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1. Introduction

Let (X, d) be a metric space. A point m of X is a midpoint for the pair (a, b) ∈ X×X
if d(a,m) =

1

2
d(a, b) = d(m, b). For all pairs of points of a complete metric space

(X, d) to have a midpoint it is necessary and sufficient that the metric be strictly
intrinsic. That is, there exists a continuous rectifiable path γ : [0, 1] → X from a to
b whose length is d(a, b) [3].
A continuous midpoint map on a metric space (X, d) is a continuous map µ : X×X →
X such that, for all (a, b) ∈ X × X, d(a, µ(a, b)) =

1

2
d(a, b) = d(µ(a, b), b). If µ is a

continuous midpoint then µ̆(a, b) = µ(b, a) is also a continuous midpoint map. The
triple (X, d, µ) is a continuous midpoint space [8].
Now, we assume that the metric space (X, d) is a b-metric space, that is:
Definition 1.1. [4] Let X be a nonempty set and let s > 1 be a given real number.
A function d : X ×X → R+ is said to be a b-metric if and only if for all x, y, z ∈ X
the following conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) 6 s[d(x, y) + d(y, z)].
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A pair (X, d) is called a b-metric space with constant s. Observe that if s = 1, then
the ordinary triangle inequality in a metric space is satisfied, however it does not hold
true when s > 1. Thus the class of b-metric spaces is effectively larger than that of
the ordinary metric spaces. That is, every metric space is a b-metric space, but the
converse need not be true.
In this paper, we introduced the continuous s-point space in Section 2. Section 3
characterizes complete continuous midpoint spaces as those spaces in which every
two points can be joined by a geodesic path and the geodesic path can be chosen in
such a way as to depend continuously on its endpoints. Finally, an important fixed
point theorem is proved for nonexpansive mappings in continuous s-point spaces.

2. Continuous s-point space

In this section we introduce the concept of s-point space which is a generalization
of the continuous midpoint space.
Definition 2.1. Let (X, d) be a b-metric space with constant sb. A point m of X is
called a s-point for the pair (a, b) ∈ X ×X, if

d(a,m) =
1

2sb
d(a, b) = d(m, b).

Throughout this article, for convenience, we use s instead of sb.
Definition 2.2. A continuous s-point map on a b-metric space (X, d) is a continuous
map µ : X ×X → X such that, for all (a, b) ∈ X ×X we have

d(a, µ(a, b)) =
1

2s
d(a, b) = d(b, µ(a, b)).

The triple (X, d, µ) is called a continuous s-point space. A continuous s-point space
(X, d, µ) is a unique continuous s-point space, if for all pair of points there exists a
unique s-point. In a unique continuous s-point space the s-point map is symmetric,
that is µ(a, b) = µ(b, a). When s = 1, the continuous s-point space reduces to
continuous midpoint space in [8].
Here, we say that a closed subset C of X is convex if µ(a, b) ∈ C, for all (a, b) ∈ C×C.
Example 2.3. Let X = [0, 1] and d : X ×X → [0,+∞) be defined by

d(x, y) = (x− y)2,

for all x, y ∈ X. Clearly (X, d) is a b-metric space with constant 2. If

µ(a, b) =
(a+ b)

2

then

d(a, µ(a, b)) =

(
a− a+ b

2

)2

=
(a− b)2

4

and

d(µ(a, b), b) =

(
a+ b

2
− b
)2

=
(a− b)2

4
,

for all a, b ∈ X. Therefore (X, d, µ) is a complete continuous s-point space.



NONEXPANSIVE MAPPINGS AND CONTINUOUS s-POINT SPACES 483

Lemma 2.4. Let (X, d) be a b-metric space with constant s. If for each (a, b) ∈ X×X,
there exists a z ∈ X such that for each x ∈ X we have

d(a, b)2 + 4s2(2s2 − 1)d(x, z)2 = 2s2d(a, x)2 + 2s2d(x, b)2, (2.1)

then (X, d) is a unique continuous s-point spaces.
Proof. First, we show that z is a s-point. Taking x = a in (2.1) we obtain

d(a, z) =
1

2s
d(a, b).

Similarly, with x = b we obtain

d(z, b) =
1

2s
d(a, b).

Let us for each (a, b) ∈ X ×X, see that there is a unique point z ∈ X for which the
property (2.1) holds. If

d(a, b)2 + 4s2(2s2 − 1)d(x, zi)
2 = 2s2d(a, x)2 + 2s2d(x, b)2,

holds for all x ∈ X with i ∈ {1, 2} then, put x = z1, we have

d(a, b)2 + 4s2(2s2 − 1)d(z1, z2)2 = 2s2d(a, z1)2 + 2s2d(z1, b)
2.

Since z1 is a s-point, d(a, z1) =
1

2s
d(a, b) = d(b, z1). Thus

4s2(2s2 − 1)d(z1, z2)2 = 0,

that is d(z1, z2) = 0.
Remark 2.5. The following inequality, which can be easily derived from Lemma 2.4
and the definition of a s-point, shows that the s-point map is continuous.

d(a, b)2 + 4s2(2s2 − 1)d(µ(a, b), µ(a′, b′))2

= 2s2d(µ(a′, b′), a)2 + 2s2d(µ(a′, b′), b)2

≤ 2s2
[
s
(
d(a, a′) + d(a′, µ(a′, b′))

)]2
+ 2s2

[
s
(
d(b, b′) + d(b′, µ(a′, b′))

)]2
= 2s2

[
sd(a, a′) +

1

2
d(a′, b′)

]2
+ 2s2

[
sd(b, b′) +

1

2
d(a′, b′)

]2
.

3. Main results

Now, we want to determine the s-point map in b-metric space.
Lemma 3.1. Let (X, d) be a b-metric space. If there exists a continuous map ψ :
X ×X × [0, 1]→ X, such that for each (a, b) ∈ X ×X and each t ∈ [0, 1]:

d(a, ψ(a, b, t)) =
t

s
d(a, b) and d(b, ψ(a, b, t)) =

(1− t)
s

d(a, b),

then there exists a continuous s-point map on X ×X.

Proof. Put µ(a, b) = ψ(a, b,
1

2
). So we have d(a, µ(a, b)) =

1

2s
d(a, b) = d(µ(a, b), b).

All of the results of this paper are consequences Theorem 3.2.
Theorem 3.2. If (X, d, µ) is a complete continuous s-point space then there exists a
continuous map ψ : X ×X × [0, 1]→ X such that

(i) d(a, ψ(a, b, t)) ≤ td(a, b) and d(b, ψ(a, b, t)) ≤ (1− t)d(a, b);
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(ii) d(ψ(a, b, t), ψ(a, b, t′)) ≤ |t− t′|d(a, b),

for each (a, b) ∈ X × X and for all (t, t′) ∈ [0, 1] × [0, 1]. Furthermore, if (X, d) is
also a unique s-point space then there is a unique map ψ : X × X × [0, 1] → X for
which (i) and (ii) hold. It also has the following property

(iii) ψ(a, b, t) = ψ(b, a, 1− t).

Proof. Let Em =

{
k

2m
: 0 ≤ k ≤ 2m

}
. For example

E0 = {0, 1},

E1 =

{
0,

1

2
, 1

}
,

E2 =

{
0,

1

4
,

2

4
,

3

4
, 1

}
,

E3 =

{
0,

1

8
,

2

8
,

3

8
,

4

8
,

5

8
,

6

8
,

7

8
, 1

}
, · · · .

The set E =
⋃
m∈N

Em is dense in [0, 1]. If t ∈ Em+1 \Em, t =
k

2m+1
and k is odd. Let

tr =
k − 1

2m+1
, td =

k + 1

2m+1
, then tr and td are both in Em.

Step 1. The construction below defines by induction a sequence of maps ψm(a, b, .) :
Em → X such that the restriction of ψm+1(a, b, .) to Em is ψm(a, b, .) for a fixed pair
(a, b) ∈ X×X and so a map ψω(a, b, .) : E → X whose restriction to Em is ψm(a, b, .).
Put ψm(a, b, 0) = a and ψm(a, b, 1) = b for all m ∈ N; this defines ψ0(a, b, .). Then

ψm+1(a, b, t) = ψm(a, b, t) if t ∈ Em,

and

ψm+1(a, b, t) = µ
(
ψm(a, b, tr), ψm(a, b, td)

)
if t ∈ Em+1 \ Em.

Step 2. We show that when td and tr are two consecutive elements of Em then

d
(
ψm(a, b, tr), ψm(a, b, td)

)
=

1

(2s)m
d(a, b).

For m = 0, 1 this is a consequence of the definition of ψ0 and µ. Since td − tr =
1

2m

we have either tr ∈ Em−1 or td ∈ Em−1. If tr ∈ Em−1, then tr +
1

2m−1
∈ Em−1 and

td =
1

2

[
tr +

(
tr +

1

2m−1

)]
∈ Em \ Em−1.

Also

ψm(a, b, tr) = ψm−1(a, b, tr),

ψm(a, b, td) = µ

(
ψm−1(a, b, tr), ψm−1

(
a, b, tr +

1

2m−1

))
.
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Hence by induction we have

d
(
ψm(a, b, tr), ψm(a, b, td)

)
= d

(
ψm−1(a, b, tr), µ

(
ψm−1(a, b, tr), ψm−1(a, b, tr +

1

2m−1
)

))
=

1

2s
d

(
ψm−1(a, b, tr), ψm−1

(
a, b, tr +

1

2m−1

))
=

1

2s

(
1

(2s)m−1
d(a, b)

)
=

1

(2s)m
d(a, b). (3.1)

One proceeds similarly if td ∈ Em−1.
Step 3. By induction on m we show that

d
(
a, ψω(a, b, t)

)
≤ td(a, b) and d

(
b, ψω(a, b, t)

)
≤ (1− t)d(a, b),

for all t ∈ E. If t ∈ E0 or t ∈ E1 \ E0 this is obvious from the definition of ψm and
µ. Assume that t ∈ Em+1 \Em. By equation (3.1), definition of ψ and hypothesis of
induction, we have

d
(
a, ψm+1(a, b, t)

)
= d
(
a, µ
(
ψm(a, b, tr), ψm(a, b, td)

))
≤ s
[
d
(
a, ψm(a, b, tr)

)
+ d
(
ψm(a, b, tr), µ

(
ψm(a, b, tr), ψm(a, b, td)

))]
≤ s

[
d
(
a, ψm−1(a, b, tr)

)
+

1

2s
d (ψm(a, b, tr), ψm(a, b, td))

]
≤ s

[
trd(a, b) +

1

(2s)(2s)m
d(a, b)

]
=

(
str +

s

(2s)m+1

)
d(a, b) 6 td(a, b).

Therefore for all t ∈ E,

d
(
a, ψω(a, b, t)

)
6 td(a, b).

Similarly, we can show that

d
(
ψm+1(a, b, t), b

)
= d
(
µ
(
ψm(a, b, tr), ψm(a, b, td)

)
, b
)

≤ s
[
d
(
µ
(
ψm(a, b, tr), ψm(a, b, td)

)
, ψm(a, b, td)

)
+ d
(
ψm(a, b, td), b

)]
≤ s

[
1

(2s)
d (ψm(a, b, tr), ψm(a, b, td)) + (1− td)d(a, b)

]
≤ s

[
1

(2s)(2s)m
d(a, b) + (1− td)d(a, b)

]
=

(
s

(2s)m+1
+ s(1− td)

)
d(a, b) 6 (1− t)d(a, b),

for all t ∈ E. Hence

d
(
ψω(a, b, t), b

)
6 (1− t)d(a, b).
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Step 4. We claim that t→ ψω(a, b, t) is uniformly continuous on E. For t, t′ ∈ E we

choose m such that t, t′ ∈ Em, let us t = tk =
k

2m
, t′ = tk+j =

k + j

2m
. By (3.1) we

have

d
(
ψm(a, b, t), ψm(a, b, t′)

)
≤ s
[
d
(
ψm(a, b, tk), ψm(a, b, tk+1)

)
+ d
(
ψm(a, b, tk+1), ψm(a, b, tk+j)

)]
≤ sd

(
ψm(a, b, tk)), ψm(a, b, tk+1)

)
+ s2d

(
ψm(a, b, tk+1)), ψm(a, b, tk+2)

)
+ · · ·+ sj−1d

(
ψm(a, b, tk+j−2)), ψm(a, b, tk+j−1)

)
+ sj−1d

(
ψm(a, b, tk+j−1)), ψm(a, b, tk+j)

)
≤ 1

(2s)m
(s+ s2 + · · ·+ sj−2 + sj−1 + sj−1)d(a, b)

=

(
j

2m

)(
1

jsm

)
(s+ s2 + · · ·+ sj−2 + sj−1 + sj−1)d(a, b)

≤ |t− t′| 1

jsm
(jsj−1)d(a, b) = |t− t′| 1

sm−j+1
d(a, b)

≤ |t− t′|d(a, b).

According to above steps and since E is dense in [0, 1] and X is complete, there exists
a unique uniformly continuous map ψ(a, b, .) : E → X such that

(1) ψ(a, b, 0) = a and ψ(a, b, 1) = b;
(2) for all t ∈ [0, 1], d(a, ψ(a, b, t)) ≤ td(a, b) and d(b, ψ(a, b, t)) ≤ (1− t)d(a, b);
(3) for all t ∈ [0, 1], d(ψ(a, b, t), ψ(a, b, t′)) ≤ |t− t′|d(a, b).

Step 5. Now, we prove that ψ is continuous on X ×X × [0, 1].

(a) From the continuity of the s-point map µ, the definition of ψm+1(a, b, t) and an
induction on m, we can see that (a, b)→ ψ(a, b, t) = ψm(a, b, t) is continuous
for all t ∈ Em.

(b) Let us show that (a, b)→ ψ(a, b, t) is continuous for all t ∈ [0, 1].
Put ∆ = d

(
ψ(a, b, t), ψ(a′, b′, t)

)
. From (3) we have, for arbitrary t′ ∈ [0, 1],

∆ ≤ sd
(
ψ(a, b, t), ψ(a, b, t′)

)
+ sd

(
ψ(a, b, t′), ψ(a′, b′, t)

)
≤ sd

(
ψ(a, b, t), ψ(a, b, t′)

)
+ s2d

(
ψ(a, b, t′), ψ(a′, b′, t′)

)
+ s2d

(
ψ(a′, b′, t′), ψ(a′, b′, t)

)
≤ |t− t′|

(
sd(a, b) + s2d(a′, b′)

)
+ s2d

(
ψ(a, b, t′), ψ(a′, b′, t′)

)
.

Since
d(a′, b′) ≤ sd(a′, a) + s2d(a, b) + s2d(b, b′),

if sd(a′, a) + s2d(b, b′) = 1, then d(a′, b′) ≤ 1 + s2d(a, b), then

sd(a, b) + s2d(a′, b′)) ≤ s2 + (s+ s4)d(a, b),

and therefore

∆ ≤ |t− t′|
(
s2 + (s+ s4)d(a, b)

)
+ s2d

(
ψ(a, b, t′), ψ(a′, b′, t′)

)
.



NONEXPANSIVE MAPPINGS AND CONTINUOUS s-POINT SPACES 487

We can choose t′ ∈ E such that |t − t′| < ε

s2 + (s+ s4)d(a, b)
and conclude

from the continuity of the map ψ(., ., t′) at (a, b).
(c) Put ∆ = d

(
ψ(a, b, t), ψ(a′, b′, t′)

)
and notice that

∆ ≤ sd
(
ψ(a, b, t), ψ(a′, b′, t)

)
+ sd

(
ψ(a′, b′, t), ψ(a′, b′, t′)))

≤ sd
(
ψ(a, b, t), ψ(a′, b′, t)

)
+ s|t− t′|d(a′, b′).

Therefore ψ is continuous at (a, b, t).

Step 6. Suppose that (X, d) is a unique continuous s-point space. We claim that
ψ : X×X×[0, 1]→ X is the unique continuous map for which (1) and (2) hold. If ϕ is

such a map then ϕ(a, b, 0) = ψ(a, b, 0), ϕ(a, b, 1) = ψ(a, b, 1) and ϕ

(
a, b,

1

2

)
= µ(a, b).

On the other hand

ϕ(a, b,
t1 + t2

2
) = µ

(
ϕ(a, b, t1), ϕ(a, b, t2)

)
.

If t1 < t2 and M = ϕ

(
a, b,

t1 + t2
2

)
then by (3) we have

d
(
M,ϕ(a, b, t1)

)
≤
(
t1 + t2

2
− t1

)
d(a, b) =

(
t2 − t1

2

)
d(a, b),

and similarly

d(M,ϕ(a, b, t2)) ≤
(
t2 −

t1 + t2
2

)
d(a, b) =

(
t2 − t1

2

)
d(a, b).

Also by step (4)
d
(
ϕ(a, b, t1), ϕ(a, b, t2)

)
≤ (t2 − t1)d(a, b).

Hence M less than (or equal) of midpoint of ϕ(a, b, t1) and ϕ(a, b, t2).

If t ∈ E \ {0, 1

2
, 1}. Let m be the smallest integer for which t ∈ Em, from t =

tr + td
2

we have
ϕ(a, b, t) = µ

(
ϕ(a, b, tr), ϕ(a, b, td)

)
.

and by induction on m shows that ϕ = ψ on X ×X × E and therefore ϕ = ψ.
Finally, notice that (i) and (ii) hold for ψ(a, b, t) = ψ(b, a, 1− t); this proves (iii).
Remark 3.3. In proof of Theorem 3.2, we observe that

(1) We have the following before step 2: ψ0(a, b, 0) = a, ψ0(a, b, 1) = b.

ψ1(a, b, 0) = a, ψ1

(
a, b,

1

2

)
= µ(a, b), ψ1(a, b, 1) = b.

ψ2(a, b, 0) = a, ψ2

(
a, b,

1

4

)
= µ(a, µ(a, b)), ψ2

(
a, b,

2

4

)
= µ(a, b),

ψ2

(
a, b,

3

4

)
= µ(µ(a, b), b), ψ2(a, b, 1) = b.

ψ3(a, b, 0) = a, ψ3

(
a, b,

1

8

)
= µ(a, µ(a, µ(a, b))),

ψ3

(
a, b,

2

8

)
= µ(a, µ(a, b)),
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ψ3

(
a, b,

3

8

)
= µ(µ(a, µ(a, µ(a, b))), µ(a, b)), ψ3

(
a, b,

4

8

)
= µ(a, b),

ψ3

(
a, b,

5

8

)
= µ(µ(a, b), µ(µ(a, b), b)), ψ3

(
a, b,

6

8

)
= µ(µ(a, b), b),

ψ3

(
a, b,

7

8

)
= µ(µ(µ(a, b), b), b), ψ3(a, b, 1) = b.

(2) For more details you can see for all m ∈ N, in step 3:
d
(
a, ψm(a, b, 0)

)
= 0, d

(
a, ψm(a, b, 1)

)
= d(a, b),

d
(
ψm(a, b, 0), b

)
= d(a, b), d

(
ψm(a, b, 1), b

)
= 0.

d

(
a, ψm

(
a, b,

1

2

))
=

1

2s
d(a, b) ≤ 1

2
d(a, b),

d

(
ψm

(
a, b,

1

2

)
, b

)
=

1

2s
d(a, b) ≤ 1

2
d(a, b).

d

(
a, ψ2

(
a, b,

1

4

))
=

1

4s2
d(a, b) ≤ 1

4
d(a, b),

d

(
a, ψ2

(
a, b,

3

4

))
≤ 2s2 + s

4s2
d(a, b) ≤ 3

4
d(a, b),

d

(
ψ2

(
a, b,

1

4

)
, b

)
≤ 2s2 + s

4s2
d(a, b) ≤ 3

4
d(a, b),

d

(
ψ2

(
a, b,

3

4

)
, b

)
≤ 1

4s2
d(a, b) ≤ 1

4
d(a, b).

d

(
a, ψ3

(
a, b,

1

8

))
=

1

8s3
d(a, b) ≤ 1

8
d(a, b),

d

(
a, ψ3

(
a, b,

3

8

))
≤ 2s2 + s

8s3
d(a, b) ≤ 3

8
d(a, b),

d

(
ψ3

(
a, b,

5

8

)
, b

)
≤ 4s3 + s

8s3
d(a, b) ≤ 5

8
d(a, b),

d

(
ψ3

(
a, b,

7

8

)
, b

)
≤ 4s3 + 2s2 + s

8s3
d(a, b) ≤ 7

8
d(a, b).

A metric space X is locally equiconnected [5] if there exists a neighborhood U of the
diagonal ∆ ⊂ X ×X and continuous map ϕ : U × [0, 1] → X such that ϕ(a, b, 0) =
a, ϕ(a, b, 1) = b and ϕ(a, a, t) = a for all (a, b) ∈ U and t ∈ [0, 1].

Given a continuous s-point space (X, d, µ) the map ψ constructed in Theorem 3.2 is
the locally equiconnected mapping associated to µ. At times we will also write ψ(a,b)(t)

for ψ(a, b, t). Since d

(
a, ψ

(
a, b,

1

2

))
=

1

2s
d(a, b) and d

(
b, ψ

(
a, b,

1

2

))
=

1

2s
d(a, b)

we have the following characterization of complete spaces which carry a continuous
s-point map.
Proposition 3.4. If (X, d) is a complete metric space then there exists a continuous
s-point map µ : X×X → X if and only if there exists a continuous map ψ : X×X×
[0, 1]→ X such that

(i) d(a, ψ(a, b, t)) ≤ td(a, b) and d(b, ψ(a, b, t)) ≤ (1− t)d(a, b);
(ii) d(ψ(a, b, t), ψ(a, b, t′)) ≤ |t− t′|d(a, b),
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for each (a, b) ∈ X ×X and for all (t, t′) ∈ [0, 1]× [0, 1].
The map ψ(a,b) defines a rectifiable path with length d(a, b), for all pair (a, b).

Proposition 3.5. In a symmetric and continuous s-point space (X, d, µ) the map
t→ d

(
ψ(x, u, t), ψ(x, v, t)

)
is convex on [0, 1], if for each (x, u, v) ∈ X3, we have

d(µ(x, u), µ(x, v)) ≤ 1

2s
d(u, v). (3.2)

Proof. Let δ(x,u,v)(t) = d
(
ψ(x, u, t), ψ(x, v, t)

)
. Note that

d
(
µ(a, b), µ(a′, b′)

)
≤ sd

(
µ(a, b), µ(a, b′)

)
+ sd

(
µ(a, b′), µ(a′, b′)

)
,

therefore by (3.2) we have

d
(
µ(a, b), µ(a′, b′)

)
≤ 1

2

(
d(a, a′) + d(b, b′)

)
,

for all a, b, a′, b′ ∈ X. For t, t′ ∈ E0 × E0, put t′′ =
1

2
(t+ t′) and so

d
(
ψ(a,b)(t

′′), ψ(a′,b′)(t
′′)
)
≤ 1

2

(
d
(
ψ(a,b)(t), ψ(a′,b′)(t)

)
+ d
(
ψ(a,b)(t

′), ψ(a′,b′)(t
′)
))
.

By induction, the above inequality is hold on E × E and therefore on [0, 1] × [0, 1].
One can take a = a′ = x, b = u and b′ = v to see that δx,u,v(t) convex on [0, 1], indeed

d
(
ψ(x,u)(t

′′), ψ(x,v)(t
′′)
)
≤ 1

2

(
d
(
ψ(x,u)(t), ψ(x,v)(t)

)
+ d
(
ψ(x,u)(t

′), ψ(x,v)(t
′)
))
,

that is

δ(x,u,v)

(
t+ t′

2

)
≤
δ(x,u,v)(t) + δ(x,u,v)(t

′)

2
.

Note that if the map δ(x,a,b) in Lemma 3.5 is convex on [0, 1], then for t = 0, t′ = 1

we have δ(x,u,v)(0) = 0, δ(x,u,v)(1) = d(u, v) and δ(x,u,v)

(
1

2

)
= d(µ(x, u), µ(x, v)), so

d(µ(x, u), µ(x, v)) ≤ 1

2
d(u, v).

4. Fixed point for nonexpansive maps

We need the following lemma for main result of this section.
Lemma 4.1. If (X, d) be a complete b-metric space with constant s and satisfies in
(2.1) and (3.2), then the following properties hold

(1) for each x ∈ X, (a, b) ∈ X ×X and r,R ≥ 0 if R ≥ max{d(x, a), d(x, b)} and
r ≤ d

(
x, µ(a, b)

)
then

1

2s
d(a, b) ≤

√
R2 − (2s2 − 1)r2;

(2) the map u→ ψ(x, u, t) is contractive for all (x, t) ∈ X × [0, 1].
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Proof. From (2.1) we can easily see that

d2(a, b) = 2s2
[
d2(a, x) + d2(x, b)

]
− 4s2(2s2− 1)d2(x, µ(a, b)) ≤ 4s2(R2− (2s2− 1)r2),

hence d(a, b) ≤ 2s
√
R2 − (2s2 − 1)r2. This proves (1).

By Proposition 3.5 the map t→ d
(
ψ(x, u, t), ψ(x, v, t)

)
is convex, so for all t ∈ (0, 1)

d
(
ψ(x, u, t), ψ(x, v, t)

)
≤ (1− t)d

(
ψ(x, u, 0), ψ(x, v, 0)

)
+ td

(
ψ(x, u, 1), ψ(x, v, 1)

)
.

From ψ(a, b, 0) = a, ψ(a, b, 1) = b we obtain

d
(
ψ(x, u, t), ψ(x, v, t)

)
≤ td(u, v).

Using Lemma 4.1 we can prove the following statement:
Lemma 4.2. Let C be a convex and bounded subset of complete continuous s-point
space (X, d, µ) for which (1) and (2) of Lemma 4.1 hold and let F : C → C be
nonexpansive. Then for each u, v ∈ C and for all R ≥ 0 such that d(u, F (u)) ≤ R
and d(v, F (v)) ≤ R we have

d
(
µ(u, v), F (µ(u, v))

)2 ≤ 8s3R(diam C).

Proof. Since F is nonexpansive and µ is continuous s-point we have

d
(
u, F (µ(u, v))

)
≤ sd

(
u, F (u)

)
+ sd

(
F (u), F (µ(u, v))

)
≤ sR+ sd

(
u, µ(u, v)

)
= sR+

1

2
d(u, v),

and d
(
u, µ(u, v)

)
=

1

2s
d(u, v), for all u, v ∈ C and R ≥ 0. Then

sR+
1

2
d(u, v) ≥ max{d

(
u, µ(u, v)

)
, d
(
u, F (µ(u, v))

)
},

and put r =
1

2
√

2s2 − 1
d(u, v). On the other hand, by (1) of Lemma 4.1 we have

d
(
µ(u, v), F (µ(u, v))

)2 ≤ 4s2

((
sR+

1

2
d(u, v)

)2

− (2s2 − 1)r2

)

≤ 4s2

((
sR+

1

2
d(u, v)

)2

− 1

4
d(u, v)2

)
= 4s2(sR)

(
R+ d(u, v)

)
≤ 4s3R

(
2diam C

)
= 8s3R

(
diam C

)
.

Now, we prove the fixed point property for nonexpansive mappings under following
conditions.
Theorem 4.3. Let C be a convex and bounded subset of complete continuous s-point
space (X, d, µ) and let F : C → C be a nonexpansive map for which (1) and (2) of
Lemma 4.1 hold. Then C have the fixed point property for continuous nonexpansive
maps.
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Proof. We claim that F has a fixed point. Fix an arbitrary point x ∈ C and for all
n > 0 let

Fn(u) = ψ

(
x, F (u), 1− 1

n

)
.

Clearly, Fn is contractive, because by the proof of second part of Lemma 4.1 we can
write

d
(
Fn(u), Fn(v)

)
= d

(
ψ

(
x, F (u), 1− 1

n

)
, ψ

(
x, F (v), 1− 1

n

))
≤ 1

n
d
(
F (u), F (v)

)
≤ 1

n
d(u, v),

let un be its fixed point of Fn. From Theorem 3.2 we have

d
(
un, F (un)

)
= d
(
Fn(un), F (un)

)
= d

(
ψ

(
x, F (un), 1− 1

n

)
, F (un)

)
≤
(

1−
(

1− 1

n

))
d
(
x, F (un)

)
≤ diam C

n
.

Let

An =

{
u ∈ C : d

(
u, F (u)

)
≤ diam C

n

}
for n ≥ 2. The set An is closed and nonempty for all n ≥ 2. Let dn = inf

u∈An

d(x, u)

and so for all n ≥ 2, dn ≤ dn+1 ≤ diam C. Let d = lim
n→∞

dn and

Gn = A8s3n2 ∩B
(
x, d+

1

n

)
.

Using Lemma 4.2, for all u, v ∈ A8s3n2 , µ(u, v) ∈ An.
Therefore if u, v ∈ Gn, we must have

d(x, u) ≤ d+
1

n
, d(x, v) ≤ d+

1

n

as well as

d(x, µ(u, v)) ≥ 1√
2s2 − 1

dn.

Therefore by the first part of Lemma 4.1, we have the following estimation for the
diameter of Gn:

diam Gn ≤ 2s

√
2d

n
+

1

n2
+ d2 − d2n.

On the other hand Gn+1 ⊂ Gn and so
⋂
n≥2

Gn reduces to a single point which is clearly

a fixed point of F .
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Example 4.4. In Example 2.3, put F (x) = 1− x

2
. Since

(a− b)2 + 4s2(2s2 − 1)

(
x− a+ b

2

)2

= 2s2(a− x)2 + 2s2(x− b)2

and (
x+ u

2
− x+ v

2

)2

≤ 1

2s
(u− v)2,

for all a, b, x ∈ X and s = 2, then the conditions (2.1) and (3.2) are established. Now

by Theorem 4.3 F has a fixed point. Clearly x =
2

3
is a fixed point of F .

5. Discussion

Note that the comparison between a cone b-metric and a b-metric is likely the
relation between a cone metric, and a metric, see [1]. Some authors have proved that
fixed point theorems on cone metric spaces are, essentially, fixed point theorems on
metric space. Recently, Du used a method to introduce a b-metric on a cone b-metric
space and stated some relations between fixed point theorems on cone b-metric spaces
and on b-metric spaces, (for more details see references in [9]).

In the article [9], authors used a method to introduce another b-metric on the cone
b-metric space and then proved some equivalences between them. As applications,
they show that fixed point theorems on cone b-metric spaces can be obtained from
fixed point theorems on b-metric spaces, (see [7, 9, 10]).

We note that, much more papers published in the relations between cone metric
spaces and metric spaces between years 2007-2011. Cone metric divided to three
parts: normal cone, non-normal cone and cones with empty interior. Important cases
were without normal form. And equivalency of contractive conditions was another
important question as well. Some of papers published in this way, (such as [1, 6]).
And final big problem was for the total case in the contractive condition d(Tx, Ty) ≤
ϕ(d(x, y)). For the certain answers refer to [7, 9, 10].
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