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Abstract. The main purpose of this paper is to introduce a modified inertial forward-backward

splitting method and prove its strong convergence to a zero of the sum of two accretive operators

in real uniformly convex Banach space which is also uniformly smooth. We then apply our results
to solve variational inequality problem and convex minimization problem. We also give a numerical

example of our algorithm to show that it converges faster than the un-accelerated modified forward-
backward algorithm.
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1. Introduction

Let E be a real uniformly convex Banach space which is also uniformly smooth.
Let B : E → 2E be an m-accretive operator and A : E → E be an α-inverse strongly
accretive operator. We shall study in this paper, the following Monotone Variational
Inclusion Problem (MVIP): Find x ∈ E such that

0 ∈ Ax+Bx. (1.1)

Many mathematical problems emanating from machine learning, image processing,
linear inverse problems, optimization problems, among others can be posed as problem
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(1.1). The traditional method for solving problem (1.1) is the forward-backward
splitting method, which has many applications in diverse fields (see [11, 14]).
One of the best ways to speed up the convergence rate of iterative algorithms is to
combine the iterative scheme with the inertial term. This term which is represented by
θn(xn− xn−1), is a remarkable tool for improving the performance of algorithms and
it is known to have some nice convergence characteristics. Thus, there are growing
interests by authors working in this direction (see [3, 5, 8, 10, 12, 16]). Having
reviewed the literature where inertial type algorithms were studied, we observed that
the authors obtained mostly weak convergence results. In the very few cases where
strong convergence results were obtained, the authors employed the inertial type
algorithm which involves the construction of the sets Cn or Qn (or both) (see [3, 5, 4]).

Remark 1.1. We remark here that, in general, algorithms that does not involve
the construction of Cn or both Cn and Qn are more desirable and interesting since
they are easy to compute than those that involves these computations. Thus, it is of
practical computational importance to study the strong convergence of inertial type
algorithms which does not involve any of the above mentioned computations in each
of the process. We also observe that, in the proof of the strong convergence theorems
in [13, 14] and other related results in literature, the authors considered the two cases
approach: that is, when {||xn −Q(A+B)−1(0)f(z)||} is monotonically decreasing and
when it is not monotonically decreasing. These two cases approach often result to a
very long proof.
In view of Remark 1.1, our contribution in this paper for solving problem (1.1) is in
two-fold: First, we obtain strong convergence of a modified inertial forward-backward
splitting iteration to a solution of (1.1) in real Banach space, which does not involve
the construction of any of the subsets used in [3, 5, 4]. Second, our method of proof
does not involve the two cases approach. Thus, our iteration is easier to compute
and the method used in this paper is shorter (with respect to the forward-backward
splitting iteration). We also apply our results to solve variational inequality problem
and convex minimization problem. Furthermore, we give a numerical example of
our result to illustrate the performance of our algorithm. Our results improve and
generalize many recent results previously obtained in this direction.

2. Preliminaries

Let D(A) and R(A) be the domain and range of a set-valued operator A : E → 2E ,
then A is said to be accretive (see [6]) if for each x, y ∈ D(A), there exists j(x− y) ∈
J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0, ∀u ∈ Ax, v ∈ Ay, (2.1)

where J is the normalized duality setvalued mapping and j is the corresponding
single-valued mapping.
More so, A is said to be m-accretive if it is an accretive operator and the range
R(I+λA) = E for all λ > 0. Let α > 0 and q ∈ (1,∞), then A is said to be α-inverse
strongly accretive (α-isa) of order q (see [14]), if for each x, y ∈ D(A), there exists
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jq(x− y) ∈ Jq(x− y) such that

〈u− v, jq(x− y)〉 ≥ α||u− v||q, ∀u ∈ Ax, v ∈ Ay. (2.2)

If q = 2, then we simply write α-inverse strongly accretive. Clearly, every α- inverse
strongly accretive operator A is accretive (see [14, 13] for details). Let A be an m-
accretive operator, then the resolvent of A, Jµ : R(I + µA) → D(A) with parameter
µ > 0, is a nonexpansive single-valued mapping defined by Jµ := (I + µA)−1 (see
[14]). It is well known that F (Jµ) = A−1(0), where A−1(0) denotes the set of zeroes
of A.
Let C be a nonempty, closed and convex subset of E and P be a mapping of E onto
C. Then P is said to be sunny if P (P (x) + tV P (x))) = P (x) for all x ∈ E and t ≥ 0.
A mapping P of E into E is said to be a retraction if P 2 = P . If a mapping P is
a retraction, then P (x) = (x) for every x ∈ R(P ). Let D be a fixed point set of a
nonexpansive mapping from C into itself, then a retraction P : C → D is sunny and
nonexpansive iff (see [17])

〈x− P (x), j(z − P (x))〉 ≤ 0, ∀x ∈ C, z ∈ D. (2.3)

Lemma 2.1. [15] Let E be a real Banach space with Fréchet differentiable norm and
β∗(t) be defined by

β∗(t) = sup

{∣∣∣∣ ||x+ ty||2 − ||x||2

t
− 2〈y, j(x)〉

∣∣∣∣ : ||y|| = 1

}
, ∀x ∈ E and 0 < t <∞.

(2.4)

Then, lim
t→0+

β∗(t) = 0, and for all h ∈ E such that h 6= 0, we have

||x+ h||2 ≤ ||x||2 + 2〈h, j(x)〉+ ||h||β∗(||h||). (2.5)

Remark 2.2. In Lemma 2.1, if β∗(t) ≤ ct, for t > 0 and for some c > 1, then we
obtain from (2.5) that

2〈h, j(x)〉 ≤ ||x||2 + c||h||2 − ||x− h||2. (2.6)

Lemma 2.3. [1] Let E be a real uniformly convex Banach space,

Br(0) := {x ∈ E : ||x|| ≤ r}
be a closed ball with center 0 and radius r > 0. Then there exists a continuous strictly
increasing and convex function g : [0,∞)→ [0,∞) with g(0) = 0 such that

||
∞∑
i=1

αixi||2 ≤
∞∑
i=1

αi||xi||2 − αiαjg(||xi − xj ||),

for any i, j ∈ N, i < j, where {xi}i≥1 is a sequence in Br(0) and αi ∈ (0, 1) such that

∞∑
i=1

αi = 1.

Remark 2.4. Throughout this paper, we may assume in Lemma 2.3 that g(t) ≥ kt,
for all t ≥ 0, k > 0.
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Lemma 2.5. [9] Let {an} be a sequence of non-negative number such that

an+1 ≤ (1− αn)an + αnrn,

where {rn} is a sequence of real numbers bounded from above and {αn} ⊂ [0, 1] satis-
fies

∑
αn =∞. Then lim sup

n→∞
an ≤ lim sup

n→∞
rn.

Lemma 2.6. [14] Let E be a real uniformly convex Banach space with Frèchet dif-
ferentiable norm. Let B : E → 2E be an m-accretive operator and A : E → E be an
α-inverse strongly accretive mapping on E. Then, given s > 0, there exists a contin-
uous, strictly increasing and convex function φ : R+ → R+ with φ(0) = 0 such that
for all x, y ∈ E and µ > 0, we have

||Knx−Kny||2 ≤ ||x− y||2 − µ(2α− µc)||Bx−By||2

− φ(||(I − JBµ )(I − µA)x− (I − JBµ )(I − µA)y||), (2.7)

where Kn = JBµ (I − µA).

Lemma 2.7. [7] Let E be a real Banach space. Let B : E → 2E be an m-accretive
operator and A : E → E be an α-inverse strongly accretive mapping on E. Then we
have

(i) for µ > 0, F (JBµ (I − µA)) = (A+B)−1(0),

(ii) for 0 < λ ≤ µ and x ∈ E, ||x− JBλ (I − λA)x|| ≤ 2||x− JBµ (I − µA)x||.

3. Main results

Lemma 3.1. Let E be a real Banach space with Frèchet differentiable norm. Let A :
E → E be an ρ-inverse strongly accretive mapping and B : E → 2E be an m-accretive
operator. Let f : E → E be a contraction with constant τ ∈ (0, 1) and {vn} be a
sequence in E such that {vn} converges to v ∈ E. Assume that Θ := (A+B)−1(0) 6= ∅
and for arbitrary x0, x1 ∈ E the sequence {xn} is generated iteratively by

un = xn + θn(xn − xn−1);

yn = (1− αn)un + αnf(vn);

zn = (1− λn)yn + λnJ
B
µn

(I − µnA)yn;

xn+1 = (1− βn)yn + βnzn;

(3.1)

where {αn}, {λn} and {βn} are sequences in (0, 1), {θn} ⊂ [0, θ), θ ∈ [0, 1) and {µn}
is a sequence of positive real numbers such that the following conditions are satisfied:
(i) 0 < µn ≤ 2ρ

c ∀n ≥ 1;

(ii)
∑∞
n=1 θn||xn − xn−1|| <∞. Then, the sequence {xn} is bounded.

Proof. Let Kn = JBµn
(I −µnA) for all n ≥ 1, where JBµn

= (I +µnB). Then it follows
from Lemma 2.6 that Kn is nonexpansive for all n ≥ 1. Now, let p ∈ Θ, then from
Lemma 2.7 (i), we have that p = Knp for all n ≥ 1. Thus, we obtain from (3.1) and
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the convexity of norm that

||xn+1 − p|| = ||(1− βn)(yn − p) + βn(zn − p)||
≤ (1− βn)||yn − p||+ βn||zn − p||
≤ (1− βn)||yn − p||+ βn [(1− λn)||yn − p||+ λn||Knyn − p||]
≤ (1− βn)||yn − p||+ βn [(1− λn)||yn − p||+ λn||yn − p||]
= ||yn − p||
= ||(1− αn)(un − p) + αn(f(vn)− p)||
≤ (1− αn)||un − p||+ αn||f(vn)− p||
≤ (1− αn)||un − p||+ αnτ ||vn − p||+ αn||f(p)− p||. (3.2)

Also, we obtain from (3.1) that

||un − p|| ≤ ||xn + θn(xn − xn1)− p||
≤ ||xn − p||+ θn||xn − xn−1||,

which implies from (3.2) that

||xn+1 − p|| ≤ (1− αn)||xn − p||+ (1− αn)θn||xn − xn−1||
+ αnτ ||vn − p||+ αn||f(p)− p||
≤ max

{
||xn − p||, ||f(p)− p||

}
+ max{θn||xn − xn−1||, ||vn, p||}.

From condition (ii), we obtain that lim
n→∞

θn||xn−xn−1|| = 0. Hence, {θn||xn−xn−1||}
is bounded. So, there exists M1 > 0 such that θn||xn−xn−1|| ≤M1 ∀n ≥ 1. Similarly,
since {vn} converges, there exists M2 > 0 such that ||vn − p|| ≤M2 ∀n ≥ 1. Thus by
induction, we obtain that

||xn − p|| ≤ max{||x1 − p||, ||f(p)− p||}+ max{M1,M2}.

Therefore, {xn} is bounded. Consequently, {un}, {yn}, {zn} and {Knun} are all
bounded.

Theorem 3.2. Let E be a real uniformly convex Banach space which is also uniformly
smooth. Let A : E → E be an ρ-inverse strongly accretive mapping and B : E → 2E

be an m-accretive operator. Let f : E → E be a contraction with constant k ∈ (0, 1)
and {vn} be a sequence in E such that {vn} converges to v.
Assume that Θ := (A + B)−1(0) 6= ∅ and for arbitrary x1, u ∈ E, the sequence
{xn} is generated iteratively by (3.1), where {αn}, {λn} and {βn} are sequences in
(0, 1), {θn} ⊂ [0, θ), θ ∈ [0, 1) and {µn} is a sequence of positive real numbers such
that the following conditions are satisfied:
(i) 0 < µ ≤ µn < 2ρ

c ∀n ≥ 1;
(ii) 0 < lim inf

n→∞
λn ≤ lim sup

n→∞
λn < 1;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) lim
n→∞

αn = 0 and
∑∞
n=1 αn =∞;

(v)
∑∞
n=1 θn||xn − xn−1|| <∞;
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(vi) lim
n→∞

θn
αn

= 0.

Then the sequence {xn} generated by (3.1) converges strongly to p = PΘf(v), where
PΘ is the unique sunny nonexpansive retraction of E onto Θ.

Proof. Let p = PΘf(v), then from (3.1), Lemma 2.3 and Remark 2.2, we obtain that

||zn − p||2 = ||(1− λn)yn + λnKnyn − p||2

≤ (1− λn)||yn − p||2 + λn||Knyn − p||2 − λn(1− λn)g(||yn −Knyn||)
≤ (1− λn)||yn − p||2 + λn||yn − p||2 − λn(1− λn)k||yn −Knyn||2

= ||yn − p||2 − λn(1− λn)k||yn −Knyn||2

≤ ||yn − p||2. (3.3)

Also, we obtain from (3.1) that

||zn − yn||2 =
∣∣| 1

βn
(xn+1 − yn)||2

=
1

β2
n

||xn+1 − yn||2

=
αn
βn

(
||xn+1 − yn||2

αnβn

)
. (3.4)

Again, from (3.1), (3.3), (3.4), Lemma 2.3 and Remark 2.4, we obtain that

||xn+1 − p||2 = ||(1− βn)yn + βnzn − p||2

≤ (1− βn)||yn − p||2 + βn||zn − p||2 − βn(1− βn)g(||yn − zn||)
≤ (1− βn)||yn − p||2 + βn||yn − p||2 − βn(1− βn)k||yn − zn||2

≤ ||yn − p||2 −
1

βn
(1− βn)k||xn+1 − yn||2

≤ cα2
n||f(vn)− p||2 + (1− αn)2||un − p||2

− 2αn(1− αn)〈p− f(vn), j(un − p)〉

− 1

βn
(1− βn)k||xn+1 − yn||2. (3.5)

Again, from (3.1), Lemma 2.1 and Remark 2.4, we obtain that

||un − p||2 = ||xn + θn(xn − xn−1)− p||2

≤ ||xn − p||2 + 2θn〈xn − xn−1, j(xn − p)〉
+ cθ2

n||xn − xn−1||2

≤ ||xn − p||2 + θn
[
||xn − p||2 + c||xn − xn−1||2 − ||xn−1 − p||2

]
+ cθ2

n||xn − xn−1||2

≤ ||xn − p||2 + θn
[
||xn − p||2 − ||xn−1 − p||2

]
+ 2cθn||xn − xn−1||2. (3.6)
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On substituting (3.6) into (3.5), we have that

||xn+1 − p||2 ≤ cα2
n||f(vn)− p||2 + (1− αn)

[
||xn − p||2

+ θn(||xn − p||2 − ||xn−1 − p||2) + 2cθn||xn − xn−1||2
]

− 2αn(1− αn)〈p− f(vn), j(un − p)〉 −
1

βn
(1− βn)k||xn+1 − yn||2

≤ (1− αn)||xn − p||2 + θn(||xn − p||2 − ||xn−1 − p||2)

+ 2cθn||xn − xn−1||2 − 2αn(1− αn)〈p− f(vn), j(un − p)〉

− 1

βn
(1− βn)k||xn+1 − yn||2 + cα2

n||f(vn)− p||2

= (1− αn)||xn − p||2

− αn
(
− αnc||f(vn)− p||2 − θn

αn

[
||xn − p||2 − ||xn−1 − p||2

]
− 2

c

αn
θn||xn − xn−1||2 + 2(1− αn)〈p− f(vn), j(un − p)〉

+
1

αnβn
(1− βn)k||xn+1 − yn||2

)
. (3.7)

Let

Ωn : = −αnc||f(vn)− p||2 − θn
αn

[
||xn − p||2 − ||xn−1 − p||2

]
− 2c

θn
αn
||xn − xn−1||2

+ 2(1− αn)〈p− f(vn), j(un − p)〉+
1

αnβn
(1− βn)k||xn+1 − yn||2. (3.8)

Thus, (3.7) becomes

||xn+1 − p||2 ≤ (1− αn)||xn − p||2 − αnΩn.

From Lemma 3.1, we have that {xn}, {yn} and {un} are bounded, thus they are
bounded below. It then follows from condition (vi) that {Ωn} is bounded below.
Hence, by condition (iv) and applying Lemma 2.5 in (3.1), we obtain that

lim sup
n→∞

||xn − p||2 ≤ lim sup
n→∞

(−Ωn)

= − lim inf
n→∞

Ωn. (3.9)

Therefore, lim inf
n→∞

Ωn exists. Thus, we obtain from (3.8), condition (iv), (v) and (vi)

that

lim inf
n→∞

Ωn = lim inf
n→∞

(
2〈p− f(vn), j(un − p)〉+

1

αnβn
(1− βn)k||xn+1 − yn||2

)
.

(3.10)
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Since {xn} is bounded, there exists a subsequence {xnj
} of {xn} such that xnj

⇀ q
for some q ∈ E, and

lim inf
n→∞

Ωn = lim
j→∞

(
2〈p− f(vnj

), j(unj
− p)〉+

1

αnj
βnj

(1− βnj
)k||xnj+1 − ynj

||2
)
.

(3.11)

Using the fact that {xn} is bounded and lim infn→∞Ωn exists, we have that{
1

αnj
βnj

(1− βnj
)||xnj+1 − ynj

||2
}

is bounded. Also, by condition (iii), there exists

b ∈ (0, 1) such that βn ≤ b < 1 which implies that 1
αnj

βnj
(1−βnj

) ≥ 1
αnj

βnj
(1−b) > 0.

Hence, we have that
{

1
αnj

βnj
||xnj+1 − ynj ||2

}
is bounded. Observe from condition

(iii) and (iv) that there exits a ∈ (0, 1) such that

0 <
αnj

βnj

≤
αnj

a
→ 0, k →∞.

Therefore, we obtain from (3.4) that

lim
j→∞

||znj − ynj || = 0. (3.12)

From (3.1) and (3.12), we obtain

||xnj+1 − ynj
|| = βnj

||znj
− ynj

|| → 0, as j →∞. (3.13)

From (3.1) and condition (v), we obtain

||unj
− xnj

|| = θnj
||xnj

− xnj−1|| → 0, as j →∞. (3.14)

Using (3.1) and condition (iv), we obtain

||ynj
− unj

|| = αnj
||u− unj

|| → 0, as j →∞. (3.15)

From (3.14) and (3.15), we have that

||ynj
− xnj

|| ≤ ||ynj
− unj

||+ ||unj
− xnj

|| → 0, as j →∞. (3.16)

From (3.1), (3.12) and condition (ii), we obtain that

||Knjynj − ynj || =
1

λnj

||znj − ynj || → 0, as j →∞. (3.17)

From condition (i), Lemma 2.7 (ii) and (3.17), we obtain that

||Kynj
− ynj

|| ≤ 2||Knj
ynj
− ynj

|| → 0, as j →∞, (3.18)

where K = JBµ (I − µA).
Since xnj

⇀ q, we obtain from (3.14) and (3.16) that unj
⇀ q and ynj

⇀ q respec-
tively. It then follows from the demicloseness of K, (3.18) and Lemma 2.7 (i) that
q ∈ F (K) = Θ.
Now, since vn → v and f is a contraction (which implies that f is continuous), then
f(vn) → f(v). Furthermore, since unj ⇀ q and the duality map is norm-to-norm
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uniformly continuous on bounded sets, we obtain from (3.10), (3.13) and (2.3) that

lim inf
n→∞

Ωn = lim
j→∞

(
2〈p− f(vnj

), j(unj
− p)〉+

1

αnjβnj

(1− βnj
)k||xnj+1 − ynj

||2
)

≥ 2 lim
j→∞
〈p− f(v), j(unj

− p〉

= 2〈p− f(v), j(q − p)〉 ≥ 0. (3.19)

Hence, from (3.9), we have that

lim sup
n→∞

||xn − p||2 ≤ − lim inf
n→∞

Ωn ≤ 0.

Therefore, limn→∞ ||xn − p|| = 0 and this implies that {xn} converges strongly to
p = PΘf(v).

Theorem 3.3. Let E be a real uniformly convex Banach space which is also uniformly
smooth. Let T : E → E be a nonexpansive mapping. Let f : E → E be a contraction
with constant k ∈ (0, 1) and {vn} be a sequence in E such that {vn} converges to
v. Assume that Θ := F (T ) 6= ∅ and for arbitrary x0, x1 ∈ E, the sequence {xn} is
generated iteratively by 

un = xn + θn(xn − xn−1);

yn = (1− αn)un + αnf(vn);

zn = (1− λn)yn + λnTyn;

xn+1 = (1− βn)yn + βnzn;

(3.20)

where {αn}, {λn}, {βn} are sequences in (0, 1), {θn} ⊂ [0, θ) and θ ∈ [0, 1) satisfies
the conditions in Theorem 3.2. Then the sequence {xn} converges strongly to p =
PΘf(v), where PΘ is the unique sunny nonexpansive retraction of E onto Θ.

Proof. The proof follows from the proof of Theorem 3.2 by setting JBµn
(I −µnA) = T

in Algorithm (3.1).
By setting vn = v ∀ n ≥ 1 and Θn = 0 ∀ n ≥ 1 in Theorem 3.2, we obtain the
following result.

Corollary 3.4. Let E be a real uniformly convex Banach space which is also uniformly
smooth. Let A : E → E be an ρ-inverse strongly accretive mapping and B : E → 2E

be an m-accretive operator. Assume that Θ := (A + B)−1(0) 6= ∅ and for arbitrary
x1, x0, v ∈ E, the sequence {xn} be generated iteratively by

yn = (1− αn)xn + αnf(v);

zn = (1− λn)yn + λnJ
B
µn

(I − µnA)yn;

xn+1 = (1− βn)yn + βnzn;

(3.21)

where {αn}, {λn}, {βn} are sequences in (0, 1), {θn} ⊂ [0, θ) and θ ∈ [0, 1) satisfies
the conditions in Theorem 3.2. Then the sequence {xn} converges strongly to p =
PΘf(v), where PΘ is the unique sunny nonexpansive retraction of E onto Θ.
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Recall that for a real Hilbert space H, a mapping B : H → H is said to be
(i) monotone, if

〈Bx−By, x− y〉 ≥ 0, ∀ x, y ∈ H.

(ii) ρ-inverse strongly monotone if there exists a constant ρ > 0 such that

〈Bx−By, x− y〉 ≥ ρ||Bx−By||2,∀ x, y ∈ H.

Since the normalized duality mapping is simply the identity mapping in H, then it is
clear that the class of accretive and inverse strongly accretive operators coincides with
the class of monotone and inverse strongly monotone operators respectively in real
Hilbert space. Thus, we obtain the following result which improves and complements
the results of [5, 4].

Corollary 3.5. Let H be a real Hilbert space. Let A : H → H be a ρ-inverse
strongly monotone mapping and B : H → 2H be a maximal monotone operator. Let
f : H → H be a contraction with constant k ∈ (0, 1) and {vn} be a sequence in H
such that {vn} converges to v. Assume that Θ := (A+B)−1(0) 6= ∅ and for arbitrary
x1, x0 ∈ H, the sequence {xn} is generated iteratively by

un = xn + θn(xn − xn−1);

yn = (1− αn)un + αnf(vn);

zn = (1− λn)yn + λnJ
B
µn

(I − µnA)yn;

xn+1 = (1− βn)yn + βnzn;

(3.22)

where {αn}, {λn}, {βn} are sequences in (0, 1), {θn} ⊂ [0, θ) and θ ∈ [0, 1) satisfies
the conditions in Theorem 3.2. Then the sequence {xn} converges strongly to p =
PΘf(v), where PΘ is the projection of H onto Θ.
We also note that the proofs of the above two corollaries also follows from Theorem
3.3 just by setting T = JBµn

(I − µnA) in Theorem 3.3.

4. Applications

4.1. Variational inequality problem. Let C be a nonempty closed and convex
subset of a real Hilbert space H. The classical variational inequality problem is to
find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀ y ∈ C. (4.1)

It is known that V I(C,A) = PC(I − λA), where V I(C,A) denotes the solution set of
(4.1) and PC is the metric projection from H onto C.
The subdifferential of the function g : H → (−∞,+∞] is a set-valued function ∂g :
H → 2H defined by

∂g(x) = {z ∈ H : g(x) + 〈y − x, z〉 ≤ g(y),∀ y ∈ H}.

While the indicator function iC : H → (−∞,+∞] is defined by

iCx =

{
0, x ∈ C,
∞, x /∈ C.
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We know that the subdifferential ∂iC of iC is a maximal monotone operator,

J∂iCλ = PC and (A+ ∂iC)−1(0) = V I(A,C).

Thus, by setting B = δiC in Corollary 3.5, we apply Corollary 3.5 to obtain the
following result:

Theorem 4.1. Let C be a nonempty, closed and convex subset of real Hilbert space H.
Let A : H → H be a ρ-inverse strongly monotone mapping and g : H → (−∞,∞] be
a proper convex and lower semicontinuous function. Let f : C → C be a contraction
with constant k ∈ (0, 1) and {vn} be a sequence in H such that {vn} converges to v.
Assume that Θ := V I(C,A) 6= ∅ and for arbitrary x1, x0 ∈ H, the sequence {xn} is
generated iteratively by

un = xn + θn(xn − xn−1);

yn = (1− αn)un + αnf(vn);

zn = (1− λn)yn + λnPC(I − µnA)yn;

xn+1 = (1− βn)yn + βnzn;

(4.2)

where {αn}, {λn}, {βn} are sequences in (0, 1), {θn} ⊂ [0, θ) and θ ∈ [0, 1) satisfies
the conditions in Theorem 3.2. Then the sequence {xn} converges strongly to p =
PΘf(v), where PΘ is the projection of H onto Θ.

4.2. Convex minimization problem. Let F : H → R be a convex and continuously
differentiable function, and G : H → (−∞,+∞] be a proper convex and lower semi-
continuous function. Then, the gradient ∇F of F is monotone and continuous, and
the subdifferential ∂G of G is maximal monotone. Moreover,

F (x∗) +G(x∗) = min
x∈H

[F (x) +G(x)]⇔ 0 ∈ ∇F (x∗) + ∂G(x∗).

We now consider the following Minimization Problem (MP): Find

x∗ ∈ H such that F (x∗) +G(x∗) = min
x∈H

[F (x) +G(x)] , (4.3)

where F and G are as defined above. Suppose the solution set of problem (4.3) is
Ω, then setting B = ∂G and A = ∇F in Corollary 3, we apply Corollary 3.5 to
approximate solutions of (4.3).

4.3. Numerical example. We now give a numerical example of Algorithm 3.1. Let
E = R4 with the euclidean norm and B : R4 → R4 be defined by

B(x) = (x1,−x2,−x3, x4).

Then B is maximal monotone. Hence, we obtain that

JBµn
(x) =

(
x1

1 + 3µn
,

x2

1 + 3µn
,

x3

1 + 3µn
,

x4

1 + 3µn

)
.

Let A : R4 → R4 be defined by A(x) = (2x1, 2x2, 2x3, 2x4). Then, A is ρ-inverse
strongly monotone mapping with ρ = 1

2 . Let f(x) = 1
3x and vn = n

2n+1 , then
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vn → 1
2 = v. Take µn = n

3n+2 ∀n ≥ 1, λn = n+1
3n , αn = 1

n+1 and βn = n+1
5n . Then,

conditions (i)-(iv) of Theorem 3.2 are satisfied. Hence, Algorithm 3.1 becomes:
un = xn + θn(xn − xn−1), n ≥ 1;

yn = n
n+1un + n

(n+1)(6n+1) ;

zn = 2n−1
3n yn + n+1

3n J
B
µn

(I − µnA)yn;

xn+1 = 4n−1
5n yn + n+1

5n zn, n ≥ 1

(4.4)

and Algorithm (3.1) of Shehu and Cai [14] becomes:

xn+1 =
1

3(n+ 1)
xn +

n

n+ 1
JBµn

(I − µnA)xn, n ≥ 1. (4.5)
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Figure 1. Errors vs Iteration numbers(n): Case I(a) (top); Case
I(b) (bottom left); Case I(c) (bottom right).
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Case I:

(a) x0 = (0.5, 3, 1, 4)T , x1 = (0.5, 3, 1, 4)T and θn = n
4n4+1 .

(b) x0 = (0.5, 3, 1, 2)T , x1 = (0.1, 0.01, 1, 2)T and θn = n
9n3+1 .

(c) x0 = (0.1, 0.01, 1, 2)T , x1 = (0.5, 3, 1, 2)T and θn = n
9n3+1 .

Case II:

(a) x0 = (1, 2, 1, 3)T , x1 = (1, 0.1, 1, 1.2)T and θn = n
4n4+1 .

(b) x0 = (−0.1, 0.01, 1, −2)T , x1 = (−0.5, 3, −1, 2)T and θn = n
9n3+1 .

(c) x̄0 = (−0.5, 3, −1, 2)T , x̄1 = (−0.1, 0.01, 1, −2)T and θn = n
9n3+1 .
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Figure 2. Errors vs Iteration numbers(n): Case II(a) (top); Case
II(b) (bottom left); Case II(c) (bottom right).
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Remark 4.2. By considering Case I (a)-(c), we compared our inertial Algorithm
3.1 with its corresponding unaccelerated algorithm. Also, by considering Case II
(a)-(c), we compared our algorithm with Algorithm 3.1 of Shehu and Cai [14].
We can see from Figure 1 that our accelerated algorithm converges faster than its cor-
responding unaccelerated algorithm. In particular, Figure 2 shows that our inertial-
type algorithm performs well and have competitive advantage over the unaccelerated
algorithm of Shehu and Cai [14] (and other corresponding unaccelerated algorithms).
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