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Abstract. Let X and X∗ be a Banach space and its dual, and let B(X) and S(X) be the unit ball
and unit sphere of X respectively. In this paper, we introduce a new parameter of w∗

n− Separation,

w∗
n(X∗), in X∗ and study the relation between this parameter and normal structure in X, and

the relation between packing constant P (α,X) introduced by Kottman and normal structure that
implies the existence of fixed point for non-expansive mappings. Some new results about fixed points

of non-expansive mapping are obtained.
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1. Introduction

Let X be a normed linear space. Let B(X) = {x ∈ X : ‖x‖ ≤ 1} and

S(X) = {x ∈ X : ‖x‖ = 1}
be the unit ball and the unit sphere of X, respectively. Let X∗ be the dual space of
X. Let B(x0, r) = {x ∈ X : ‖x− x0‖ ≤ r} be the ball with center at x0, and radius
r in X.

Brodskĭı and Mil’man [3] introduced the following geometric concepts in 1948:

Definition 1.1. A bounded and convex subset K of a Banach space X is said to
have normal structure if every convex subset H of K that contains more than one
point contains a point x0 ∈ H, such that sup{‖x0 − y‖ : y ∈ H} < d(H), where
d(H) = sup{‖x− y‖ : x, y ∈ H} denotes the diameter of H.

A Banach space X is said to have normal structure if every bounded and convex
subset of X has normal structure.

A Banach space X is said to have weak normal structure if each weakly compact
convex set K in X has normal structure.

A Banach space X is said to have uniform normal structure if there exists 0 < c < 1
such that for any bounded closed convex subset K of X that contains more than one
point, there exists x0 ∈ K such that sup{‖x0 − y‖ : y ∈ K} ≤ c · d(K).
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For a reflexive Banach space, the normal structure and weak normal structure
coincide.

Let C be a nonempty subset of a Banach space X. A mapping T : C → C is called
to be non-expansive whenever ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. A Banach space
has the fixed point property if for every nonempty bounded closed and convex subset
C of X and for each non-expansive mapping T : C → C, there is a point x ∈ C such
that x = Tx. ([8]).

Kirk [8] proved that if a Banach space X has weak normal structure then it has
the weak fixed point property, that is, every non-expansive mapping from a weakly
compact and convex subset of X into itself has a fixed point.

In 1970, Kottman [11] introduced the following concept:

Definition 1.2. Let X be a Banach space. For each cardinal number α let

P (α,X) = sup{r : there exist α disjoint balls of radius r in B(X)}.
(In this setting we take sup ∅ = 0).

Definition 1.3. A Banach space X is called P-convex, if P (n,X) < 1
2 for some

positive integer n.

Kottman proved [11]:

Theorem 1.4. Let X be an infinite dimensional normed space and α be a cardinal
number greater than one but less than or equal to the density character of X. Then

1

3
≤ P (α,X) ≤ 1

2
.

Definition 1.5. ([4], [6]) Let X and Y be Banach spaces. We say that Y is finitely
representable in X if for any ε > 0 and any finite dimensional subspace N ⊆ Y there
is an isomorphism T : N → T (N) such that for any y ∈ N ,

(1− ε)‖y‖ ≤ ‖Ty‖ ≤ (1 + ε)‖y‖.
The Banach space X is called super-reflexive if any space Y which is finitely rep-

resentable in X is reflexive.

Theorem 1.6. X is super-reflexive if and only if X∗ is super-reflexive.

Theorem 1.7. ([2], [11]) If a Banach space X is P-convex, then X is super-reflexive.

The following n-dimensional modulus was introduced by Jiménez-Melado [7] and
Mazcuñán-Navarro [12]:

Definition 1.8. For a Banach space X, let

sn(X) := sup{ε ∈ [0, 2] : ∃x1, x2, . . . xn+1 ∈ B(X), such that

min
i 6=j
‖xi − xj‖ ≥ ε}.

In this paper, we introduce a new parameter of w∗n− Separation, w∗n(X∗), in X∗

and study the relation between this parameter and normal structure in X, and the
relation between packing constant P (α,X) introduced by Kottman above and normal
structure that implies the existence of fixed point for non expansive mappings. Some
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new results about fixed points of non-expansive mapping are obtained. In section 3
we prove that if X is an infinite dimensional normed space with P (ℵ0, X∗) < 1

2 then
X has uniformly normal structure, where ℵ0 is the cardinal number of all natural
numbers.

2. Preliminary and main results

We define the following two n-dimensional modules:

Definition 2.1. Let X and X∗ be a Banach space and its dual, and B(X) and
B(X∗) be the unit ball of X and X∗ respectively. We define

wn(X) := sup{ε ∈ [0, 2] : ∃x1, x2, . . . xn+1 ∈ B(X), such that

min
i6=j

(supf∈B(X∗)〈xi − xj , f〉) ≥ ε};

and

w∗n(X∗) := sup{ε ∈ [0, 2] : ∃f1, f2, . . . fn+1 ∈ B(X∗), such that

min
i6=j

(supx∈B(X)〈x, fi − fj〉) ≥ ε}.

It is easy to show that:

Corollary 2.2. For a Banach space X, wn(X) ≤ sn(X) ≤ 2, and for X∗,

w∗n(X∗) ≤ sn(X∗) ≤ 2.

Example 2.3. Let X = c0, and X∗ = l1, then w∗n(l1) = sn(l1) = 2.
Proof. Let x = (0, 0, 0, ..., 0, 1, 0, ..., 0,−1, 0..., 0, 0, 0, ...) ∈ S(c0), where i-th position
of x is 1, j-th position of x is -1, others are 0 and i < j.

Let fi = (0, 0, 0, ..., 0, 1, 0, ..., 0, 0, 0, ...) ∈ S(l1), where i-th position of f1 is 1 and
others are 0.

And fj = (0, 0, 0, ..., 0, 0, 0, ..., 0, 1, 0, ...) ∈ S(l1), where j-th position of fj is 1 and
others are 0. We have < x, fi − fj >= 2.

From the definition of w∗n(X∗), w∗n(l1) = sn(l1) = 2.

The following three results refer to a Banach space with weak* sequentially compact
unit ball of the dual. Notice that this property is satisfied by reflexive or separable
Banach spaces, and by those that admit an equivalent smooth norm (see [5], Ch.
XIII).

Lemma 2.4. [13] If X is a Banach space with B(X∗) weak* sequentially compact
and fails to have weak normal structure, then for any ε > 0 there are a sequence
{xn} ⊆ S(X) and a sequence {fn} ⊆ S(X∗) such that

(a) |‖xi − xj‖ − 1| < ε, whenever i 6= j;
(b) 〈xi, fi〉 = 1, whenever 1 ≤ i ≤ ∞;
(c) |〈xj , fi〉| < ε, whenever i 6= j; and
(d) ‖fi − fj‖ > 2− ε, whenever i 6= j.
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Theorem 2.5. If X is a Banach space with B(X∗) weak* sequentially compact and
w∗n(X∗) < 2, then X have weak normal structure.
Proof. From the proof of Lemma 2.27 of [13], if X fails to have weak normal structure,
then for any η > 0 there are a sequence {xn} ⊆ S(X) and a sequence {fn} ⊆ S(X∗)
such that |‖xi − xj‖ − 1| < η and |〈xj , fi〉| < η, if i 6= j.

So, |〈xi − xj , fi − fj〉| = |2− 〈xj , fi〉 − 〈xi, fj〉| ≥ 2− 2η for any i 6= j.
Since η can be arbitrarily small, we have w∗n(X∗) = 2.

Theorem 2.6. If X is a Banach space with B(X∗) weak* sequentially compact and
P (ℵ0, X∗) < 1

2 , then X has weak normal structure.
Proof. Suppose X does not have weak normal structure. From Lemma 2.4, for any
ε > 0 there is a sequence {fn} ⊆ S(X∗) such that ‖fi − fj‖ > 2− ε, whenever i 6= j.

Considering the sequence { fn2 }, we have B
(

fm
2 ,

1
2 −

ε
4

)
∩ B

(
fn
2 ,

1
2 −

ε
4

)
= ∅ if

m 6= n, and B
(

fn
2 ,

1
2 −

ε
4

)
⊆ B(X∗) for all n.

We have P (ℵ0, X∗) > 1
2 −

ε
4 . Since ε can be arbitrarily small, we have P (ℵ0, X∗) = 1

2 .

Definition 2.7. A Banach space X is called G-convex, if P (ℵ0, X) < 1
2 .

Proposition 2.8. If the Banach space X is P-convex, then X is G-convex.

From Theorem 1.7 and Theorem 2.6, we have:

Theorem 2.9. If the Banach space X∗ is P-convex, then X has normal structure.
Proof. From Theorem 1.7, X∗ is P-convex implies that X∗ and therefore X is super-
reflexive, so weak normal structure and normal structure coincide. Then from The-
orem 2.6, X∗ is P-convex implies X has weak normal structure, therefore normal
structure.

3. Uniform normal structure

Let F be a filter on an index set I, and let {xi}i∈I be a subset in a Hausdorff
topological space X, {xi}i∈I is said to converge to x with respect to F , denote by
limF xi = x, if for each neighborhood V of x, {i ∈ I : xi ∈ V } ∈ F . A filter U on I is
called an ultrafilter if it is maximal with respect to the ordering of the set inclusion.
An ultrafilter is called trivial if it is of the form {A : A ⊆ I, i0 ∈ A} for some i0 ∈ I.
We will use the fact that if U is an ultrafilter, then

(i) for any A ⊆ I, either A ∈ U or I \A ∈ U ;
(ii) if {xi}i∈I has a cluster point x, then limU xi exists and equals to x.

Let {Xi}i∈I be a family of Banach spaces and let l∞(I,Xi) denote the subspace of
the product space equipped with the norm ‖(xi)‖ = supi∈I ‖xi‖ <∞.

Definition 3.1. ([1], [10], [14]) Let U be an ultrafilter on I and let

NU = {(xi) ∈ l∞(I,Xi) : lim
U
‖xi‖ = 0}.

The ultra-product of {Xi}i∈I is the quotient space l∞(I,Xi)/NU equipped with the
quotient norm.



PACKING AND w∗
n− SEPARATION 479

We will use (xi)U to denote an element of the ultra-product. It follows from the
assertion (ii) above, and the definition of quotient norm that

‖(xi)U‖ = lim
U
‖xi‖.

In the following we will restrict our index set I to be N, the set of natural numbers,
and let Xi = X for all i ∈ N for some Banach space X. For an ultrafilter U on N, we
use XU to denote the corresponding ultra-product, called an ultra-power of X.

Lemma 3.2. ([1], [10] [14]) Suppose that U is an ultrafilter on N and X is a Banach
space. Then (X∗)U ∼= (XU )∗ if and only if X is super-reflexive; and in this case, the
mapping J defined by

〈(xi)U , J((fi)U )〉 = lim
U
〈xi, fi〉, for all (xi)U ∈ XU

is the canonical isometric isomorphism from (X∗)U onto (XU )∗.

Theorem 3.3. Let X be a Banach space. Then for any nontrivial ultrafilter U on
N, we have P (n,XU ) = P (n,X) for all n ∈ N.
Proof. Since X can be embedded into XU isometrically, we may consider X as a
subspace of XU . From the definition of P (n,X), we have
P (n,XU ) ≤ P (n,X) for all n ∈ N.

We prove the reverse inequality.
Suppose P (n,XU ) = a and ε > 0, then for any set of n balls in B(XU ) centering

inside of B(XU ) with radius a + ε, there must be at least two balls B((fi)U , a + ε)
and B((gi)U , a+ ε), such that B((fi)U , a+ ε) ∩B((gi)U , a+ ε) 6= ∅.

Let (hi)U ∈ B((fi)U , a+ ε) ∩B((gi)U , a+ ε).
We have ‖((fi)− (hi))U‖ < a+ ε and ‖((gi)− (hi))U‖ < a+ ε.
Without of generality, from definition of ultra-product, we may assume the follow-

ing sets:

A = {i : ‖fi‖ < 1 + ε},
B = {i : ‖gi‖ < 1 + ε},
C = {i : ‖hi‖ < 1 + ε},
P = {i : ‖fi − hi‖ < a+ ε}, and

Q = {i : ‖gi − hi‖ < a+ ε}

are all in U .
So the intersection A ∩B ∩ C ∩ P ∩Q is in U too, and is hence not empty.
Let i ∈ A ∩B ∩ C ∩ P ∩Q. For this fixed i, we have
‖fi‖ < 1 + ε, ‖gi‖ < 1 + ε, ‖hi‖ < 1 + ε, ‖fi − hi‖ < a+ ε, and ‖gi − hi‖ < a+ ε.
These imply that fi, gi ∈ (1 + ε)B(X), and B(fi, a+ ε) ∩B(gi, a+ ε) 6= ∅.
Since ε can be arbitrarily small, we have P (n,XU ) ≥ P (n,X).

Lemma 3.4. [9] If X is a super-reflexive Banach space, then X has uniform normal
structure if and only if XU has normal structure.

Theorem 3.5. For a Banach space X, if P (n,X∗) < 1
2 for some positive integer n,

then X has uniform normal structure.
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Proof. From Definition 1.3 and Theorem 1.7, P (n,X∗) < 1
2 implies X is super-

reflexive. From Theorem 3.3, XU has normal structure. Then from Theorem 2.9 and
Theorem 3.4, X has uniform normal structure.

We proved that if X∗ is P-convex, then X has uniform normal structure.

Since n is an arbitrary integer, we proved that:
Theorem 3.6. If X is an infinite dimensional normed space with P (ℵ0, X∗) < 1

2
then X has uniformly normal structure, where ℵ0 is the cardinal number of all natural
numbers.
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