right) \\ &\leq 0. \end{split}$$

Therefore, we have

$$\lim_{i \to \infty} (\alpha_{n_i}(\cos d(x_{n_i}, p) - \cos d(Sx_{n_i}, p)) + (1 - \alpha_{n_i})(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p))) = 0.$$

Further, by Lemma 3.4, we get

$$\lim_{i \to \infty} \alpha_{n_i}(\cos d(x_{n_i}, p) - \cos d(Sx_{n_i}, p))$$

$$= \lim_{i \to \infty} (1 - \alpha_{n_i})(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p)) = 0.$$

On the other hand, we obtain

$$\left| 1 - \frac{\alpha_{n_i} \cos d(x_{n_i}, p)}{\alpha_{n_i} \cos d(Sx_{n_i}, p)} \right| = \left| \frac{\alpha_{n_i} (\cos d(Sx_{n_i}, p) - \cos d(x_{n_i}, p))}{\alpha_{n_i} \cos d(Sx_{n_i}, p)} \right|$$

$$= \frac{\cos d(Sx_{n_i}, p) - \cos d(x_{n_i}, p)}{\cos d(Sx_{n_i}, p)}$$

$$\leq \frac{\cos d(Sx_{n_i}, p) - \cos d(x_{n_i}, p)}{\cos M}$$

$$\to 0$$

as $i \to \infty$. In the same way, we have

$$\left|1 - \frac{\alpha_{n_i} \cos d(x_{n_i}, p)}{\alpha_{n_i} \cos d(Tx_{n_i}, p)}\right| \to 0$$

as $i \to \infty$. Therefore, we get

$$\lim_{i \to \infty} \frac{\cos d(x_{n_i}, p)}{\cos d(Sx_{n_i}, p)} = \lim_{i \to \infty} \frac{\cos d(x_{n_i}, p)}{\cos d(Tx_{n_i}, p)} = 1.$$

Since S and T are strongly quasinonexpansive, we get

$$\lim_{i \to \infty} d(x_{n_i}, Sx_{n_i}) = \lim_{i \to \infty} d(x_{n_i}, Tx_{n_i}) = 0.$$
(4.1)

Let $\{n_{i_i}\}$ be a subsequence of $\{n_i\}$ such that

$$\varlimsup_{i\to\infty}\frac{\alpha_{n_i}\sigma_{n_i}b_{n_i}+(1-\alpha_{n_i})\tau_{n_i}c_{n_i}}{\alpha_{n_i}\sigma_{n_i}+(1-\alpha_{n_i})\tau_{n_i}}=\lim_{j\to\infty}\frac{\alpha_{n_{i_j}}\sigma_{n_{i_j}}b_{n_{i_j}}+(1-\alpha_{n_{i_j}})\tau_{n_{i_j}}c_{n_{i_j}}}{\alpha_{n_{i_j}}\sigma_{n_{i_j}}+(1-\alpha_{n_{i_j}})\tau_{n_{i_j}}}.$$

Further, We may find a subsequence $\{z_k\}$ of $\{x_{n_{i_j}}\}$ satisfying that $z_k \stackrel{\Delta}{\longrightarrow} x_0 \in X$. Then by (4.1) and Δ -demiclosedness of S and T, we get $x_0 \in F(S) \cap F(T)$. Moreover, by Lemma 3.7, there exist δ and a subsequence $\{z_{k_l}\}$ of $\{z_k\}$ such that

$$\delta = \lim_{l \to \infty} d(u, z_{k_l}) = \lim_{k \to \infty} d(u, z_k) \ge d(u, x_0) \ge d(u, p).$$

Also, we obtain

$$\begin{split} \lim_{l \to \infty} d(u, z_{k_l}) & \leq \lim_{l \to \infty} (d(u, Sz_{k_l}) + d(Sz_{k_l}, z_{k_l})) = \lim_{l \to \infty} d(u, Sz_{k_l}) \\ & \leq \lim_{l \to \infty} (d(u, z_{k_l}) + d(z_{k_l}, Sz_{k_l})) = \lim_{l \to \infty} d(u, z_{k_l}) \\ & \leq \lim_{l \to \infty} (d(u, Tz_{k_l}) + d(Tz_{k_l}, z_{k_l})) = \lim_{l \to \infty} d(u, Tz_{k_l}) \\ & \leq \lim_{l \to \infty} (d(u, z_{k_l}) + d(z_{k_l}, Tz_{k_l})) = \lim_{l \to \infty} d(u, z_{k_l}). \end{split}$$

Therefore, we obtain $\lim_{l\to\infty} d(u, z_{k_l}) = \lim_{l\to\infty} d(u, Sz_{k_l}) = \lim_{l\to\infty} d(u, Tz_{k_l})$. We can also obtain $\{\sigma_{k_l}/\tau_{k_l}\}$ converges to 1. Indeed, we have

$$\begin{split} \frac{\sigma_{k_{l}}}{\tau_{k_{l}}} &= \frac{1 - \frac{\sin(1 - \beta_{k_{l}})d(u, Sz_{k_{l}})}{\sin d(u, Sz_{k_{l}})}}{1 - \frac{\sin(1 - \beta_{k_{l}})d(u, Tz_{k_{l}})}{\sin d(u, Tz_{k_{l}})}} \\ &= \frac{1 - \frac{\sin d(u, Sz_{k_{l}})\cos \beta_{k_{l}}d(u, Sz_{k_{l}}) - \cos d(u, Sz_{k_{l}})\sin \beta_{k_{l}}d(u, Sz_{k_{l}})}{\sin d(u, Sz_{k_{l}})}}{1 - \frac{\sin d(u, Tz_{k_{l}})\cos \beta_{k_{l}}d(u, Tz_{k_{l}}) - \cos d(u, Tz_{k_{l}})\sin \beta_{k_{l}}d(u, Tz_{k_{l}})}{\sin d(u, Tz_{k_{l}})}} \\ &= \frac{1 - \cos \beta_{k_{l}}d(u, Sz_{k_{l}}) - \frac{\cos d(u, Sz_{k_{l}})\sin \beta_{k_{l}}d(u, Sz_{k_{l}})}{\sin d(u, Sz_{k_{l}})}}{1 - \cos \beta_{k_{l}}d(u, Tz_{k_{l}}) - \frac{\cos d(u, Tz_{k_{l}})\sin \beta_{k_{l}}d(u, Tz_{k_{l}})}{\sin d(u, Tz_{k_{l}})}} \end{split}$$

$$= \frac{\frac{1 - \cos \beta_{k_{l}} d(u, Sz_{k_{l}})}{\beta_{k_{l}}} - \frac{d(u, Sz_{k_{l}})}{\tan d(u, Sz_{k_{l}})} \cdot \frac{\sin \beta_{k_{l}} d(u, Sz_{k_{l}})}{d(u, Sz_{k_{l}})}}{\frac{1 - \cos \beta_{k_{l}} d(u, Tz_{k_{l}})}{\beta_{k_{l}}} - \frac{d(u, Tz_{k_{l}})}{\tan d(u, Tz_{k_{l}})} \cdot \frac{\sin \beta_{k_{l}} d(u, Tz_{k_{l}})}{d(u, Tz_{k_{l}})}}{\frac{1 - \cos \beta_{k_{l}} d(u, Tz_{k_{l}})}{d(u, Tz_{k_{l}})}}$$

$$\rightarrow \frac{0 - \frac{\delta}{\tan \delta} \cdot 1}{0 - \frac{\delta}{\tan \delta} \cdot 1}$$

$$= 1.$$

Then, we obtain

$$\lim_{l \to \infty} \left(\frac{\alpha_{k_l} \frac{\sigma_{k_l}}{\tau_{k_l}} b_{k_l} + (1 - \alpha_{k_l}) c_{k_l}}{\alpha_{k_l} \frac{\sigma_{k_l}}{\tau_{k_l}} + (1 - \alpha_{k_l})} \right)$$

$$= \lim_{l \to \infty} \frac{\alpha_{k_l} \cdot 1 \cdot b_{k_l} + (1 - \alpha_{k_l}) c_{k_l}}{\alpha_{k_l} \cdot 1 \cdot + (1 - \alpha_{k_l})}$$

$$= \lim_{l \to \infty} (\alpha_{k_l} b_{k_l} + (1 - \alpha_{k_l}) c_{k_l})$$

$$= \lim_{k \to \infty} \left(\alpha_{k_l} \left(1 - \frac{\cos d(u, p)}{0 + \cos \delta} \right) + (1 - \alpha_{k_l}) \left(1 - \frac{\cos d(u, p)}{0 + \cos \delta} \right) \right)$$

$$= 1 - \frac{\cos d(u, p)}{\cos \delta}$$

$$< 0.$$

Thus, we get

$$\overline{\lim_{i \to \infty}} \left(\frac{\alpha_{\varphi(i)} \sigma_{\varphi(i)} b_{\varphi(i)} + (1 - \alpha_{\varphi(i)}) \tau_{\varphi(i)} c_{\varphi(i)}}{\alpha_{\varphi(i)} \sigma_{\varphi(i)} + (1 - \alpha_{\varphi(i)}) \tau_{\varphi(i)}} \right) \le 0,$$

and hence (ii) holds. By Lemma 3.1, we get $\lim_{n\to\infty} a_n = 0$. It implies that $\{x_n\}$ converges to $P_F u$.

Next, we consider the case where the coefficient sequence $\{\alpha_n\}$ is convergent to an endpoint of [0,1].

Theorem 4.3. Let X be a complete CAT(1) space such that $M = \sup_{p,q \in X} d(p,q) < \pi/2$ and S,T strongly quasinonexpansive and Δ -demiclosed mappings from X into itself with $F(S) \neq \emptyset$ and $F(T) \neq \emptyset$. Let $P_{F(S)}$ and $P_{F(T)}$ be metric projections from X onto F(S) and F(T), respectively. Let $\{\alpha_n\}, \{\beta_n\} \subset [0,1[$ be real sequences satisfying

 $x_{n+1} = \alpha_n s_n \oplus (1 - \alpha_n) t_n$

$$\beta_n \to 0$$
 and $\sum_{n=1}^{\infty} \beta_n = \infty$. Define $\{x_n\} \subset X$ by $x_1 = u \in X$ and $s_n = \beta_n u \oplus (1 - \beta_n) S x_n$, $t_n = \beta_n u \oplus (1 - \beta_n) T x_n$,

for all $n \in \mathbb{N}$. Then

- if $\alpha_n \to 0$, then $x_n \to P_{F(T)}u$; if $\alpha_n \to 1$, then $x_n \to P_{F(S)}u$.

Proof. We consider the case that $\alpha_n \to 0$. Put $p = P_{F(T)}u$,

$$a_{n} = 1 - \cos d(x_{n}, p),$$

$$b_{n} = 1 - \frac{\cos d(u, p)}{\sin d(u, Sx_{n}) \tan(\frac{\beta_{n}}{2}d(u, Sx_{n})) + \cos d(u, Sx_{n})},$$

$$c_{n} = 1 - \frac{\cos d(u, p)}{\sin d(u, Tx_{n}) \tan(\frac{\beta_{n}}{2}d(u, Tx_{n})) + \cos d(u, Tx_{n})},$$

$$\sigma_{n} = \begin{cases} 1 - \frac{\sin(1 - \beta_{n})d(u, Sx_{n})}{\sin d(u, Sx_{n})} & (u \neq Sx_{n}), \\ \beta_{n} & (u = Sx_{n}), \end{cases}$$

$$\tau_{n} = \begin{cases} 1 - \frac{\sin(1 - \beta_{n})d(u, Tx_{n})}{\sin d(u, Tx_{n})} & (u \neq Tx_{n}), \\ \beta_{n} & (u = Tx_{n}). \end{cases}$$

for $n \in \mathbb{N}$. Then, by the same calculation as in Theorem 4.2, we have

$$a_{n+1} \leq \left(1 - (\alpha_n \sigma_n + (1 - \alpha_n)\tau_n)\right) a_n + (\alpha_n \sigma_n + (1 - \alpha_n)\tau_n) \left(\frac{\alpha_n \sigma_n b_n + (1 - \alpha_n)\tau_n c_n}{\alpha_n \sigma_n + (1 - \alpha_n)\tau_n}\right).$$

To apply Lemma 3.1, we will show the following:

(i)
$$\sum_{n=1}^{\infty} (\alpha_n \sigma_n + (1 - \alpha_n) \tau_n) = \infty,$$

(ii)
$$\overline{\lim}_{i \to \infty} \left(\frac{\alpha_{\varphi(i)} \sigma_{\varphi(i)} b_{\varphi(i)} + (1 - \alpha_{\varphi(i)}) \tau_{\varphi(i)} c_{\varphi(i)}}{\alpha_{\varphi(i)} \sigma_{\varphi(i)} + (1 - \alpha_{\varphi(i)}) \tau_{\varphi(i)}} \right) \leq 0 \text{ for any nondecreasing functions } \varphi : \mathbb{N} \to \mathbb{N} \text{ satisfying } \lim_{i \to \infty} \varphi(i) = \infty \text{ and }$$

$$\underline{\lim}_{i \to \infty} (a_{\varphi(i)+1} - a_{\varphi(i)}) \ge 0.$$

The condition (i) is obtained from Lemma 4.1. We consider (ii). For $\varphi : \mathbb{N} \to \mathbb{N}$ satisfying the conditions in (ii), we write $n_i = \varphi(i)$ for any $i \in \mathbb{N}$. Then it follows that $\underline{\lim}_{i\to\infty}(a_{n_i+1}-a_{n_i})\geq 0$, and we get

$$\begin{split} 0 &\leq \varliminf_{i \to \infty} \left(\alpha_{n_i+1} - a_{n_i} \right) \\ &= \varliminf_{i \to \infty} \left(\cos d(x_{n_i}, p) - \cos d(x_{n_i+1}, p) \right) \\ &\leq \varliminf_{i \to \infty} \left(\cos d(x_{n_i}, p) - \left(\alpha_{n_i} \cos d(s_{n_i}, p) + (1 - \alpha_{n_i}) \cos d(t_{n_i}, p) \right) \right) \\ &= \varliminf_{i \to \infty} \left(\alpha_{n_i} \left(\cos d(x_{n_i}, p) - \cos d(s_{n_i}, p) \right) \right) \\ &+ (1 - \alpha_{n_i}) \left(\cos d(x_{n_i}, p) - \cos d(t_{n_i}, p) \right) \right) \\ &\leq \varliminf_{i \to \infty} \left(\alpha_{n_i} \left(\cos d(x_{n_i}, p) - \cos d(Sx_{n_i}, p) \right) \right) \\ &+ (1 - \alpha_{n_i}) \left(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p) \right) \right) \\ &= \varliminf_{i \to \infty} \left(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p) \right) \\ &\leq \varlimsup_{i \to \infty} \left(\cos d(x_{n_i}, p) - \cos d(Tx_{n_i}, p) \right) \\ &\leq 0. \end{split}$$

Therefore, we have $\lim_{i\to\infty}(\cos d(x_{n_i},p)-\cos d(Tx_{n_i},p))=0$. On the other hand, we obtain

$$\left| 1 - \frac{\cos d(x_{n_i}, p)}{\cos d(Tx_{n_i}, p)} \right| = \left| \frac{\cos d(Tx_{n_i}, p) - \cos d(x_{n_i}, p)}{\cos d(Tx_{n_i}, p)} \right|$$

$$= \frac{1}{\cos d(Tx_{n_i}, p)} \left| \cos d(Tx_{n_i}, p) - \cos d(x_{n_i}, p) \right|$$

$$\leq \frac{1}{\cos M} \left| \cos d(Tx_{n_i}, p) - \cos d(x_{n_i}, p) \right|$$

$$\to 0$$

as $i \to \infty$. Therefore, we get

$$\lim_{i \to \infty} \frac{\cos d(x_{n_i}, p)}{\cos d(Tx_{n_i}, p)} = 1.$$

Since T is strongly quasinonexpansive, we get

$$\lim_{i \to \infty} d(x_{n_i}, Tx_{n_i}) = 0. \tag{4.2}$$

There exists a subsequence $\{n_{i_i}\}$ of $\{n_i\}$ such that

$$\varlimsup_{i\to\infty}\frac{\alpha_{n_i}\sigma_{n_i}b_{n_i}+(1-\alpha_{n_i})\tau_{n_i}c_{n_i}}{\alpha_{n_i}\sigma_{n_i}+(1-\alpha_{n_i})\tau_{n_i}}=\lim_{j\to\infty}\frac{\alpha_{n_{i_j}}\sigma_{n_{i_j}}b_{n_{i_j}}+(1-\alpha_{n_{i_j}})\tau_{n_{i_j}}c_{n_{i_j}}}{\alpha_{n_{i_j}}\sigma_{n_{i_j}}+(1-\alpha_{n_{i_j}})\tau_{n_{i_j}}}.$$

Further, We may find a subsequence $\{z_k\}$ of $\{x_{n_{i_j}}\}$ satisfying that $z_k \stackrel{\Delta}{\rightharpoonup} x_0 \in X$. Then by (4.1) and Δ -demiclosedness of T, we get $x_0 \in F(T)$. Moreover, by Lemma 3.7, there exist δ and a subsequence $\{z_{k_l}\}$ of $\{z_k\}$ such that

$$\delta = \lim_{l \to \infty} d(u, z_{k_l}) = \underline{\lim}_{k \to \infty} d(u, z_k) \ge d(u, x_0) \ge d(u, p).$$

Also, we obtain

$$\lim_{l \to \infty} d(u, z_{k_l}) \le \lim_{l \to \infty} (d(u, Tz_{k_l}) + d(Tz_{k_l}, z_{k_l})) = \lim_{l \to \infty} d(u, Tz_{k_l})
\le \lim_{l \to \infty} (d(u, z_{k_l}) + d(z_{k_l}, Tz_{k_l})) = \lim_{l \to \infty} d(u, z_{k_l}).$$

Therefore, we obtain $\lim_{l\to\infty} d(u,z_{k_l}) = \lim_{l\to\infty} d(u,Tz_{k_l})$. Then, we obtain that

$$\begin{split} \overline{\lim}_{i \to \infty} \left(\frac{\alpha_{n_i} \sigma_{n_i} b_{n_i} + (1 - \alpha_{n_i}) \tau_{n_i} c_{n_i}}{\alpha_{n_i} \sigma_{n_i} + (1 - \alpha_{n_i}) \tau_{n_i}} \right) &= \lim_{j \to \infty} \left(\frac{\alpha_{n_{i_j}} \sigma_{n_{i_j}} b_{n_{i_j}} + (1 - \alpha_{n_{i_j}}) \tau_{n_{i_j}} c_{n_{i_j}}}{\alpha_{n_{i_j}} \sigma_{n_{i_j}} + (1 - \alpha_{n_{i_j}}) \tau_{n_{i_j}} c_{n_{i_j}}} \right) \\ &= \overline{\lim}_{j \to \infty} \left(\frac{\alpha_{n_{i_j}} \sigma_{n_i} b_{n_{i_j}} + (1 - \alpha_{n_{i_j}}) \tau_{n_{i_j}} c_{n_{i_j}}}{\alpha_{n_{i_j}} \sigma_{n_{i_j}} + (1 - \alpha_{n_{i_j}}) \tau_{n_{i_j}}} \right) \\ &= \lim_{k \to \infty} \left(\frac{\alpha_k \sigma_k b_k + (1 - \alpha_k) \tau_k c_k}{\alpha_k \sigma_k + (1 - \alpha_k) \tau_k c_k} \right) \\ &= \lim_{k \to \infty} \left(\frac{\alpha_k \sigma_k b_k + (1 - \alpha_k) \tau_k c_k}{\alpha_k \sigma_k + (1 - \alpha_k) \tau_k c_k} \right) \\ &= \lim_{l \to \infty} \left(\frac{\alpha_{k_l} \sigma_{k_l} b_{k_l} + (1 - \alpha_{k_l}) \tau_{k_l} c_{k_l}}{\alpha_{k_l} \sigma_{k_l} + (1 - \alpha_{k_l}) \tau_{k_l}} \right) \\ &= \lim_{l \to \infty} c_{k_l} = 1 - \frac{\cos d(u, p)}{\cos \delta} \le 0. \end{split}$$

Thus, we get

$$\overline{\lim_{i \to \infty}} \left(\frac{\alpha_{\varphi(i)} \sigma_{\varphi(i)} b_{\varphi(i)} + (1 - \alpha_{\varphi(i)}) \tau_{\varphi(i)} c_{\varphi(i)}}{\alpha_{\varphi(i)} \sigma_{\varphi(i)} + (1 - \alpha_{\varphi(i)}) \tau_{\varphi(i)}} \right) \le 0.$$

By Lemma 3.1, we get $\lim_{n\to\infty} a_n = 0$. It implies that $\{x_n\}$ converges to $P_{F(T)}u$. In a similar fashion, we have $\{x_n\}$ converges to $P_{F(S)}u$ if $\alpha_n \to 1$. Hence we obtain the desired result.

From the results above, we observe that the limit point of the iterative scheme behaves discontinuously at the endpoints of [0,1] for α , which is a limit of the coefficient sequence $\{\alpha_n\}$. It seems to be curious, however, we notice that the limit of an iterative sequence can be represented by a single mapping $U_{\alpha} = \alpha S \oplus (1-\alpha)T$. We know that it is pointwise continuous for α ; for a sequence $\alpha_n \subset [0,1]$ with a limit $\alpha \in [0,1]$, $\{U_{\alpha_n}x\}$ converges to $U_{\alpha}x$ for each $x \in X$. On the other hand, the set $F(U_{\alpha})$ of fixed points of U_{α} does not behave continuously at $\alpha = 0$ or $\alpha = 1$; we have

$$F(U_{\alpha}) = \begin{cases} F(T) & (\alpha = 0), \\ F(S) \cap F(T) & \alpha \in]0, 1[, \\ F(S) & (\alpha = 1). \end{cases}$$

Consequently, we obtain the following result generalizing Theorems 1.1 and 4.3.

Theorem 4.4. Let X be a complete CAT(1) space such that $M = \sup_{p,q \in X} d(p,q) < \pi/2$ and S,T strongly quasinonexpansive and Δ -demiclosed mappings from X into itself

with $F = F(S) \cap F(T) \neq \emptyset$. Let P_F be a metric projection from X onto F. Let $\{\alpha_n\}, \{\beta_n\} \subset]0,1[$ satisfying $\alpha_n \to \alpha \in [0,1], \beta_n \to 0$ and $\sum_{n=1}^{\infty} \beta_n = \infty$. Define $\{x_n\} \subset X$ by $x_1 = u \in X$ and

$$s_n = \beta_n u \oplus (1 - \beta_n) S x_n,$$

$$t_n = \beta_n u \oplus (1 - \beta_n) T x_n,$$

$$x_{n+1} = \alpha_n s_n \oplus (1 - \alpha_n) t_n$$

for all $n \in \mathbb{N}$. Then $\{x_n\}$ converges to $P_{F(\alpha S \oplus (1-\alpha)T)}u$.

References

- K. Aoyama, Y. Kimura, F. Kohsaka, Strong convergence theorems for strongly relatively nonexpansive sequences and applications, J. Nonlinear Anal. Optim., Theory and Applications, 3(2012), 67-77.
- [2] M.R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, vol. 319 of "Grundlehren der. Mathematischen Wissenschaften", Springer, Verlag, Berlin, Germany, 1999.
- [3] J.S. He, D.H. Fang, G. Lopez, C. Li, Mann's algorithm for nonexpansive mappings in $CAT(\kappa)$ -spaces, Nonlinear Anal., **75**(2012), 445-452.
- [4] Y. Kimura, K. Satô, Halpern iteration for strongly quasinonexpansive mappings on a geodesic space with curvature bounded above by one, Fixed Point Theory Appl., 2013(2013), 14 pages.
- [5] K. Nakagawa, Convergence Theorems to a Common Fixed Point of Two Mappings in CAT(1) spaces, Master Thesis, Toho University, 2015.
- [6] S. Saejung, Halpern's iteration in CAT(0) spaces, Fixed Point Theory Appl., 2010 (2010), Art. ID 471781.
- [7] S. Saejung, P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75(2012), 742-750.
- [8] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel), 58(1992), 486-491.

Received: November 4, 2019; Accepted: January 11, 2020.