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Abstract. In this paper, we show a strong convergence theorem for the Halpern iteration procedure
in a complete CAT(1) space with two quasinonexpansive A-demiclosed mappings. We consider a
sequence of coefficients for convex combination in the iterative scheme and find a certain discontinuity
of the limit.
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1. INTRODUCTION

Halpern type method is a technique to approximate a fixed point of a nonlinear
mapping and has been studied by many mathematicians in various spaces. In 1992,
strong convergence of a Halpern type iteration with a nonexpansive mapping was ob-
tained by Wittmann [8] in a Hilbert space. In 2010, Saejung [6] proved a convergence
theorem in a complete CAT(0) space. In 2013, Kimura and Satd [4] proved the same
result in the setting of a complete CAT(1) space.

On the other hand, in 2015 Nakagawa [5] proved the following theorem with two
strongly quasinonexpansive and A-demiclosed mappings in complete CAT(1) space:

Theorem 1.1. Let X be a complete CAT(1) space with d(v,v") < w/2 for allv,v' € X
and S, T strongly quasinonexpansive and A-demiclosed mappings from X into itself
with F = F(S)N F(T) # 0. Let Pr be a metric projection from X onto F. Let
{an}, {Bn} C]0,1[ be real sequences satisfying c, — o € 10,1, B, — 0 and

n=1
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Define {z,} C X by x1 =u € X and

Tn41 = an(ﬂnu 2 (1 - ﬁn)sxn) D (1 - O‘n)(ﬂnu @ (1 - BH)TZ'TL)
for allm € N. Then {z,} converges to Ppu.

In the studies of this kind of iterative schemes, we often consider the conditions
of the coefficient sequences generating the approximating sequence. We focus on the
limit o € ]0,1[ of a sequence {a,}, and we attempt to deal with the extremal cases
a = 0 or 1, and other cases, simultaneously.

In this paper, we obtain that {z, } converges to a fixed point of T or S and its limit
point depend on the limit of the coefficient sequence {a,,}. From this result, we find
a certain discontinuity of the limit of the iterative sequence concerning the coefficient
sequence at the endpoints of [0, 1].

2. PRELIMINARIES

Let X be a metric space. For z,y € X, a mapping v : [0,{] — X is called a geodesic
with endpoints z,y if 7 satisfies v(0) = z, v(I) = y and d(y(s),v(t)) = |s — t| for all
s,t € [0,1]. If a geodesic with endpoints z, y exists for any z,y € X, then we call X a
geodesic metric space. Moreover, if a geodesic exists uniquely for each z,y € X, then
we call X a uniquely geodesic space. In this case, the image [z,y] of v is uniquely
detarmined for every z,y € X and it is called a geodesic segment joining x and y.

Let X be a uniquely geodesic metric space such that d(v,v') < w/2 for all v, € X.
A geodesic triangle is defined by A(z,y, z) = [z, y] U [y, 2] U [z, 2]. Let S? be the two-
dimentional unit sphere in R®. For Z,9,% € S?, a triangle A(Z, 7, Z) in S? is called a
camparison triangle for A(z,y, z) if

ds2 (jv g) = d(.]?, y)a ds2 (?]7 2) = d(ya Z)’ dsz (27 i‘) = d(Z, J})
A point p € A(Z,y,2) is called a comparison point for p € [y,z] on the edge of
A(x,y,2) if p € [g,2] and d(y,p) = d(g,p). If, for any p,q € A(z,y,z) and their
comparison points p, 7 € A(Z,7, Z), the inequality d(p,q) < ds2(p, q) is satisfied for
all triangles in X, then X is called a CAT(1) space.

Let X be a geodesic metric space and {z,,} C X a bounded sequence. For z € X,
we put

r(z,{z,}) = limsupd(z,z,) and r({z,}) = 1g§( r(z,{z,}).
n—o00 z

If there exists € X such that r(z,{z,}) = r({z,}), we call z an asymptotic center
of {z,}. Let {x,} be a bounded sequence of X and zy € X. If xy is a unique
asymptotic center of all subsequences of {z,}, then we say that {x,} is A-converges
to zg. We denote it by z, A xo. Let X be a CAT(1) space and T a mapping from
X into itself. If z,, A xo € X and limy, o0 d(T2p, xy,) = 0 imply 29 € F(T), we say
T is A-demiclosed.

Let X be a metric space and T : X — X. The set of all fixed points of T is
denoted by F(T), that is F(T) ={z € X : Tz = z}. A mapping T with F(T) # 0 is
said to be quasinonexpansive if d(T'z, z) < d(z, z) for any € X and F(T). Further,
T is said to be strongly quasinonexpansive if it is quasinonexpansive and, for every
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p € F(T) and every sequence {z,} in X satisfying that sup, cyd(zn,p) < 7/2 and
lim,, o0 (cos d(zy,, p)/ cosd(Txy,,p)) = 1, it follows that lim, o d(zy, Tzy,) = 0.

Let X be a CAT(1) space such that d(v,v") < /2 for every v,v" € X. Let F be a
nonempty closed convex subset of X. Then, for any x € X, there exists unique p, € F
such that d(z, p;) = inf,ecp d(z,y). Therefore we can define a mapping Pp : X — F
by Prxz = p, for x € X, and it is called a metric projection onto F'.

3. TOOLS FOR THE MAIN RESULTS

In this section, we introduce some tools for the main theorems.

Lemma 3.1 ([1], [7]). Let {a,,} C [0,00[,{dr} C R and {v,} C]0,1[ such that

> =
n=1
Define a set ® = {¢ : N = N, nondecreasing and lim;_, o ¢(i) = co}. Suppose that
pt1 < (1 - 'Yn)an + Yndyn
for any n € N. If lim;_ dyiy <0 for any ¢ € ® satisfying
Lim (ag(it1) — (i) =0,
11— 00
then lim,, o a,, = 0.

Lemma 3.2 (Kimura and Saté [4]). Let X be a complete CAT(1) space such that
d(v,v") < /2 for every v,v' € X. Let o € [0,1] and u,y,z € X. Then

1 —cosd(au® (1 — a)y, 2)

<(1-=p8)1—cosd(y,z))+ 8 <1 cosd(u, 2) > |

 sind(u, y) tan((§)d(u,y)) + cosd(u,y)
where

sin((1 — a)d(u, y))
ﬁ 1- sin d(u, y) (U 7& y)a

« (u=y).
Lemma 3.3 (Nakagawa [5]). Let 6 be a real number in 10,7/2[ and {B,} a real
sequence in |0, 1] such that lim, oo B, = 0. Then the following holds:

1-— 0
i LT cos(Bn8) _ o
n—o0 6,”

Lemma 3.4 (Nakagawa [5]). Suppose {s,} and {t,} C ]—o0,0] satisfy
nll)rr;o(sn +t,) =0.

Then lim,, oo S, = lim,, oo t,, = 0.
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Lemma 3.5 (He, Fang, Lopez, and Li [3]). Let X be a complete CAT(1) space
and v € X. If a sequence {x,} in X satisfies that lim, . d(u,x,) < 7/2 and
Ty, Ay € X, then

lim d(u,z,) > d(u,x).

n— oo

Lemma 3.6 (Kimura and Sato [4]). Let A(z,y, z) be a geodecic triangle in a CAT(1)
space such that d(z,y)+d(y, z) +d(z,x) < 2m. Letu = tx®(1—1t)y for somet € [0, 1].
Then

cosd(u,z) > tcosd(z,z) + (1 —t) cosd(y, 2).
Lemma 3.7 (Nakagawa [5]). Let X be a complete CAT(1) space such that d(v,v") <
w/2 for every v,v' € X and u € X. Let T be a A-demiclosed mapping from X

into itself such that F(T) # 0 is closed and conver. Let {x,} C X such that
limy, o0 d(u, ) < 7/2. If d(zy, Tx,) — 0, then

liim d(u7xn) > d(u7PF(T)U’>7

n— oo

where Pp(ry is a metric projection from X onto F(T').

4. MAIN RESULTS

In this section, we prove our main results. We begin with the following lemma,
which is essentially obtained by Nakagawa [5].

Lemma 4.1. Let {a,},{8,} € ]0,1[ such that Zﬁn = o0, and let {d,} € [0,7/2]

n=1
such that M = sup,,cy dn < /2. Then
(oo}
Z(oznan + (1= ap)m) = oo,
n=1
where
sin(1 — B,)d,
l—————— (da )
Op = sind, (dn #0)
ﬁn (dn = O),
sin(1 — 3,)d]
i S 2 Y
Tp = sind!, (d, 7 0),
Bn (d!, = 0).

The following Theorem generalizes Theorem 1.1. We do not assume {ay,} to be
convergent.

Theorem 4.2. Let X be a complete CAT(1) space such that M = sup,, 4ex A(p, q) <
w/2. Let S, T be strongly quasinonexpansive and A-demiclosed mappings from X into
itself with F'= F(S)NF(T) # 0. Let Pr be a metric projection from X onto F. Let
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{an} C [a,b] C ]0,1] and {B,} C ]0,1[ satisfying B — 0 and Zﬂn = 0. Define

{zp} C X byzy =ue X and "
Sn = Pru® (1 — B,)Szy,
tn = Bpu® (1 — Bp) Ty,
Tpt1 = WnSn D (1 — ap)t,
for alln € N. Then {x,} converges to Ppu.
Proof. Put p = Pru,
ap, =1 —cosd(zy,p),
b —1— cos d(u, p)
" sind(u, Szy,) tan(%d(u,an)) + cos d(u, Sz,)’
=1 cos d(u, p)

sin d(u, Tx,,) tan(%‘d(u, Tx,)) + cosd(u, Txy,)
sin(1 — By, )d(u, Sxy,)

on = 1= sind(u, Sx,,) (u# S20),
ﬁn (u = S.”L'n),

sin(1 — B,)d(u, Tx,,)
Tn = 1= sind(u, T'x,,) (u# Ten),
Bn (u=Tz,)

for n € N. Since a0, + (1 — ap)7, > 0 for any n € N, by Lemmas 3.2 and 3.6, we
have

apt1 =1 —cosd(ansn, ® (1 — ay)tn,p)

<1— (apcosd(sn,p)+ (1 —ayp)cosd(t,,p))

= a,(1 —cosd(sn,p)) + (1 — an)(1 — cosd(tn,p))
an((1 = op)an + onby) + (1 — an) (1 — 7)) an + Then)
(1= (non + (1 — ay)m))an

anopby, + (1 — an)Tncn>

IA

+(anan+(1—an)Tn)< anon + (1 —an)7

for any n € N. To apply Lemma 3.1, we will show the following:

(i) Z(anan + (1 —ap)m) = o0,
n=1
(ii) T, (i) (i) bio(i) F (1 = (i) T(i) Cio (i)
(i) T(i) T (1 = Qi) T i)
functions ¢ : N — N satisfying lim;_,, ¢(i) = co and

) < 0 for any nondecreasing

lim (@ ()41 = ag(i)) = 0.

71— 00
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The condition (i) is a direct result from Lemma 4.1. We consider (ii). For ¢ : N — N
satisfying the conditions in (ii), we write n; = (i) for any ¢ € N. Then it follows
that lim, , _(an,4+1 — an,) > 0, and we get

0 < m (an,;+1 - ani)

i—00

= lim (cosd(xn,,p) — cos d(wn,+1,p))
1—00

< lim (cosd(zp,,p) — (qn, c08d(Sn,,p) + (1 — ap,) cosd(t,,,p)))
i—00

= lim (an, (cos d(wn,,p) — cosd(sn;, p))

1—+00
(1= ) (05 d(n;, ) — o5t 1))
< lim (ap, (cos d(zp,, p) — cos d(Sxn,,p))

1—00
(1= ) (€05 d(n,, ) — €03 AT, )
= lim (ap, (cosd(zy,;,p) — cosd(Szy,,p))

1—+00

(1= ) (€03 (@, ) — €03 AT, 1))
< lim (ay, (cosd(z,,, p) — cosd(Sx,,,p))

11— 00

+ (1 — ap,)(cosd(xy,,p) — cosd(Txy,,p)))
<0.
Therefore, we have
Zlggo(an (cosd(zp,,p) — cosd(Sxn,,p))
+ (1 — ap,)(cosd(zp,,p) — cosd(Tzy,,p))) = 0.
Further, by Lemma 3.4, we get

im ay, (cosd(xy,,p) — cosd(Szy,,p))
— 00

2

= lim (1 — oy, )(cosd(zy,,p) — cosd(Txy,,p)) = 0.
71— 00
On the other hand, we obtain
| _ O, cos d(zn;,p) | |, (cosd(Szy,, p) — cosd(zy,, p))

cosd(Szy,,p) — cosd(zn,,p)

cosd(Sxy,,p)
< Cos d(Szp,,p) — cosd(zn,,p)

- cos M
—0

as i — 0o. In the same way, we have

a,; cos d(Tp,, p) o

" ap, cosd(Txy,,,p)
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as i — oo. Therefore, we get

i %8 d(n;,p) .. cosd(zn,p) .
iS00 COS d(Sxn,,p) iS00 COS d(Tz,,,p)

Since S and T are strongly quasinonexpansive, we get

lim d(xy,, Szy,) = lim d(z,,, Tz,,) = 0. (4.1)
1— 00

11— 00

Let {n;, } be a subsequence of {n;} such that

m O, O, by, 4 (1 — ) T O, — lim ni; Ony; b”ij +01- Ony; )T”ij Eni;

i500  Qp,0n, + (1 — ap,)Th, j=oo o on, + (L=, )T,

Further, We may find a subsequence {z;} of {xm] } satisfying that 2 A 20 € X. Then
by (4.1) and A-demiclosedness of S and T, we get 29 € F(S) N F(T). Moreover, by
Lemma 3.7, there exist § and a subsequence {z, } of {zx} such that

0= llim d(u, z,) = lim d(u, z;) > d(u,zo) > d(u,p).
— 00

k— o0

Also, we obtain

lim d(u, zg,) < llim d(u, Szg,) +d(Szk,, zx,)) = llim d(u, Szk,)
—00 —00

l—o0

IN
5.
.

u, z,) + d(zk,, Sz, ) = lliglo d(u, zx,)

(d(
l—>oc( (
< lilgo(d(U7TZkl) +d(Tzy,, 2,)) = zliglo d(u, Tzx,)

(d(

< lim (d(u, zx,) + d(zk,, Tzx,)) = lim d(u, 2, ).
l—o0 l—o00

Therefore, we obtain lim;_, oo d(u, 2i,) = limy_ 00 d(u, Szg,) = lim;_, o0 d(u, Tz, ).
We can also obtain {0y, /7x, } converges to 1. Indeed, we have

B sin(1 — ﬁkl)d(u, Szkl)
Ok sind(u, Szy,)
T . sin(1 — B, )d(u, Tzy,)
sin d(u, Tz, )
sin d(u, Sz, ) cos i, d(u, Szx,) — cosd(u, Sz, ) sin i, d(u, Szk,)
B sind(u, Szk,)
sind(u, Tz, ) cos B, d(u, Tzy,) — cosd(u, Tz, ) sin B, d(u, Tzy,)
sind(u, Tz, )
cosd(u, Sz, ) sin Bk, d(u, Szk,)
sind(u, Szy,)
cosd(u, Tz, ) sin B, d(u, Tzy,)
sind(u, Tz, )

1 — cos Bk, d(u, Szx,) —

1 —cos B, d(u, Tz,) —
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1 — cos By, d(u, Szi,) d(u, Szy,) sin By, d(u, Sz, )

_ Bk,  tand(u, Sz, )  d(u, Szk,)
1 — cos B, d(u, Tz, d(u,Tzg,)  sinfy,d(u, Tzy,)
B,  tand(u, Tzy,) ‘ d(u, Tzy,)
0 i 1
tan d

R

0= tand !
=1

Then, we obtain

i g, %bkl + (1 — ag,)ex,
im —
=00 O‘kl% + (1 - akz)

. oag, - 1-by, +(1_ak1)ckz
= lim

l—00 ag, -1-+(1—akl)
= lim (aklbkl + (1 — akz)ckz)
l—o0

L cosd(u,p) cosd(u, p)
= (akl (1 ~ 0+cosd ) +(1-ap) (1 ~ 0+cosd

cos d(u, p)

cos 8
<0.

Thus, we get

Jm %o Te(i)be) + (I~ %)) Tt | 0
i—o0 (i) (i) + (1 = (i) To(i)

and hence (ii) holds. By Lemma 3.1, we get lim,,_,o a, = 0. It implies that {x,}
converges to Pru. O

Next, we consider the case where the coefficient sequence {«,,} is convergent to an
endpoint of [0, 1].

Theorem 4.3. Let X be a complete CAT(1) space such that M = sup d(p,q) < 7/2
p,qeX
and S, T strongly quasinonexpansive and A-demiclosed mappings from X into itself

with F(S) # 0 and F(T) # 0. Let Pp(sy and Ppy be metric projections from X
onto F(S) and F(T), respectively. Let {an},{Bn} C]0,1[ be real sequences satisfying

Bn — 0 andZanoo. Define {x,} C X byx; =u € X and
n=1
Sn = Bru® (1 — B,)Szy,
tn = Bru® (1 — B)Txy,

Tl = QnSn ® (1 — ap)ty
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for alln € N. Then

o if a, — 0, then x,, — Pp(ryu;
o if a, — 1, then x,, — Pp(s)yu.

Proof. We consider the case that a;,, — 0. Put p = Pp(7)u,

an =1 —cosd(xn,p),

b -1 cos d(u, p)
" sind(u, Szy,) tan(%d(u, Sx,)) 4 cosd(u, Sz,)’
cos d(u, p)
Cn =

1- ’
sin d(u, Tx,,) tan(%d(u, Txy,)) + cosd(u, Txy)
sin(1 — By, )d(u, Sx,,)

On = sin d(u, Sz,,) (u# Sen),
ﬁn (u = Swn)v

sin(1 — B,)d(u, Txy,)
T = 1= sind(u, Tzy,) (u # Tan),
Bn (u="Txy,).

for n € N. Then, by the same calculation as in Theorem 4.2, we have

o opby + (1 — ap)Then,
an+1 < (1= (anon+(1—an)m))an + (@non+ (1 —an)™) < ( ) ) .

ooy + (1 — ap)my

To apply Lemma 3.1, we will show the following:

(1) Y (non + (1= an)7) = oo,
n=1
(i) Ty (i) (i) bip (i) + (1 = (i) ) Top(i) ()
() Tip(i) T (1 = (i) ) T (i)
functions ¢ : N — N satisfying lim ¢(i) = co and
11— 00

) < 0 for any nondecreasing

Lim (ap(i)+1 — Gp@)) 2 0.
11— 00

The condition (i) is obtained from Lemma 4.1. We consider (ii). For ¢ : N - N
satisfying the conditions in (ii), we write n; = (i) for any ¢ € N. Then it follows
that lim, , _(an,+1 — an,;) > 0, and we get
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0 < m (an,;+1 - ani)
i—00
= lim (cosd(zn,,p) — cosd(n,+1,P))
i— 00
< lim (cosd(zp,,p) — (atn; cOsd(Sn,;,p) + (1 — ap,) cosd(tn,,D)))
1—+00
= lim (an, (cos d(wn,,p) — cosd(sn,, p))

1—00
(1= ) (05 d(n;, ) — 05 d{tn, 1))
< lim (ap, (cos d(zp,, p) — cos d(Sxn,,p))

i—00
(1= ) (€03 (@, ) — €03 AT, 1))
= lim (cosd(zy,,p) — cosd(Tzp,,p))

i—00

< lim (cosd(zn,,p) — cosd(Txn,,p))
1— 00

<0.

Therefore, we have lim;_, o (cos d(zp,,p) — cosd(Tx,,,p)) = 0. On the other hand, we
obtain

cosd(zy,,p) | | cosd(Tay,,p) — cosd(zn,,p)
cosd(Txn,,p)| cosd(Txy,,p)
1
- Jcosd(Txn,,p) — cosd(zn,,
T s AT 0) = cosd(z,p)
1
Tz,, — .
osM'COSd( T,y D) — cOSd(Tp,, D)
—0

as 1 — 0o. Therefore, we get

cosd(zp,,p)

iS50 COS d(Tn,,p) L
Since T is strongly quasinonexpansive, we get
lim d(xyp,;, Txy,) = 0. (4.2)
71— 00
There exists a subsequence {n;, } of {n;} such that
I O On;bn, + (1 — ap, )T Cn, . On, Oy by, + (L= am, )T, cnij'
i900  Qp,On; + (1 — ap, )Th, j=eo o, Op, + (L= an, )T,

Further, We may find a subsequence {zj} of {xn]} satisfying that zj A g € X.
Then by (4.1) and A-demiclosedness of T, we get xg € F(T). Moreover, by Lemma
3.7, there exist ¢ and a subsequence {z, } of {2} such that

0 = lim d(u, z,) = lim d(u,zx) > d(u,zo) > d(u,p).

l—=o0 k—o0
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Also, we obtain

lim d(u, 2g,) S i (d(u,Tzkl) +d(Tz,, 2,)) = ll—lglo d(u, Tzx,)

l—o0

< hm (d(u7 zky) + d(zk,, Tz2,)) = lliglo d(u, 2k, ).

Therefore, we obtain lim;_, o d(u, zx,) = lim;_,o d(u, T'zx,). Then, we obtain that

—_— (O{nl On; an + (1 — am)TnL Cni> — lim (anij O-nij bn77 + (1 — Oéni]. )Tn'ij C"ij>

lim
i—00 O, Oy + (1 — Qi )T, Qn, On;, + (1- o, )Tnjj

_ [, onbn, +(1— an, VT, S Cni,
= lim z !

j—o0 O, On, + (1- O, )Tnij

j—o0

i

. arokby + (1 — ag) ek
= lim
k—o00 QRO + 1—0%)7%
)
)

(
. <ak0kbk + (1 — O chk>
= lim (

k—soo agog + (1 — ag)7y

I
H
~~

Qg Ok, by, + (1 — agy)Try
aklakz (1 - ak’)Tkl

Thus, we get

71— 00

(i) Tp(i) T (1 = Qi) ) Tep(i)
By Lemma 3.1, we get lim,, o a, = 0. It implies that {z,,} converges to Ppryu. In

a similar fashion, we have {z,} converges to Pp(g)u if i, — 1. Hence we obtain the
desired result. |

Tm (aw(i)(’cﬂ(i)bw(i) +(1- a¢(i))T<P(i)C<P(i)> <0.

From the results above, we observe that the limit point of the iterative scheme
behaves discontinuously at the endpoints of [0, 1] for «, which is a limit of the coef-
ficient sequence {a,}. It seems to be curious, however, we notice that the limit of
an iterative sequence can be represented by a single mapping U, = aS @ (1 — o)T.
We know that it is pointwise continuous for «; for a sequence a,, C [0, 1] with a limit

€ [0,1], {Ua,x} converges to Uysx for each z € X. On the other hand, the set
F(Uy) of fixed points of U, does not behave continuously at o = 0 or a = 1; we have

F(T) (a=0),
F(U,) =4 F(S)NF(T) a€lo,1],
F(S) (a=1).

Consequently, we obtain the following result generalizing Theorems 1.1 and 4.3.

Theorem 4.4. Let X be a complete CAT(1) space such that M = sup d(p,q) < 7/2
P,qeX
and S, T strongly quasinonexpansive and A-demiclosed mappings from X into itself
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with F = F(S)N F(T) # 0. Let Pr be a metric projection from X onto F. Let

{an}, {Bn} C ]0,1] satisfying o, — a € [0,1],8, — 0 and Zﬂn = 00. Define
n=1

{zp} C X byzy =ue X and
Sn = ﬁnu S (1 - ﬂn)smna
tp, = 611“ @ (1 - ﬂn)Txna
Tpt1 = WnSn @ (1 — ap)t,

for all n € N. Then {x,} converges to Pp(asa(1—a)T)U-
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