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1. Introduction

The stability problems for functional equations was raised by Ulam [24] in 1940
concerning the stability of group homomorphisms. This question has been affirma-
tively answered for Banach spaces by Hyers [14]. Later, Aoki [5] and Bourgin [6]
considered the stability problem for the case of an additive mapping between Banach
spaces subject to an unbounded Cauchy difference. In 1978, Th. M. Rassias [18]was
the first to prove the stability of the linear mapping between Banach spaces subject
to a continuity assumption on the mapping. In 1994, Gǎvruta [13]provided a further
generalization of Th. M. Rassias result in which he replaced the bound ε(‖x‖r+‖y‖r)
by a general function φ(x, y) for the existence of unique linear mapping.

In 1996, Isac and Rassias [16] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applica-
tions. By fixed point methods of several functional equations have been extensively
investigated by a number of authors (see [8, 17]). The notion of multi-normed space
was introduced by Dales and Polyakov (see [11, 10]). This concept is some what
similar two operator sequence space and has some connections with operator spaces
and Banach lattices. Motivations for the study of multi-normed spaces and many
examples were given in [11].
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Agbeko has studied the stability of maximum preserving functional equations mo-
tivated by the optimal average (see [1, 2, 4, 3]). He has replaced addition operation
with the maximum operation on a given Banach lattice.

The most famous functional equation by Cauchy and known as linear functional
equation reads: f(x+ y) = f(x) + f(y).

In 2003, Radu proved the Hyers-Ulam-Rassias stability of the additive Cauchy
equation by using the fixed point method (see [7]).

In [20, 21], we have used the technique of [3] and obtained following results about
quadratic functional equations. In this paper, we generalized Agbeko’s theorem for
Cauchy functional equation in multi-Banach lattice by fixed point method.

Definition 1.1. Let X be a set. A function d : X2 → [0,∞] is called a generalized
metric on X if and only if d satisfies

(M1) d(x, y) = 0 if and only if x = y;
(M2) d(x, y) = d(y, x), for all x, y ∈ X;
(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We remark that the only difference between the generalized metric and the usual
metric is that the range of the former is permitted to include the infinity. We now
introduce one of the fundamental results of the fixed point theory.

Theorem 1.2. Let (X,d) be a generalized complete metric space. Assume that Λ :
X → X is a strictly contractive operator with the Lipschitz constant L < 1. If there
exists a nonnegative integer n0 such that d(Λn0+1x,Λn0x) <∞ for some x ∈ X, then
the following statements are true:

(i) The sequence {Λnx} converges to a fixed point x∗ of Λ;
(ii) x∗ is the unique fixed point of Λ in X∗ = {y ∈ X|d(Λn0x, y) <∞};
(iii) If y ∈ X∗, then

d(y, x∗) ≤ 1

1− L
d(Λy, y)

Now, recalling the notion of a multi-normed space from [11, 10]. In this paper,
(E, ‖ · ‖) denotes a complex normed space and let k ∈ N. We denote by Ek the
linear space E ⊕ · · · ⊕ E consisting of k-tuples (x1, . . . , xk), where x1, . . . , xk ∈ E
the linear operations Ek are defined coordinatewise. The zero element of either E or
Ek is denoted by 0. We denote by Nk the set {1, 2, . . . , k} and by Sk the group of
permutations on k symbols.

Definition 1.3. A multi-norm on {Ek : k ∈ N} is a sequence (‖ ·‖k) = (‖ ·‖) : k ∈ N)
such that ‖ · ‖k is a norm on Ek for each k ∈ N, such that ‖x‖1 = ‖x‖ for each x ∈ E,
and such that the following axioms are satisfied for each k ∈ N with k ≥ 2:

N1: ‖(xσ(1), . . . , xσ(k))‖k = ‖x1, . . . , xk)‖k (σ ∈ Sk;x1, . . . , xk ∈ E);
N2: ‖(α1x1, . . . , αkxk)‖k ≤ (max

i∈Nk

|αi|)‖(x1, . . . , xk)‖k
(α1, . . . , αk ∈ C;x1, . . . xk ∈ E);

N3: ‖(x1, . . . , xk−1, 0)‖k = ‖(x1, . . . , xk−1)‖k−1 (x1, . . . , xk−1 ∈ E);
N4: ‖(x1, . . . , xk−1, xk−1)‖k = ‖(x1, . . . , xk−1)‖k−1 (x1, . . . , xk−1 ∈ E).

In this case, we say that ((Ek, ‖ · ‖) : k ∈ N) is a multi-normed space.
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The motivation for the study of multi-normed spaces (and multi-normed algebras)
and many examples are detailed in the earlier investigation [11].

Suppose that ((Ek, ‖ · ‖k) : k ∈ N) is a multi-normed space, and take k ∈ N. The
following properties are almost immediate consequences of the axioms.
(a) ‖(x, . . . , x)‖k = ‖x‖ (x ∈ E);

(b) max
i∈Nk

‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤
k∑
i=1

‖xi‖ ≤ k max
i∈Nk‖xi‖

(x1, . . . , xk ∈ E).

It follows from the item (b) above that, if (E, ‖·‖) is a Banach space, then (Ek, ‖·‖k)
is a Banach space for each k ∈ N; in this case, ((Ek, ‖ · ‖k) : k ∈ N) is a multi-Banach
space.

Example 1.4. Let (E, ‖ · ‖) be Banach lattice and define

‖(x1, . . . , xk)‖k := ‖|x1| ∨ · · · ∨ |xk|‖ (x1, . . . , xk) ∈ E
Then ((Ek, ‖ · ‖k) : k ∈ N) is a multi-Banach space(see [11]). We say it multi-Banach
lattice.

2. Main results

Throughout this section, let (Ek1 , ‖ · ‖k) : k ∈ N) be a multi-Banach lattice and
p : [0,∞)→ [0,∞) be continuous function and τ, η ∈ R+. For convenience we use the
following abbreviation for a given mapping f : E1 → E2

Df(x, y) = f(τ |x| ∨ η|y|)− (τp(τ)f(|x|) ∨ ηp(η)f(|y|))
p(τ) ∨ p(η)

Let us recall some necessary definitions.
If B is a Banach lattice, then B+ stands for its positive cone, i.e.

B+ = {x ∈ B : x ≥ 0} = {|x| : x ∈ B}.
Given two Banach lattices X and Y we say that a functional f : X → Y is cone-related
if f(X+) = {f(|x|) : x ∈ B} ⊂ Y +(see [3]).

Let X and Y be two Banach lattices and f : X → Y be a cone-related functional,
with following properties:
I) Maximum Preserving Functional Equation: f(|x| ∨ |y|) = f(|x|) ∨ f(|y|) for
all members x, y ∈ X(see [3]).
II) Semi-homogeneity: f(α|x|) = αf(|x|) for all x ∈ X and every number α ∈
[0,∞).
We shall use the technics in [3] to prove the following two theorems.

Theorem 2.1. Let E1 and E2 be two Banach lattices and ((Ek1 , ‖ · ‖k) : k ∈ N) be a
multi-Banach lattice. Suppose φ : E2k

1 → [0,∞) is a given function and there exists a
constant L, 0 < L < 1, such that

φ(tx1, ty1, . . . , txk, tyk) ≤ tLφ(x1, y1, . . . , xk, yk) (2.1)

for all x1, . . . , xk, y1, . . . , yk ∈ E1, t ∈ [0,∞). Furthermore, let f : E1 → E2 be a
cone-related function with f(0) = 0 which satisfies

‖Df(x1, y1), . . . , Df(xk, yk)‖k ≤ φ(τx1, ηy1, . . . , τxk, ηyk) (2.2)
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for all x1, . . . , xk, y1, . . . , yk ∈ E1. If φ satisfies

lim
n→∞

t−nφ(tnx1, t
ny1, . . . , t

nxk, t
nyk) = 0 (2.3)

for any x1, . . . , xk, y1, . . . , yk ∈ E1, then there is a unique cone-related mapping T :
E1 → E2 which satisfies properties I, II and the inequality.

‖T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)‖k ≤
L

1− L
φ(x1, x1, . . . , xk, xk) (2.4)

Proof. If we define
X = {g : E1 → E2| g(0) = 0}

and introduce a generalized metric on X as follows:

d(g, h) = inf{c ∈ [0,∞] : ‖g(x1)− h(x1), . . . , g(xk)− h(xk)‖k
≤ cφ(x1, x1, . . . , xk, xk), for all x1, . . . , xk ∈ E1}

then (X, d) is complete. We define an operator Λ : X → X by

(Λg)(x) =
g(tx)

t

for all x ∈ E1. First, we assert that Λ is strictly contractive on X. Given g, h ∈ X,
let c ∈ [0,∞) be an arbitrary constant with d(g, h) ≤ c, i.e.,

‖g(x1)− h(x1), . . . , g(xk)− h(xk)‖k ≤ cφ(x1, x1, . . . , xk, xk),

for all x1, . . . , xk ∈ E1. If we replace x in the last inequality with tx and make use of
(2.1), then we have

‖Λg(x1)− Λh(x1), . . . ,Λg(xk)− Λh(xk)‖k

=
1

t
‖g(tx1)− h(tx1), . . . , g(txk)− h(txk)‖k

≤ 1

t
cφ(tx1, tx1, . . . , txk, txk) ≤ Lcφ(x1, x1, . . . , xk, xk)

for every x1, . . . , xk ∈ E1, i.e., d(Λg,Λh) ≤ Lc.
Hence, we conclude that d(Λg,Λh) ≤ Ld(g, h) for any g, h ∈ X. Next, we assert that
d(Λf, f) <∞. If we substitute x for y in (2.2) and τ = η = t, then (2.1) establishes

‖f(t|x1|)− tf(|x1|), . . . , f(t|xk|)− tf(|xk|)‖k ≤ φ(tx1, tx1, . . . , txk, txk)

⇒
∥∥∥∥f(t|x1|)

t
− f(|x1|), . . . ,

f(t|xk|)
t

− f(|xk|)
∥∥∥∥
k

≤ 1

t
φ(tx1, tx1, . . . , txk, txk)

≤ Lφ(x1, x1, . . . , xk, xk)

⇒ ‖Λf(|x1|)− f(|x1|), . . . ,Λf(|xk|)− f(|xk|)‖ ≤ Lφ(x1, x1, . . . , xk, xk)

for any x1, . . . , xk ∈ E1, i.e.,
d(Λf, f) ≤ L ≤ ∞ (2.5)

Now, it follows from Theorem 1.2 (i) that there exists a function T : E1 → E2 with
T (0) = 0, which is a fixed point of Λ, such that Λnf → T , i.e.,

T (x) = lim
n→∞

f(tnx)

tn
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for all x ∈ E1. Since the integer n0 of Theorem 1.2 is 0 then f ∈ X∗ which

X∗ = {y ∈ X : d(Λn0f, y) <∞}.

By Theorem 1.2 (iii) and (2.5) we obtain

d(f, T ) ≤ 1

1− L
d(Λf, f) ≤ L

1− L
i.e., the inequality (2.4) is true for all x ∈ E1.
Clearly, T is a cone-related operator. Let us show that T is maximum preserving.
Let τ = η = tn in (2.3) we have

‖f(tn(|x1| ∨ |y1|))− tn(f(|x1|) ∨ f(|y1|)), . . . , f(tn(|xk| ∨ |yk|))
− tn(f(|xk|) ∨ f(|yk|))‖k ≤ φ(tnx1, t

ny1, . . . , t
nxk, t

nyk).

Substituting x with tnx and y with tny in the last inequality:

‖f(t2n(|x1| ∨ |y1|))− tn(f(tn|x1|) ∨ f(tn|y1|)), . . . , f(t2n(|xk| ∨ |yk|))
− tn(f(tn|xk|) ∨ f(tn|yk|))‖k ≤ φ(t2nx1, t

2ny1, . . . , t
2nxk, t

2nyk).

Thus

‖t−2nf(t2n(|x1| ∨ |y1|))− t−n(f(tn|x1|) ∨ f(tn|y1|)), . . .
, t−2nf(t2n(|xk|∨|yk|))− t−n(f(tn|xk|) ∨ f(tn|yk|))‖k

≤ t−2nφ(t2nx1, t
2ny1, . . . , t

2nxk, t
2nyk).

with use of (2.1)

‖t−2nf(t2n(|x1| ∨ |y1|))− t−n(f(tn|x1|) ∨ f(tn|y1|)), . . .
, t−2nf(t2n(|xk|∨|yk|))− t−n(f(tn|xk|) ∨ f(tn|yk|))‖k

≤ t−nLnφ(tnx1, t
ny1, . . . , t

nxk, t
nyk).

By letting n→∞ and considering (2.2), replace x1, . . . , xk with x and y1, . . . , yk with
y in the last inequality conclude

lim
n→∞

‖t−2nf(t2n(|x| ∨ |y|))− t−n(f(tn|x|) ∨ f(tn|y|))‖ = 0

we get for all x, y ∈ X the equality

‖T (|x| ∨ |y|)− T (|x|) ∨ T (|y|)‖ = 0

or equivalently

T (|x| ∨ |y|) = T (|x|) ∨ T (|y|),
because,

lim
n→∞

t−2nf(t2n|z|) = lim
m→∞

t−mf(tm|z|) = T (|z|), z ∈ X

Now, we must show T (r|x|) = rT (|x|) for all x ∈ X and r ∈ [0,∞). Using the
inequality (2.2) with η = τ , y1, . . . , yk = 0 and substituting τ with tnτ :

‖f(tnτ(|x1|))− tnτ(f(|x1|)), . . . , f(tnτ(|xk|)− tnτ(f(|xk|))‖k
≤ φ(tnτx1, 0, . . . , t

nτxk, 0).
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If we replace x1, . . . , xk with tnx1, . . . , t
nxk respectively, then:

‖f(t2nτ(|x1|))− tnτ(f(tn|x1|)), . . ., f(t2nτ(|xk|)− tnτ(f(tn|xk|))‖k
≤ φ(t2nτx1, 0, . . . , t

2nτxk, 0).

Divide by t2n both side of above inequality and use the inequality (2.1) :

‖t−2nf(t2nτ(|x1|))− t−nτ(f(tn|x1|)), . . . ,t−2nf(t2nτ(|xk|)
−t−nτ(f(tn|xk|))‖k ≤ t−2nφ(t2nτx1, 0, . . . , t

2nτxk, 0)

≤ t−nLnφ(tnτx1, 0, . . . , t
nτxk, 0).

By letting n→∞ and considering (2.3), replace x1, . . . , xk with x in the last inequality
conclude

lim
n→∞

‖t−2nf(t2n(τ |x|))− t−nτ(f(tn|x|))‖ = 0

we get for all x ∈ X the equality

lim
n→∞

t−2nf(t2nτ |x|) = τ lim
n→∞

t−nf(tn|x|) = τT (|x|),

by taking z = τ |x|, we have

τT (|x|) = lim
n→∞

t−2nf(t2nτ |x|) = lim
n→∞

t−2nf(t2n|z|) = T (|z|) = T (τ |x|).

For uniqueness of T : Assume that the inequality (2.4) is also satisfied with another
homogenous function of degree two S : E1 → E2 besides T . (As S is a homogeneous
function of degree two, S satisfies that

S(x) =
S(tx)

t
= ΛS(x)

for all x ∈ E1. That is, S is a fixed point of Λ.) In view of (2.4) and the definition of
d, we know that

d(f, S) ≤ L

1− L
<∞

i.e.,S ∈ X∗. (In view of (2.5), the integer n0 of Theorem 1.2 is 0.) Thus, Theorem
1.2 (ii) implies that S = T . This proves the uniqueness of T . �

Theorem 2.2. Let E1 and E2 be two Banach lattices and ((Ek1 , ‖ · ‖k) : k ∈ N) be
a multi-Banach lattice and f : E1 → E2 be a cone-related functional for which there
are numbers θ > 0 and 0 ≤ r < 1 such that

‖Df(x1, y1), . . . , Df(xk, yk)‖k ≤ θ
k∑
i=1

(‖xi‖r + ‖yi‖r) (2.6)

for all x1, . . . , xk, y1, . . . , yk ∈ E1; then there is a unique cone-related mapping T :
E1 → E2 such that

‖T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)‖k ≤
2θ

2− 2r

k∑
i=1

‖xi‖r (2.7)

and satisfies properties I, II.
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Proof. If we define
X = {g : E1 → E2| g(0) = 0}

and introduce a generalized metric on X as follows:

d(g, h) = inf{c ∈ [0,∞] : ‖g(x1)−h(x1), . . . , g(xk)− h(xk)‖k

≤ c
k∑
i=1

‖xi‖r, for all x1, . . . , xk ∈ E1}.

then (X, d) is complete. We define an operator Λ : X → X by

(Λg)(x) =
g(2|x|)

2
,

for all x ∈ E1. First, we assert that Λ is strictly contractive on X. Given g, h ∈ X,
let c ∈ [0,∞) be an arbitrary constant with d(g, h) ≤ c, i.e.,

‖g(x1)− h(x1), . . . , g(xk)− h(xk)‖k ≤ c
k∑
i=1

‖xi‖r,

for all x ∈ E1. If we replace x in the last inequality with 2x, then we have

‖Λg(x1)− Λh(x1), . . . ,Λg(xk)− Λh(xk)‖k

=
1

2
‖g(2x1)− h(2x1), . . . , g(2xk)− h(2xk)‖k

≤ c

2

k∑
i=1

‖2xi‖r ≤ 2r−1c

k∑
i=1

‖xi‖r,

for every x1, . . . , xk ∈ E1, i.e., d(Λg,Λh) ≤ 2r−1c. Hence, we conclude that

d(Λg,Λh) ≤ 2r−1d(g, h),

for any g, h ∈ X, and so Λ is strictly contortive with constant L = 2r−1 < 1 on X.
Next, we assert that d(Λf, f) <∞. If we substitute x for y in (2.6) and τ = η = 2

divide both sides by 2, then (2.6) establishes

‖f(2|x1|)− 2f(|x1|), . . . , f(2|xk|)− 2f(|xk|)‖k ≤ 2θ

k∑
i=1

‖xi‖r

⇒ ‖1

2
f(2|x1|)− f(|x1|), . . . ,

1

2
f(2|xk|)− f(|xk|)‖k ≤ θ

k∑
i=1

‖xi‖r

⇒ ‖Λf(|x1|)− f(|x1|), . . . ,Λf(|xk|)− f(|xk|)‖k ≤ θ
k∑
i=1

‖xi‖r

for any x1, . . . , xk ∈ E1, i.e.,
d(Λf, f) ≤ θ ≤ ∞ (2.8)

Now, it follows from Theorem 1.2 (i) that there exists a function T : E1 → E2 with
T (0) = 0, which is a fixed point of Λ, such that Λnf → T , i.e.,

T (|x|) = lim
n→∞

2−nf(2n|x|) (2.9)
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for all x ∈ E1. Since the integer n0 of Theorem 1.2 is 0 then f ∈ X∗ which

X∗ = {y ∈ X : d(Λn0f, y) <∞}.

By Theorem 1.2 (iii) and (2.8) we obtain

d(f, T ) ≤ 1

1− L
d(Λf, f) ≤ 2θ

2− 2r

i.e., the inequality (2.7) is true for all x1, . . . , xk ∈ E1.
Clearly, T is a cone-related operator. Let us show that T is maximum preserving.
Let τ = η = 2n in (2.6). We have

‖f(2n(|x1| ∨ |y1|))− 2n(f(|x1|) ∨ f(|y1|)), . . . , f(2n(|xk| ∨ |yk|))

− 2n(f(|xk|) ∨ f(|yk|))‖k ≤ θ
k∑
i=1

(‖xi‖r + ‖yi‖r)

Substituting x1, . . . , xk with 2nx1, . . . , 2
nxk and y1, . . . , yk with 2ny1, . . . , 2

nyk,
respectively in the last inequality:

‖f(4n(|x1| ∨ |y1|))− 2n(f(2n|x1|) ∨ f(|2ny1|)), . . . , f(4n(|xk| ∨ |yk|))

− 2n(f(2n|xk|) ∨ f(2n|yk|))‖k ≤ 2nrθ

k∑
i=1

(‖xi‖r + ‖yi‖r)

Thus

‖4−nf(4n(|x1|∨|y1|))− 2−n(f(2n|x1|) ∨ f(2n|y1|)), . . . , 4−nf(4n(|xk| ∨ |yk|))

− 2−n(f(2n|xk|) ∨ f(2n|yk|))‖k ≤ 2n(r−2)θ

k∑
i=1

(‖xi‖r + ‖yi‖r)

By letting n→∞, replace x1, . . . , xk with x and y1, . . . , yk with y in the last inequality
conclude

lim
n→∞

‖4−nf(4n(|x| ∨ |y|))− 2−n(f(2n|x|) ∨ f(2n|y|))‖ = 0,

because r < 1, by considering (2.9) we get for all x, y ∈ X the equality

‖T (|x| ∨ |y|)− T (|x|) ∨ T (|y|)‖ = 0

or equivalently

T (|x| ∨ |y|) = T (|x|) ∨ T (|y|),
because,

lim
n→∞

4−nf(4n|z|) = lim
m→∞

2−mf(2m|z|), z ∈ X

Now, we must show T (r|x|) = rT (|x|) for all x ∈ X and r ∈ [0,∞). Using the
inequality (2.3) with η = τ , y1, . . . , yk = 0 and substituting τ with 2nτ :

‖f(2nτ |x1|)− 2nτf(|x1|), . . . , f(2nτ |xk|)− 2nτf(|xk|)‖k ≤ θ
k∑
i=1

‖xi‖r.
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If we replace x1, . . . , xk with 2nx1, . . . , 2
nxk respectively then:

‖f(4nτ |x1|)− 2nτf(2n|x1|), . . . , f(4nτ |xk|)− 2nτf(|2nxk|)‖k ≤ 2nrθ

k∑
i=1

‖xi‖r.

Divide by 4n both side of above inequality and use inequality (2.1):

‖4−nf(4nτ |x1|)− 2−nτf(2n|x1|), . . .

, 4−nf(4nτ |xk|)− 2−nτf(|2nxk|)‖k ≤ 2n(r−2)θ

k∑
i=1

‖xi‖r.

By letting n→∞, replace x1, . . . , xk with x and y1, . . . , yk with y in the last inequality
conclude

lim
n→∞

‖4−nf(4nτ |x|)− 2−nτf(2n|x|)‖ = 0,

by (2.9) we get for all x, y ∈ X the equality

lim
n→∞

4−nf(4nτ |x|) = τ lim
n→∞

2−nf(2n|x|) = τT (|x|),

by taking z = τ |x|, we have

τT (|x|) = lim
n→∞

4−nf(4nτ |x|) = lim
n→∞

4−nf(4n|z|) = T (|z|) = T (τ |x|).

For uniqueness of T : Assume that the inequality (2.7) is also satisfied with another
homogeneous function of degree two S : E1 → E2 besides T . (As S is a homogeneous
function of degree two, S satisfies that

S(x) =
S(2x)

2
= ΛS(x),

for all x ∈ E1. That is, S is a fixed point of Λ.) In view of (2.7) and the definition of
d, we know that

d(f, S) ≤ L

1− L
<∞

i.e., S ∈ X∗. (In view of (2.8), the integer n0 of Theorem 1.2 is 0.) Thus, Theorem
1.2 (ii) implies that S = T . This proves the uniqueness of T . �

Corollary 2.3. Let E1 and E2 be two Banach lattices and ((Ek1 , ‖ · ‖k) : k ∈ N) be a
multi-Banach lattice and p : [0,∞)→ [0,∞) be a continuous function f : E1 → E2 be
a cone-related functional for which there are numbers θ > 0 and 0 ≤ r < 1 such that

‖f(τ |x1| ∨ η|y1|)− τf(|x1|) ∨ ηf(|y1|), . . .

, f(τ |xk| ∨ η|yk|)− τf(|xk|) ∨ ηf(|yk|)‖k ≤ θ
k∑
i=1

(‖xi‖r + ‖yi‖r)

for all x1, . . . , xk, y1, . . . , yk ∈ E1 and τ, η ∈ R+ ; then there is a unique cone-related
mapping T : E1 → E2 such that

‖T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)‖k ≤
2θ

2− 2r

k∑
i=1

‖xi‖r
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and satisfies properties I, II.

Proof. Enough, we put p(t) = 1 in above theorem for t ∈ [0,∞). In this case, the sense
of stability in multi-Banach lattice is similarity with stability of additive functional
equation in Banach space. �

Corollary 2.4. Let E1 and E2 be two Banach lattices and ((Ek1 , ‖ · ‖k) : k ∈ N) be a
multi-Banach lattice and p : [0,∞)→ [0,∞) be a continuous function f : E1 → E2 be
a cone-related functional for which there are numbers θ > 0 and 0 ≤ r < 1 such that∥∥∥∥f(τ |x1| ∨ η|y1|)−

τ2f(|x1|) ∨ η2f(|y1|)
τ ∨ η

., . . .

, f(τ |xk| ∨ η|yk|)−
τ2f(|xk|) ∨ η2f(|yk|)

τ ∨ η

∥∥∥∥
k

≤ θ
k∑
i=1

(‖xi‖r + ‖yi‖r).

for all x1, . . . , xk, y1, . . . , yk ∈ E1 and τ, η ∈ R+ ; then there is a unique cone-related
mapping T : E1 → E2 such that

‖T (|x1|)− f(|x1|), . . . , T (|xk|)− f(|xk|)‖k ≤
2θ

2− 2r

k∑
i=1

‖xi‖r

and satisfies properties I, II.

Proof. Enough, we put P (t) = t in above theorem. �
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