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Abstract. We prove that two common best proximity point theorems proved by Sadiq Basha [4]

and by Mongkolkeha and Kumam [10] can be regarded as a direct consequence of Browder’s fixed
point theorem [5]. Moreover, the assumptions imposed in their results can be relaxed. We also

present some supplementary results and some examples.
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1. Introduction

Suppose that X is a nonempty set and S : X → X a mapping. We say that an
element x ∈ X is a fixed point of S if x = Sx. If S has no fixed point, then it is
interesting to find a point x in X such that x and Sx are very closed in some sense.
In 2011, Basha [2] proposed the concept of a best proximity point of S : A → B
where A,B are two nonempty subsets of a metric space (X, d), that is, x ∈ A is a
best proximity point of S if d(x, Sx) = inf{d(a, b) : a ∈ A and b ∈ B} =: d(A,B).
Motivated by the common fixed point theorem for two mappings proved by Jungck [7],
Sadiq Basha [4] and Mongkolkeha and Kumam [10] presented the analogous results
for best proximity points. In this paper, we show that both results of Sadiq Basha
[4] and of Mongkolkeha and Kumam [10] are a consequence of a classical fixed point
theorem of Browder [5]. Using our approach, we also show that some assumptions
in their results can be weaken. Moreover, we provide another result for the existence
of a common best proximity point under other assumptions. Some examples for our
supplement result are illustrated.
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2. Preliminaries and known results

The following is known as Banach contraction theorem.

Theorem B ([1]). Let (X, d) be a complete metric space and α ∈ [0, 1). Let S : X →
X be a mapping such that

d(Sx, Sy) ≤ αd(x, y) for all x, y ∈ X.

Then S has a unique fixed point x̂ in X and lim
n→∞

Snx = x̂ for all x ∈ X.

In 1968, Browder [5] generalized Theorem B in the following way.

Theorem Br ([5]). Let (X, d) be a complete metric space and let ψ : [0,∞)→ [0,∞)
be a nondecreasing and right continuous function with ψ(t) < t for all t > 0. Let
S : X → X be a mapping satisfying that

d(Sx, Sy) ≤ ψ(d(x, y)) for all x, y ∈ X.

Then S has a unique fixed point x̂ in X and lim
n→∞

Snx = x̂ for all x ∈ X.

Remark 2.1. Theorem Br contains Theorem B as a special case. In fact, we set
ψ(t) ≡ αt.

In 1976, Jungck [7] proved the following theorem.

Theorem J. Let (X, d) be a complete metric space and α ∈ [0, 1). Let S, T : X → X
be mappings satisfying the following conditions:

• d(Sx, Sy) ≤ αd(Tx, Ty) for all x, y ∈ X;
• S(X) ⊂ T (X);
• S and T commute, that is, STx = TSx for all x ∈ X;
• T is continuous (and hence S is continuous).

Then S and T have a unique common fixed point, that is, there exists a unique element
x̂ ∈ X such that x̂ = Sx̂ = T x̂.

Remark 2.2. Theorem J contains Theorem B as a special case. In fact, we set
Tx ≡ x.

Let (X, d) be a metric space and let S : A→ B be a mapping where A and B are
two nonempty subsets of X. Instead of finding a fixed point of S, we now find an
element x ∈ A such that

d(x, Sx) = inf{d(x, y) : x ∈ A and y ∈ B} =: d(A,B).

Such a point x is called a best proximity point of S. Suppose that T : A → B is
another mapping. An element x ∈ A such that

d(x, Sx) = d(x, Tx) = d(A,B)

is called a common best proximity point of S and T . Note that a (common) best
proximity point of S (and T ) becomes a (common) fixed point of S (and T ) if A = B.

The following concept is an analogue of commutativity in the context of nonself-
mappings.
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Definition 2.3 ([3]). Let (X, d) be a metric space and let A and B be two nonempty
subsets of X. We say that two mappings S, T : A→ B proximally commute if

d(u, Sx) = d(v, Tx) = d(A,B)⇒ Sv = Tu

for all x, u, v ∈ A.

Note that, if A = B in the preceding definition, then the concept of proximal
commutativity reduces to that of commutativity.

In 2013, Sadiq Basha [4] extended Theorem J for non-self mappings as follows.

Theorem S-B ([4]). Let (X, d) be a complete metric space and let A and B be two
nonempty closed subsets of X. Set

A0 : = {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 : = {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

Let S, T : A→ B be two mappings satisfying the following conditions:

• there is a constant α ∈ (0, 1) such that

d(u1, Sx1) = d(u2, Sx2) = d(A,B)
d(v1, Tx1) = d(v2, Tx2) = d(A,B)

}
⇒ d(u1, u2) ≤ αd(v1, v2)

for all u1, u2, v1, v2, x1, x2 ∈ A;
• S and T proximally commute;
• S and T are continuous;
• A0 is nonempty and closed;
• S(A0) ⊂ T (A0) ∩B0.

Then there exists a unique common best proximity point of S and T .

Remark 2.4. The closedness of A0 is missing from the statement of the original
version of Theorem S-B in [4]. Moreover, in his proof, this assumption is needed.
Hence the result stated above is a corrected one.

In 2013, Mongkolkeha and Kumam [10] proved the following theorem which is
another extension of Theorem J. To state their result, we recall the following two
definitions.

Definition 2.5 ([3]). Let (X, d) be a metric space and let A and B be two nonempty
subsets of X. We say that A is approximatively compact with respect to B if every
sequence {xn} in A satisfying the condition that lim

n→∞
d(y, xn) = d(y,A) for some

y ∈ B has a convergent subsequence.

Definition 2.6 ([3]). Let (X, d) be a metric space and let A and B be two nonempty
subsets of X. We say that the mappings S, T : A→ B can be swapped proximally if

d(u, y) = d(v, y) = d(A,B)
Su = Tv

}
⇒ Sv = Tu

for all u, v ∈ A and y ∈ B.
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Theorem MK ([10]). Let (X, d) be a complete metric space and let A and B be
two nonempty closed subsets of X. Let ϕ : [0,∞) → [0,∞) be a continuous and
nondecreasing function such that ϕ(t) = 0 if and only if t = 0. Let S, T : A → B be
two mappings satisfying the following conditions:

• d(Sx, Sy) ≤ d(Tx, Ty)− ϕ(d(Tx, Ty)) for all x, y ∈ A;
• T is continuous;
• S and T proximally commute;
• S and T can be swapped proximally;
• A is approximatively compact with respect to B
• A0 is nonempty;
• S(A0) ⊂ T (A0) ∩B0.

Then there is a common best proximity point x of S and T . Moreover, if x∗ is another
common best proximity point of S and T , then d(x, x∗) ≤ 2d(A,B).

3. Main results

Inspired by the work of Jungck and Rhoades [9], we define the following concepts
for nonself mappings.

Definition 3.1. Let (X, d) be a metric space and let A and B be two nonempty
subsets of X. We say that two mappings S, T : A→ B are

• proximally compatible if whenever {un}, {vn}, {xn} are sequences in A satis-
fying d(un, Sxn) = d(vn, Txn) = d(A,B) for all n ≥ 1 and one of the following
conditions holds

(i) lim
n→∞

un = lim
n→∞

vn = w for some w ∈ A;

(ii) lim
n→∞

Sxn = lim
n→∞

Txn = ŵ for some ŵ ∈ B,

it follows that

lim
n→∞

d(Svn, Tun) = 0;

• weakly proximally compatible if

d(u, Sx) = d(u, Tx) = d(A,B)
Sx = Tx

}
⇒ Su = Tu

for all x, u ∈ A.

Remark 3.2. • Proximal commutativity implies proximal compatibility.
• Proximal compatibility implies weakly proximal compatibility.
• For self-mappings, proximal compatibility (weakly proximal compatibility,

resp.) reduces to compatibility (weak compatibility, resp.). Recall that the
two mappings S, T : X → X are
(i) compatible [8] if

lim
n→∞

Sxn = lim
n→∞

Txn = x⇒ lim
n→∞

d(STxn, TSxn) = 0;

(ii) weakly compatible [9] if Sx = Tx⇒ TSx = STx.
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3.1. Auxiliary result. We start with the following three lemmas which play a crucial
role in this paper.

Lemma 3.3. Let (X, d) be a metric space and let A and B be two nonempty subsets
of X. Let S, T : A→ B be two mappings. Suppose that

• S and T are weakly proximally compatible;
• S(A0) ⊂ B0;
• there exists x ∈ A0 such that Sx = Tx.

Assume that one of the following conditions holds:

(a) for all u1, u2, v1, v2, x1, x2 ∈ A with v1 6= v2,

d(u1, Sx1) = d(u2, Sx2) = d(A,B)
d(v1, Tx1) = d(v2, Tx2) = d(A,B)

}
⇒ d(u1, u2) < d(v1, v2);

(b) for all x1, x2 ∈ A with Tx1 6= Tx2

d(Sx1, Sx2) < d(Tx1, Tx2).

Then S and T have a common best proximity point.

Proof. Since Sx ∈ S(A0) ⊂ B0, there is an element u ∈ A0 such that

d(u, Sx) = d(u, Tx) = d(A,B).

Then Tu = Su because S and T are weakly proximally compatible. We prove that u
is a common best proximity point of S and T .
Case 1: Assume that the condition (a) holds. Since Su ∈ S(A0) ⊂ B0, there is an
element z ∈ A0 such that

d(z, Su) = d(z, Tu) = d(A,B).

If u 6= z, then we have that d(u, z) < d(u, z) by (a) which is a contradiction. Thus
u = z and hence d(u, Su) = d(u, Tu) = d(A,B).
Case 2: Assume that the condition (b) holds. If Tx 6= Tu, then

d(Tx, Tu) = d(Sx, Su) < d(Tx, Tu)

which is a contradiction. This implies that Tx = Tu and hence Sx = Su. Then

d(u, Su) = d(u, Tu) = d(A,B).

This completes the proof. �

Lemma 3.4. Let (X, d) be a complete metric space and let Y be a subset of X.
Suppose that U : Y → Y is a mapping such that it preserves Cauchy sequences,
that is, if a sequence {xn} ⊂ Y is Cauchy, then so is {Uxn}. Then there exists an
extension U : Y → Y of U such that for each x ∈ Y ,

Ux = lim
n→∞

Uxn

where {xn} is a sequence in Y such that lim
n→∞

xn = x.
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Proof. We assume that {xn} and {x′n} are two sequences in Y such that lim
n→∞

xn =

lim
n→∞

x′n = x for some x ∈ Y . Set yn := xn if n is odd and yn := x′n if n is even. Note

that {xn}, {x′n}, and {yn} are Cauchy sequences. It follows that {Uxn}, {Ux′n}, and
{Uyn} are all Cauchy sequences. Note that {Uyn} is a subsequence of {Uxn} and of
{Ux′n}. It follows from the completeness of Y that lim

n→∞
Uxn = lim

n→∞
Ux′n. So we can

define a mapping U : Y → Y by for each x ∈ Y , Ux = lim
n→∞

Uxn where {xn} is a

sequence in Y such that lim
n→∞

xn = x. The proof is finished. �

Lemma 3.5. Let (X, d) be a complete metric space and let Y be a subset of X.
Suppose that U : Y → Y is a mapping satisfying

d(Ux,Uy) ≤ ψ(d(x, y)) for all x, y ∈ Y

where ψ : [0,∞) → [0,∞) is upper semicontinuous with lim
t→0+

ψ(t) = 0. Then there

exists a unique extension U : Y → Y of U such that

d(Ux,Uy) ≤ ψ(d(x, y))

for all x, y ∈ Y .

Proof. It is clear that the mapping U preserves Cauchy sequences. By Lemma 3.4,
there exists an extension U : Y → Y of U . In fact, for each x ∈ Y , Ux = lim

n→∞
Uxn

where {xn} is a sequence in Y such that lim
n→∞

xn = x. Moreover, let x, y ∈ Y together

with two sequences {xn} and {yn} in Y such that

lim
n→∞

xn = x and lim
n→∞

yn = y.

This implies that lim
n→∞

d(xn, yn) = d(x, y) and lim
n→∞

d(Uxn, Uyn) = d(Ux,Uy).

Therefore,

d(Ux,Uy) = lim
n→∞

d(Uxn, Uyn) ≤ lim sup
n→∞

ψ(d(xn, yn)) ≤ ψ(d(x, y)).

To prove the uniqueness, let V : Y → Y be an extension of U such that d(V x, V y) ≤
ψ(d(x, y)) for all x, y ∈ Y . We show that V x = Ux for all x ∈ Y . To see this, let
x ∈ Y and {xn} ⊂ Y such that lim

n→∞
xn = x. It follows that

d(V x, Uxn) = d(V x, V xn) ≤ ψ(d(x, xn)).

This implies that V x = lim
n→∞

Uxn = Ux. This completes the proof. �

3.2. Theorem S-B is a consequence of Theorem Br.

Theorem 3.6. Let (X, d) be a complete metric space and let A and B be two
nonempty subsets of X. Let ψ : [0,∞)→ [0,∞) be a nondecreasing and right contin-
uous function such that ψ(t) < t for all t > 0. Let S, T : A → B be two mappings
satisfying the following conditions:
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• for all u1, u2, v1, v2, x1, x2 ∈ A,

d(u1, Sx1) = d(u2, Sx2) = d(A,B)
d(v1, Tx1) = d(v2, Tx2) = d(A,B)

}
⇒ d(u1, u2) ≤ ψ(d(v1, v2));

• S and T are proximally compatible;
• S and T are continuous;
• A0 is nonempty and closed.
• S(A0) ⊂ T (A0) ∩B0.

Then S and T have a unique common best proximity point.

Proof. We define

Y := {x ∈ A0 : d(x, Tw) = d(A,B) for some w ∈ A0}.
Note that Y is nonempty because ∅ 6= S(A0) ⊂ T (A0) ∩B0. For x ∈ Y , we suppose
that there are two elements w1, w2 ∈ A0 such that

d(x, Tw1) = d(x, Tw2) = d(A,B).

Since Sw1, Sw2 ∈ S(A0) ⊂ B0, there are two elements y1, y2 ∈ A0 such that

d(y1, Sw1) = d(y2, Sw2) = d(A,B).

It follows that
d(y1, y2) ≤ ψ(d(x, x)) = 0.

That is, y1 = y2.
Using this observation, we define a self-mapping U : Y → Y as follows: for each

x ∈ Y ,
Ux := y

where y is the element in A0 such that

d(y, Sw) = d(x, Tw) = d(A,B)

for some w ∈ A0. Obviously, every common best proximity point of S and T is a
fixed point of U .

We claim that d(Ux,Ux′) ≤ ψ(d(x, x′)) for all x, x′ ∈ Y . To see this, let x, x′ ∈ Y .
We assume that there are two elements w,w′ ∈ A0 such that

d(Ux, Sw) = d(x, Tw) = d(Ux′, Sw′) = d(x′, Tw′) = d(A,B).

It follows that
d(Ux,Ux′) ≤ ψ(d(x, x′)).

Note that ψ is upper semicontinuous and lim
t→0+

ψ(t) = 0. Now, we apply Lemma 3.5

to obtain the extension U : Y → Y of U . Note that

d(Ux,Uy) ≤ ψ(d(x, y))

for all x, y ∈ Y . Note that Y is complete. As a consequence of Theorem Br, there
exists a unique fixed point z of U . Then there exists a sequence {zn} in Y such that
lim

n→∞
zn = z. Note that

lim
n→∞

Uzn = Uz = z = lim
n→∞

zn.
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Since {zn} is a sequence in Y , for each n ≥ 1, there exists an element wn ∈ A0 such
that

d(zn, Twn) = d(Uzn, Swn) = d(A,B).

Since S and T are continuous,

lim
n→∞

Szn = Sz and lim
n→∞

TUzn = Tz.

Since S and T are proximally compatible,

Sz = lim
n→∞

Szn = lim
n→∞

TUzn = Tz.

Note that z ∈ A0 because A0 is closed. By using Lemma 3.3, there is an element
ẑ ∈ A such that

d(ẑ, Sẑ) = d(ẑ, T ẑ) = d(A,B).

In particular, ẑ is a fixed point of U . Since U has a unique fixed point, z = ẑ. Hence
the uniqueness of a common best proximity point of S and T follows. This completes
the proof. �

Remark 3.7. Our Theorem 3.6 extends Theorem S-B in the following ways.

• The term αd(v1, v2) where α ∈ (0, 1) is relaxed to ψ(d(v1, v2)) where ψ :
[0,∞)→ [0,∞) is a nondecreasing and right continuous function with ψ(t) < t
for all t > 0.
• The proximal commutativity is relaxed to the proximal compatibility.

Remark 3.8. Using the same method of the proof of Theorem 3.6, we can show
that Theorem J even with a weaker assumption of commutativity is a consequence
of Theorem B. Haghi, et al. [6, Theorem 2.4] proved that Theorem J where the
continuity of T is replaced by the closedness of T (X) is a consequence of Theorem B.
It is worth mentioning that the technique used here is totally different from the one
used in [6].

We discuss the following variants of Theorem 3.6 where the continuities of S and
T are dropped. These result can be regarded as supplementary results of Theorem
3.6 (and hence Theorem S-B).

Theorem 3.9. Let (X, d) be a complete metric space and let A and B be two
nonempty subsets of X. Let ψ : [0,∞)→ [0,∞) be a nondecreasing and right contin-
uous function such that ψ(t) < t for all t > 0. Let S, T : A → B be two mappings
satisfying the following conditions:

• for all u1, u2, v1, v2, x1, x2 ∈ A,

d(u1, Sx1) = d(u2, Sx2) = d(A,B)
d(v1, Tx1) = d(v2, Tx2) = d(A,B)

}
⇒ d(u1, u2) ≤ ψ(d(v1, v2));

• S and T are proximally compatible;
• A is closed;
• A0 6= ∅ and T (A0) is compact;
• S(A0) ⊂ T (A0) ∩B0.

Then S and T have a unique common best proximity point.
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Theorem 3.10. Let (X, d) be a complete metric space and let A and B be two
nonempty subsets of X. Let ψ : [0,∞)→ [0,∞) be a nondecreasing and right contin-
uous function such that ψ(t) < t for all t > 0. Let S, T : A → B be two mappings
satisfying the following conditions:

• for all u1, u2, v1, v2, x1, x2 ∈ A,

d(u1, Sx1) = d(u2, Sx2) = d(A,B)
d(v1, Tx1) = d(v2, Tx2) = d(A,B)

}
⇒ d(u1, u2) ≤ ψ(d(v1, v2));

• S and T are proximally compatible;
• A is closed;
• B is approximatively compact with respect to A;
• A0 6= ∅ and T (A0) is closed;
• S(A0) ⊂ T (A0) ∩B0.

Then S and T have a unique common best proximity point.

The proofs of the preceding two theorems are based on the following lemma.

Lemma 3.11. Let (X, d) be a metric space and let A and B be two nonempty subsets
of X such that A is closed. Let T : A → B be a nonself mapping. Suppose that
T (A0) ∩B0 6= ∅. Assume that one of the followings is satisfied:

• T (A0) is compact;
• T (A0) is closed and B is approximatively compact with respect to A.

Then Y := {x ∈ A : d(x, Tw) = d(A,B) for some w ∈ A0} is closed.

Proof. Note that Y 6= ∅. Let {xn} be a sequence in Y such that lim
n→∞

xn = x for

some x ∈ A. Since {xn} is in Y , there is a sequence {wn} in A0 such that

d(xn, Twn) = d(A,B) for all n ≥ 1.

Case 1: T (A0) is compact. Then there exists a subsequence {Twnk
} of {Twn} such

that lim
k→∞

Twnk
= Tw for some w ∈ A0. Then

d(x, Tw) = lim
k→∞

d(xnk
, Twnk

) = d(A,B).

Case 2: T (A0) is closed and B is approximatively compact with respect to A. Since
lim
n→∞

xn = x, we have lim
n→∞

d(x, Twn) = d(A,B). Since B is approximatively compact

with respect to A, there is a subsequence {Twnk
} of {Twn} such that lim

n→∞
Twnk

=

Tw for some w ∈ A0 because T (A0) is closed. Thus

d(x, Tw) = lim
k→∞

d(xnk
, Twnk

) = d(A,B).

It follows from both cases that x ∈ Y and hence Y is closed. �

Proofs of Theorem 3.9 and Theorem 3.10. We will follow the proof of Theorem 3.6.
Set Y := {x ∈ A0 : d(x, Tw) = d(A,B) for some w ∈ A0}. We define U : Y → Y as
in Theorem 3.6, that is, for each x ∈ Y ,

Ux := y,
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where d(y, Sw) = d(x, Tw) = d(A,B) for some w, y ∈ A0. Note that for each x, x′ ∈ Y
d(Ux,Ux′) ≤ ψ(d(x, x′)).

By Lemma 3.11, Y is closed and hence complete. It follows from Theorem Br that
there exists a unique fixed point z ∈ Y . The rest of the proof is exactly the same as
the proof of Theorem 3.6. �

We now illustrate our supplementary results with the following two examples.

Example 1. Let X := R2 be equipped with the usual Euclidean metric. Let A :=
{(α, 1) ∈ X : α ≥ 0} and B := {(α, 0) ∈ X : α ≥ 0}. Define T : A→ B by

T (α, 1) := (bαc, 0) for all α ≥ 0

where b·c is the floor function, that is, bβc is the greatest integer which is less than
or equal to β.

We also define S : A→ B by

S(α, 1) := (0, 0) for all α ≥ 0.

It follows that

• for all u1, u2, v1, v2, x1, x2 ∈ A,

d(u1, Sx1) = d(u2, Sx2) = d(A,B)
d(v1, Tx1) = d(v2, Tx2) = d(A,B)

}
⇒ d(u1, u2) ≤ 1

2
d(v1, v2);

• d(Sx, Sy) ≤ 1
2d(Tx, Ty) for all x, y ∈ A;

• S and T proximally commute;
• A0 = A and B0 = B;
• S(A0) ⊂ T (A0) ∩B0;
• A and B are closed;
• T is not continuous;
• B is approximatively compact with respect to A;
• T (A0) = {(α, 0) : α = 0, 1, 2, . . . } is closed but not compact.

Example 2. Let X := R2 be equipped with the usual Euclidean metric.
Let A := {(α, 1) ∈ X : 0 ≤ α ≤ 1} and B := {(α, 0) ∈ X : 0 ≤ α < 1}.
Define T : A→ B by

T (α, 1) :=

{
(0, 0) if α ∈ [0, 1] ∩Q;
(1/2, 0) if α ∈ [0, 1] ∩Qc.

We also define S : A→ B by

S(α, 1) := (0, 0) for all α ∈ [0, 1].

It follows that

• for all u1, u2, v1, v2, x1, x2 ∈ A,

d(u1, Sx1) = d(u2, Sx2) = d(A,B)
d(v1, Tx1) = d(v2, Tx2) = d(A,B)

}
⇒ d(u1, u2) ≤ 1

2
d(v1, v2);

• S and T proximally commute;
• A0 = {(α, 1) ∈ X : 0 ≤ α < 1} and B0 = B;
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• S(A0) ⊂ T (A0) ∩B0;
• A is closed;
• T is not continuous;
• B is not approximatively compact with respect to A;
• T (A0) = {(0, 0), (1/2, 0)} is compact.

Remark 3.12. The preceding two examples are supplements to Theorem 3.6.
Moreover, Theorem 3.9 and Theorem 3.10 are independent.

3.3. Theorem MK is a consequence of Theorem Br. We note that both The-
orem S-B and Theorem MK are generalizations of Theorem J. But the conclusion of
Theorem MK cannot conclude the uniqueness of a common best proximity point. We
now discuss first the following result.

Lemma 3.13. Let (X, d) be a metric space and let A and B be two nonempty subsets
of X. Let S, T : A→ B be two nonself mappings such that

d(Sx, Sy) < d(Tx, Ty)

for each x, y ∈ A with Tx 6= Ty. Suppose that S and T proximally commute. If x
and y are two common best proximity points of S and T , then d(x, y) ≤ 2d(A,B).

Proof. Suppose that x and y are two common best proximity points of S and T , that
is,

d(x, Sx) = d(x, Tx) = d(y, Sy) = d(y, Ty) = d(A,B).

Since S and T commute proximally, we obtain

Sx = Tx and Sy = Ty.

Note that Tx = Ty. Otherwise, d(Sx, Sy) < d(Tx, Ty) = d(Sx, Sy) which is a
contradiction. It follows then that

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y) = 2d(A,B).

This completes the proof. �

The following example shows that the constant 2 in Lemma 3.13 is best possible.

Example 3. We consider the set X := R equipped with the usual metric. Let
A := {−1, 1} and B := {0}. Define S, T : A → B by Sx = Tx = 0 for all x ∈ A.
Note that d(A,B) = 1 and the set of all common best proximity points of S and T is
{−1, 1}. It is clear that S and T proximally commute; and d(Sx, Sy) = 1

2d(Tx, Ty)
for each x, y ∈ A. Moreover, d(−1, 1) = 2.

We are now ready to state the following improvement of Theorem MK.

Theorem 3.14. Let (X, d) be a complete metric space and let A and B be two
nonempty subsets of X. Let ψ : [0,∞)→ [0,∞) be a nondecreasing and right contin-
uous function such that ψ(t) < t for all t > 0. Let S, T : A → B be two mappings
satisfying the following conditions:

• d(Sx, Sy) ≤ ψ(d(Tx, Ty)) for all x, y ∈ A;
• T is continuous;
• B is closed;
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• S and T are proximally compatible;
• S and T can be swapped proximally;
• A is approximatively compact with respect to B;
• A0 is nonempty;
• S(A0) ⊂ T (A0) ∩B0.

Then S and T have a common best proximity point. If, in addition, S and T prox-
imally commute, then d(x, y) ≤ 2d(A,B) whenever x and y are two common best
proximity points of S and T .

Proof. We first observe the following statement. For x ∈ T (A0), we suppose that
there are two elements x1, x2 ∈ A0 such that x = Tx1 = Tx2. By the assumption,

d(Sx1, Sx2) ≤ ψ(d(Tx1, Tx2)) = 0.

That is, Sx1 = Sx2. By using this observation, we define a mapping V : T (A0) →
T (A0) in the following way: For each x ∈ T (A0),

V x := Sx̂

where x̂ ∈ A0 and x = T x̂.
We claim that for all x, y ∈ T (A0)

d(V x, V y) ≤ ψ(d(x, y)).

To see this, let x, y ∈ T (A0) and let x̂, ŷ ∈ A0 such that

x = T x̂ and y = T ŷ.

So we have

d(V x, V y) = d(Sx̂, Sŷ) ≤ ψ(d(T x̂, T ŷ)) = ψ(d(x, y)).

We set

Y := T (A0) ∩B0.

In particular,

Y = {T x̂ : x̂ ∈ A0 and d(u, T x̂) = d(A,B) for some u ∈ A0}.

Note that Y is nonempty and S(A0) ⊂ Y ⊂ T (A0). Set U := V |Y . It follows that
U : Y → Y and d(Ux,Uy) ≤ ψ(d(x, y)) for all x, y ∈ Y .

Now, we apply Lemma 3.5 to obtain the extension U : Y → Y of U . Note that

d(Ux,Uy) ≤ ψ(d(x, y))

for all x, y ∈ Y . As a consequence of Theorem Br, there is a unique fixed point z ∈ Y
of U . Then there is a sequence {zn} in Y such that lim

n→∞
zn = z. Since {zn} is a

sequence in Y , there are two sequences {un} and {ẑn} in A0 such that for each n ≥ 1

zn = T ẑn and d(un, T ẑn) = d(A,B).

Since Sẑn ∈ S(A0) ⊂ B0, there is a sequence {vn} in A0 such that, for each n ≥ 1,

d(vn, Sẑn) = d(A,B).
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Note that z = lim
n→∞

zn = lim
n→∞

T ẑn and z = Uz = lim
n→∞

Uzn = lim
n→∞

Sẑn.

In particular,
lim
n→∞

d(un, z) = lim
n→∞

d(vn, z) = d(A,B).

Since A is approximatively compact with respect to B, there is a strictly increasing
sequence {nk} of positive integers such that

lim
k→∞

unk
= u and lim

k→∞
vnk

= v

for some u, v ∈ A. In particular, d(u, z) = d(v, z) = d(A,B) and hence u, v ∈ A0.
Because T is continuous, so is S. Hence lim

k→∞
Sunk

= Su and lim
k→∞

Tvnk
= Tv. Since

S and T are proximally compatible,

lim
k→∞

Tvnk
= lim

k→∞
Sunk

.

It follows that Tv = Su. Since S and T can be swapped proximally,

Sv = Tu.

Hence
d(Tv, Tu) = d(Sv, Su) ≤ ψ(d(Tv, Tu))

which implies that Tv = Tu and hence Sv = Tv. By using Lemma 3.3, there is x̂ ∈ A
such that

d(x̂, Sx̂) = d(x̂, T x̂) = d(A,B).

The proof is complete. �

Remark 3.15. Our Theorem 3.14 extends Theorem MK in the following ways.

• The term d(Tx, Ty)−ϕ(d(Tx, Ty)), where ϕ : [0,∞)→ [0,∞) is a continuous
and nondecreasing function such that ϕ vanishes only at zero, is replaced by
the more general term ψ(d(Tx, Ty)) where ψ : [0,∞) → [0,∞) is a nonde-
creasing and right continuous function such that ψ(t) < t for all t > 0.

• The proximal commutativity is relaxed to the proximal compatibility.

Theorem 3.16 below is analogous to Theorem 3.14. In the presence of the closedness
of T (A0) in Theorem 3.16, the following conditions:

• T is continuous;
• B is closed;
• S and T can be swapped proximally;
• A is approximatively compact with respect to B;

are not required. Moreover, the proximal compatibility is relaxed to the weakly
proximal compatibility.

Theorem 3.16. Let (X, d) be a complete metric space and let A and B be two
nonempty subsets of X. Let ψ : [0,∞)→ [0,∞) be a nondecreasing and right contin-
uous function such that ψ(t) < t for all t > 0. Let S, T : A → B be two mappings
satisfying the following conditions:

• d(Sx, Sy) ≤ ψ(d(Tx, Ty)) for all x, y ∈ A;
• S and T are weakly proximally compatible;
• A0 is nonempty;
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• T (A0) is closed;
• S(A0) ⊂ T (A0) ∩B0.

Then S and T have a common best proximity point.

Proof. We follow the proof of Theorem 3.14. Set Y := T (A0) and define U : Y → Y
by for each x ∈ Y

Ux := Sx̂ where x = T x̂ for some x̂ ∈ A0.

Then
d(Ux,Uy) ≤ ψ(d(x, y)) for all x, y ∈ Y.

Using Theorem Br, there is z ∈ Y such that z = Uz. That is, T ẑ = z = Uz = Sẑ
where z = T ẑ for some ẑ ∈ A0. Then the existence of a common best proximity point
of S and T follows from Lemma 3.3. �

Remark 3.17. Theorem 3.16 is a supplement to Theorem 3.14. Moreover, Example
1 is applicable to Theorem 3.16 but not to Theorem 3.14.
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