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point algorithms for approximating a common solution of monotone inclusion problem and fixed
point problem. We obtained strong convergence of the proposed algorithms to a common solution
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1. INTRODUCTION

A metric space (X, d) is a CAT(0) space if it is geodesically connected and if every
geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean
plane. Let (X, d) be a metric space. A geodesic path joining z € X toy € X is a
map ¢ from [0,!] C R to X such that ¢(0) = z, ¢(I) = y and d(c(¢),c(t')) = |t — /| for
all t,¢' € [0,1]. In particular, ¢ is an isometry and d(z,y) = [. The image of ¢ is called
a geodesic (or metric) segment joining x and y. When it is unique, this geodesic is
denoted by [z, y]. The space (X, d) is said to be a geodesic space if every two points of
X are joined by a geodesic and X is said to be a uniquely geodesic if there is exactly

339



340 G.C. UGWUNADI, I.LK. AGWU, C. IZUCHUKWU AND C.C. OKEKE

one geodesic joining x to y for each =,y € X.

A geodesic triangle A(x1,x2,x3) in a geodesic metric space (X, d) consists of three
points in X (the vertices of A) and a geodesic segment between each pair of vertices
(the edges of A). A comparison triangle for the geodesic triangle A(xy,z2,23) in
(X,d) is a triangle A(xq, xo, x3) = A(Z1, T2, T3) in the Euclidean plane R? such that

dr2 (jia jj) = d(l’z, ajj)

for i, € {1,2,3}. Such a triangle always exists (see [6]). A geodesic metric space is
said to be a CAT(0) space [6] if all geodesic triangles of appropriate size satisfy the
following comparison property. Let A be a geodesic triangle in X, and let A be a
comparison triangle for A. Then A is said to satisfy the CAT(0) inequality if for all
z,y € A and all comparison points z,y € A, d(z,y) < dr2(Z, 7).

We observe that if z, z1, 2 are points of a CAT(0) space and if z¢ is the midpoint of
the segment [z1, 5], then the CAT(0) inequality implies that

1 1 1
dz(x,:co) < §d2(x,x1) + §d2(x,x2) - §d2(x17x2). (1.1)

The equality holds for the Euclidean metric. In fact (see [6, p.163]), a geodesic
metric space is a CAT(0) space if and only if it satisfies inequality (1.1) (which is
called the CN inequality of Bruhat and Tits [7]). For other equivalent definitions and
basic properties of a CAT(0) space, see[4]. Complete CAT(0) spaces are often called
Hadamard spaces. Let z,y € X and A € [0,1]. We write Az & (1 — \)y for the unique
point z in the geodesic segment joining from x to y such that

d(z,2) = (1= Nd(z,y) and d(z,y) = Ad(z,y). (1.2)
We also denote by [z,y] the geodesic segment joining from x to y, that is,
[z, y] ={ Az @ (1 - Ny : Ae[0,1]}.

A subset C of a CAT(0) space is called convex if [z,y] C C for all z,y € C.
Berg and Nikolaev [5] introduced the concept of quasilinearization in a metric space

X. Let denote a pair (a,b) € X x X by % and call it a vector. The quasilinearization
isamap (.,.): (X x X) x (X x X) — R defined by

(ab, cd) = %(dQ(a,d) +d(b,c) — d*(a,c) - d*(b,d)), VabedeX.  (13)
It is easily seen that
(ab, d) = (cd. ab), (ab, ed) = ~(ba, cd)
and
(@, ed) + (b, cd) = (ab, cd)
for all a,b,c,d € X. We say that X satisfies the Cauchy-Schwarz inequality if
(ab, cd) < d(a, b)d(c, d),

for all a,b,c,d,xz € X. It is known that a geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality (see [5]).
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In 2010, Kakavandi and Amini [19] introduced the concept of dual space for CAT(0)
space, as follows. Consider the map © : R x X x X — C(X) defined by

O(t, a,b)(z) = t(ab, @), (1.4)

where C(X) is the space of all continuous real-valued functions on X. Then the
Cauchy-Schwarz inequality implies that ©(t, a,b) is a Lipschitz semi-norm

L(©(t,a,b)) = |t|d(a,b)
for all a,b € X, where
f(z) = )

L(f) =sup { o)

is the Lipschiz semi-norm of the function f : X — R. Now, define the pseudometric
DonR x X x X by

D((t,a,b),(s,c,d)) = L(O(t,a,b) — O(s,c,d)).

D((t,a,b),(s,c,d)) = 0 if and only if t(%,@) = s(a}l, ﬁ/) for all z,y € X, see [19,
Lemma 2.1]. For a complete CAT(0) space (X, d), the pseudometric space (R x X x
X, D) can be considered as a subspace of the pseudometric space (Lip(X,R), L) of all
real-valued Lipschitz functions. Also, the metric D defines an equivalent relation on

:x7y€X7m#y}’

R x X x X, where the equivalence class of ﬁ : (t,a,b) is
[tab) = {sed : t(ab, 7)) = s{ed, 7) Yo,y € X}.

The set X* := {[Ez%] : (t,a,b) € Rx X x X} is a metric space with D, which is called
the dual metric space of (X, d).
Let X be a Hadamard space and X* be its dual space. A multivalued operator
A: X — 2% with domain D(A) := {x € X : Az # ()} is monotone if and only if for
all x,y € D(A), a* € Az, y* € Ay,
(@ —y",yd) 2 0 (see [20)).

A monotone operator A is called a maximal monotone operator if the graph G(A) of
A defined by

GA) ={(z,2") e X x X*: 2" € A(v)},
is not properly contained in the graph of any other monotone operator. The resolvent

of a monotone operator A of order A > 0 is the multivalued mapping J ;\4 X — 2%
defined by (see [20])

JNx) = {z exX| [iﬁ} € Az}.

We say that the operator A satisfies the range condition if for every A > 0, ]D)(J;f‘) =X
(see [20]). For simplicity, we shall write Jy for the resolvent of a monotone operator
A.

The theory of monotone operators known as one of the most important theory in
nonlinear and convex analysis is a vital tool in optimization theory, variational in-
equalities, semi group theory, evolution equations, among others. One of the most
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important problems in the theory of monotone operators is the problem of finding the
solution of the following Monotone Inclusion Problem (MIP).

Find z € D(A) such that 0 € Ax, (1.5)

where A : X — 2% is a monotone operator. Throughout this paper, we shall denote
the solution set of problem (1.5) by A~!(0), which is known to be closed and convex
(see [32], Remark 3.1). Many mathematical problems such as optimization prob-
lems, equilibrium problems, variational inequality problems, saddle point problems,
among others, can be modeled as a MIP (1.5). Thus, MIP is of central importance in
nonlinear and convex analysis. The most popular and successful method for finding
solution of MIP, is the Proximal Point Algorithm (PPA) introduced in Hilbert space
by Martinet [27] and further developed by Rockafellar [33], as follows:

Tp—1 — Tn € AMA(xyn), 2o € H, (1.6)

where {)\,,) is a sequence of positive real numbers. Rockafellar [33] proved that the
sequence {z,} generated by Algorithm (1.6) is weakly convergent to a solution of
MIP (1.5), provided A\, > A > 0 for each n > 1. The PPA was later introduced in
CAT(0) spaces by Bag¢dk [3], who proved the A-convergence of it when the operator
A is a subdifferential of a convex, proper and lower semicontinuous function. In 2016,
Khatibzadeh and Ranjbar [20] introduced and studied the following PPA in CAT(0)
spaces for the case when the operator A is a monotone operator:

xg € X,
N (1.7)

[%ﬂxnxn_l} € Ax,.

They obtained a strong and A-convergence results of (1.7) to a solution of (1.5).
Very recently, Ranjbar and Khatibzadeh [32] proposed the following Mann-type PPA
in CAT(0) spaces for finding the solution of (1.5) and obtained a A-convergence result.

To € X, (1 8)
Tyl = QpZpn @ (1 — ap) I, Tn. '

In the same paper, Ranjbar and Khatibzadeh [32] proposed the following Halpern-
type PPA in order to obtain a strong convergence result:
) e X’
%o (1.9)
Tpi1 = apu B (1 - O‘n)JAnxnv n>1,
where {\,} C (0,00) and {e,,} C [0,1].
Let C be a nonempty closed convex subset of a CAT(0) space X. Then, for any z € X
there exists a unique point u € C' such that

d = min d .
(2, u) min (z,y)
The mapping P : X — C defined by Pox = u is called the metric projection from

X onto C (see [12]). The metric projection is characterized by the following (see [12,
Theorem 3.1]):

u = Pex if and only if (yd, u#) > 0, for all y € C.
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Let C be a nonempty subset of a CAT(0) space X, then a mapping T from C into
itself is called

(i) firmly nonexpansive if (see [20])
(T, Ty) < (TaTy, T) Yo,y € C,
(ii) nonezpansive if
d(Tz,Ty) < d(z,y) Va,y € C.

An example of a nonexpansive mapping is the metric projection mapping (see [13,
Proposition 2.4]). Also recall that, a mapping T is said to be asymptotically non-
expansive [17], if there is a sequence {u,} C [0,00) with u, — 0 as n — oo such
that

d(T"x, T"y) < (14 un)d(z,y) Vn > 1, z,y € C.
T is said to be uniformly L-Lipschitzian, if there exists a constant L > 0 such that

d(T"z,T"y) < Ld(z,y); Vn > 1; z,y € C

and T is said to be asymptotically regular, if

lim d(T"z, T"'z) = 0 Vx € C.

n—oo

Furthermore, a mapping T : C' — C'is called generalized asymptotically nonexpansive
if there exist nonnegative sequences {yn}, {vn} with g, — 0,v, — 0 as n — oo such
that

d(T"z, T"y) < (1 + vp)d(x,y) + pin, Yn > 1, z,y € C.
Clearly, every asymptotically nonexpansive mapping is a generalized asymptotically
nonexpansive mapping. However, we shall see in Example 1 that there exists an
asymptotically nonexpansive mapping which is not a generalized asymptotically non-
expansive mapping.
Example 1.1. [1]

(1) Let X =R,C =[0,00) and T : C — C be defined by Tz = sinz. Then T is
asymptotically nonexpansive, hence, a generalized asymptotically nonexpan-
sive mapping.

(2) Let X =R,C = [-1, 1] be defined by Tz = kxsin 1, where k € (0,1). Then
T is generalized asymptotically nonexpansive.

Example 1.2. [46] Let X =R, C = (—o0, 1] and for k € (0,1) define T': C' — C by

x, x€(—00,0)

Tr={ kz, z€][0,3]

0, =z€(31.
Then, T is generalized asymptotically nonexpansive with u,, = 2k™ and v,, = k™. But
T is not asymptotically nonexpansive.
A mapping T of C into itself is called a contraction with coefficient « € [0, 1) if and
only if d(T(x),T(y)) < ad(z,y) for all z,y € C. Recall that a point z € C is called a

fixed point of T if Tx = x. We denote by F'(T') the set of all the fixed points of T'. Ba-
nach contraction principle [6] guarantees that 7" has a unique fixed point when C'is a
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nonempty, closed, and convex subset of a complete metric space. Iterative methods for
finding fixed points of nonexpansive mappings have received vast investigations due
to their extensive applications in a variety of applied areas of inverse problems, partial
differential equations, image recovery, and signal processing; see [11, 26, 30, 37, 43, 45]
and the references therein. One of the difficulties in carrying out results from Banach
spaces to Hadamard spaces lies in the heavy use of the linear structure of the Banach
spaces. Recently, fixed points results were studied by many authors in the setting of
CAT(0) metric spaces for example see [8, 9, 2, 41, 16, 18, 21, 22, 24, 23, 25, 29] and
the references therein.

In 2012, Shi and Chen [35], studied the convergence theorems of the following
Moudafi’s viscosity iterations for a nonexpansive mapping 7" and a contraction f
on C and t € (0,1). Let z; € C be a unique fixed point of the contraction
ztf(x)® (1 —t)Tx; ie.,

Consider that z¢ € C is arbitrarily chosen and
Tnt1 = A f(zn) ® (1 — ap)Txy, (1.11)

where {a,,} C (0,1). They proved that {z;} defined by (1.10) converges strongly as
t — 0to & € F(T) such that & = Pp(7)f(Z) in the framework of CAT(0) space and
satisfy property P, i.e., if for z,u,y1,y2 € X,

d(m7 P[m’,yl]u)d(xv yl) < d(.%‘, P[Iyyz]u)d(xv y2) + d(.%‘, u)d(yla 92)-

Furthermore, they obtained that {x,} defined by (1.11) converges strongly as n —
oo to & € F(T) under appropriate conditions on {e,}. By using the concept of
quasilinearization, Wangkeeree and Preechasilp [42] improved Shi and Chen’s results.
In fact, they proved the strong convergence theorems for two given iterative schemes
(1.10) and (1.11) in a complete CAT(0) space without the property P. They proved
that the iterative schemes (1.10) and (1.11) converges strongly to & := Pp(7)f(Z)
which is a unique solution of the variational inequality (VIP):

(Ff#,23) >0, zeF(T). (1.12)

In 2013, Shi et al. [36] studied the A-convergence of the iterative sequence (1.10) and
(1.11) for asymptotically nonexpansive mappings in CAT(0) spaces. Wangkeeree et al.
[40] studied the strong convergence theorems of the Moudafi’s viscosity approximation
methods for an asymptotically nonexpansive mapping in CAT(0) spaces: Let C be a
closed convex subset of a complete CAT(0) space X and T : C — C be an asymp-
totically nonexpansive mapping. For given a contraction f on C' and a,, € (0,1), let
xn, € C be a unique fixed point of the contraction z — ay, f(z) ® (1 — )Tz iee.

T = anf(an) ® (1 —ay)T e, n>1, (1.13)
and x; € C is arbitrary chosen and

Tpt1 = anfzn) ® (1 —ap) Tz, n>1. (1.14)
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They proved that the iterative schemes (1.13) and (1.14) converge strongly to the
same point & := Pp(r)f(Z) which is the unique solution of the variational inequality:

(Ff#,73) >0, zeF(T). (1.15)

Motivated and inspired by the above results, we study some strong convergence of
the viscosity-type proximal point algorithms for approximating a common solution of
monotone inclusion problem and fixed point problem for a generalized asymptotically
nonexpansive mapping which is also a unique solution of some variational inequality
problems in Hadamard space. Our results extend and complement the results of
Bag¢dk [3], Khatibzadeh and Ranjbar [20], Ranjbar and Khatibzadeh [32], Shi and
Chen [35], Wangkeeree and Preechasilp [42], and Wangkeeree et al. [40].

The paper is organized as follows. The next section presents some preliminary results.
In section 3, strong convergence of both implicit and explicit of the modified viscosity-
type proximal point algorithms to a common solution of monotone inclusion problem
and fixed point problem for a uniformly asymptotically regular and uniformly L-
Lipschitzian generalized asymptotically nonexpansive mapping in Hadamard space
are presented in Theorem 3.1 and Theorem 3.3 respectively.

2. PRELIMINARIES

We denote by N, RT, R the set of natural numbers, the set of nonnegative real
numbers and the set of real numbers, respectively. We also denote by — and — strong
convergence and A-convergence respectively. In the sequel, we shall use the following
results:

Lemma 2.1. [6] Let X be a CAT(0) space, w,z,y,z € X and t € [0,1]. Then

ditw® (1 —t)z, ty ® (1 —t)2) < td(w,y) + (1 — t)d(z, z).
Lemma 2.2. Let X be a CAT(0) space, x,y,z € X and t,s € [0,1]. Then
(1) dtz® (1 —t)y,2) < td(z,z) + (1 —t)d(y, 2).(see[16])
(2) ?Q(tm{ EB]gl —t)y,2) < td*(x,2) + (1 — t)d?(y, 2) — t(1 — t)d?(x,y).
see |16
(3) d2(tx ® (1 —t)y, z) < t2d2(z, 2) 4+ (1 — t)2d2(y, z) + 2t(1 — t)(T2, y2).
(see [12])
(4) z =tz ® (1 — t)y implies (7, z0) < t(z}, z4), ¥ w € X. (see [12])
(5) d(tz & (1 —t)y, sz ® (1 — 8)y) < |t — s|d(x,y). (see [10])
Let {z,} be a bounded sequence in a Hadamard space X. For z € X, define
r(z,{z,}) = lirrlnﬁsotipd(x, Zp)-

The asymptotic radius r({z,}) of {x,} is defined by
r({zn}) = inf{r(z, {z,}) : x € X},
and the asymptotic center A({z,}) of {z,} is the set
A({zn}) ={z € X :r(z, {zn}) = r({zn})}-

It is well known that in a CAT(0) space, A({x,}) consists of exactly one point (see
[15, Proposition 7]). A sequence {z,} in X is said to be A-convergent to a point w, if
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w is the unique asymptotic center of every subsequence {u,} of {x,}. This is written
as A — lim z, = w.

n—oo
Let {z,} be a bounded sequence in a Hadamard space X, and C be a closed and
convex subset of X which contains {x,}. We note that {z,} — w if and only if
A({zn}) = {w} (see [28]).
Lemma 2.3. [24] Every bounded sequence in a Hadamard space always has a A-
convergent subsequence.
Recall that a mapping T is called total asymptotically nonexpansive, if there exist
sequences of nonnegative numbers {u,} and {v,}, and a strictly increasing function
¢ :]0,00) = [0, 00) with ¢(0) = 0 such that

d(T"a, T"y) < d(z,y) + und(d(x,y)) + va, (2.1)

vn>1, z,y € C,up — 0,v, — 0 as n — oco.

Lemma 2.4. [8] Let C be a closed conver subset of a Hadamard space X and
T :C — X be a uniformly L-Lipschitzian and ({un}, {vn}, @)-total asymptotically
nonexpansive mapping. Let {x,} be a bounded sequence in C such that z, — p and
nl;rr;o d(xp, Txzy,) = 0. Then, Tp = p.

Remark 2.5. If ¢(\) = A in (2.1), then in Lemma 2, T is generalized asymptotically
nonexpansive mapping.

Lemma 2.6. [18] Let X be a Hadamard space, {x,,} be a sequence in X and x € X.
Then {x, Y A—converges to @ if and only if lim sup(zz,,, 74)) < 0 for all y € C.

n—oo
Lemma 2.7. [38] Let {x,} and {y,} be bounded sequences in a metric space of

hyperbolic type X and {B,} be a sequence in [0, 1] with
liminf 5,, < limsup S5, < 1.
n—oo

n—oo

Suppose that xpi1 = Bpxn ® (1 — Bn)yn for alln >0 and
lim sup(d(yn+1,Yn) — d(Tn+1,2n)) < 0.
n— 00

Then lim d(yn,z,) =0.
n— oo
Lemma 2.8. [42] Let X be a CAT(0) space. For anyt € [0,1] and u,v € X, let
up =tu® (1 —t)v.

Then, for all xz,y € X,

(1) (urd, w) < t(ad, urd) + (1 —)(0F, uh);

(2) (e, ) < t{uf, @) + (1 t)(vt, uF) and
Lemma 2.9. [20] Let X be a CAT(0) space and Jy be the resolvent of the operator
A of order \. We have the following:

(i) For any A >0, R(Jy) C D(A) and F(Jy) = A~1(0).

(ii) If A is monotone, then Jy is a single-valued and firmly nonexpansive mapping.

(ili) If A is monotone and 0 < X\ < p, then
—A

d*(Jrw, Jux) < ﬁdz(z, J,.x) Vo € X.

==



VISCOSITY-TYPE PROXIMAL POINT ALGORITHMS 347

Remark 2.10. From Cauchy-Schwartz inequality, it is not difficult to see that every
firmly nonexpansive mapping is a nonexpansive mapping. Therefore, Jy is nonexpan-
sive.

Lemma 2.11. (Xu, [44]) Let {a,} be a sequence of nonnegative real numbers satis-
fying the following relation:

An 41 S (1 - an)an + QapOnp + Yn, T Z 0;

where

(7’) {an} - [07 1}7 Zan = O0;

(#9) lim sup o, < 0;

(iii) Yn > 0; (n>0), > < 0.
Then, a, — 0 as n — oo.

3. MAIN RESULTS

Theorem 3.1. Let X be a Hadamard space and X* be its dual space. Let
T : X — X be uniformly asymptotically reqular and uniformly L-Lipschitzian gener-
alized asymptotically nonexpansive mapping with sequences {uy}, {vy,} C [0,00) and

lim u, = 0, limv, = 0. Let A : X — 2X" be a multivalued monotone mapping
n—oo n—r oo

which satisfies the range condition and f be a contraction mapping on X with coeffi-
cient v € (0,1). Suppose that T := F(T) N A=(0) # 0 and for arbitrary x; = x € C,
the sequence {x,};2; is generated by

{yn = J,\n(l'n), (31)

Tp = anf(yn) ® (1 - O‘n)Tnyn n Z 17

where {an 22, C (0,1) satisfying nl;rr;oan =0, Z oy, = 00 and

n=1

. Unp . Un
lim — =0, lim — =0,

n—00 (p, n—00 (up,

assuming that L < (1 — a,y)/(1 — @) and 0 < X < A, Vn > 1. Then {z,}32,
converges strongly to p € I' which solves the variational inequality

(pf(p),ap) >0, qeT. (3.2)

Proof. First, we show that {z,} defined by (3.1) is well defined. For each n > 1,
define the mapping T/ : X — X as follows:

Tix = anf(JIn, ) ® (1 — a,)T"Jy, .

Now, using the method in Qin et al. [31] and Saluja [34], and by the uniformly
L-Lipschitzian of T', we obtain from Lemma 2.1 that

d(Tf:x,T,{y) d(an f(JIr,2) ® (1 —an)T" I,z cn f(JIr,y) ® (1 — an)T" Iy, y)
and(f(Ix, ), f(Ix,y) + (1 = an)d(T"Ix, 2, T" Iy, y)
yand(JIx, z, Ixn,y) + (1 — an)Ld(Jx, z, Jx, y)

(vom + (1 = o) L) d(z, y).

IN A IA
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Since L < (1 — a,7)/(1 — a,,), we obtain that T is a contraction for each n > 1.
Therefore, by Banach contraction principle, there exists a unique fixed point x,, of
T7 for each n > 1. Hence, (3.1) is well defined.

Let p € F(T), then from (3.1) and Lemma 2.2 (1), we obtain

d(n, p) d(an f(yn) ® (1 = an)T"Yn, p)
and(f(yn),p) + (1 — an)d(T"yn, p)
nYd(Yn, p) + and(f(p), p)
(1 = an)[(1 + un)d(Yn, p) + vn]
(1= anl(l =) = (1= aw)unfon] Jd(Ir,20p)  (33)
apld(f(p),p) + (1 — an)vn /o]
)

+ IANIA

IN +

(1 —an[(1—7)—(1— an)un/an])d(xmp)
anld(f(p),p) + (1 — an)vn/an]

+

Therefore
d(f(p)7p) + (]— - an)vn/an

(I=7) = (1 —an)up/an

Since lim (1 — a,)v, /o, =0 and lim (1 — ap)uy /o, = 0, then there exist ng € N
n—00 n— 00

such that (1 — a)vn/on < (1 —7)/4 and (1 — ap)upn /o, < (1 —7)/4 respectively for

all n > ng. Hence

d(xn,p) <

4d(f(p),p) | 1

for all n > ng. Thus, {z,} is bounded and so are {y,} {T"y,} and {f(y,)}. From
(3.1), we obtain

d(@n, T"yn) = d(anf(yn) © (1 — ) T"yn, T"yn)
< @nd(f(yn), T"yn) — 0 as n — oo, (3.4)

A

From Lemma 2.2(2), we obtain

dQ(SL‘n,p) d2(anf<yn) ® (1= an)T"yn,p)
O‘ndQ(f(yn)yp

)

)

) + (1= an)d*(T"yn, p)
and®(f(yn),p) + (1 — an)[(1 + un)d(yn, p) + vn]”
ozndz(f(y ,p) + (1= an)(1 +up) dQ(ynaP)

(1 — an)v? +2(1 — o) (1 + up)d(Yn, p)vn,

IN N

_|_

which implies

~d*(yn,p) < (1—an)11+un)2 (and®(f(yn),p) — d*(zn.p))
+ Un + 2 A(Yn, p)vn- (3.5)

(I4+up)?  1+u,
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Since Jy is firmly nonexpansive, we obtain from the definition of quasilinearization
map that

-—
P (Ir, @ p) < (Ix, Tn Dy ZnD)
1
- 5 (dQ(JAnxnap) + dQ(p7 mn) - dz(J)\n.’ﬂn,l'n)) ,

which implies from (3.5) that

P(Inas) € Epa)+ g (0P w)0) - )
+ i + 2 d(Yn, p)vn, — 0, as n — oo.
(14 up)? (14 uy,)
That is
nhﬁn;o A(yn, Tn) = nhﬁn;o d(Jx, Tn,2n) = 0. (3.6)
Since 0 < A < A, we obtain from Lemma 2.9(iii) and (3.6) that
A(I\Tp, Tp) < 2d(JI, Tpn,xn) — 0, as n — oo. (3.7
From (3.4) and (3.6), we obtain that
nl;rréo A(yn, T"yn) = 0. (3.8)

Using the asymptotic regularity of T, we obtain

d(yna Tyn) < d(yrw Tnyn) + d(Tnym TnJrlyn) + d(TnJrlyna Tyn)
< (14 L)Yd(Yn, T"yn) + (T y,, T™yn) — 0, as n — co. (3.9)

By the boundedness of {z,}, we obtain from Lemma 2.3 that there exists a subse-
quence {z,, } of {z, } which A—converges to p. It then follows from the boundedness
of {yn} and (3.6) that there exists a subsequence {y,,} of {y,} which A—converges
to p. Thus, from (3.7), (3.9), and Lemma 2.4, we obtain that p € T.

Now, let w,, := 2u,, + u2, then from Lemma 2.2, 2.8 and (3.1), we have

d*(x,p) = d*(an f(yn) ® (1 — )T Y, p)
< aZd*(f(yn),p) + (1 = an)d*(T™ Y, p) + 200 (1 — ) {f ()0, T" YD)
< O‘?de(f(yn)ap) =+ (1 - an)[(l + Un)d(ynap) + 'Un]2

120 (L — an)[(F G T gnge) + F ) 1@ 5i) + D) 5)
< a2 d*(f(yn),p) + (1 — ) [(1 4 wn)d* (Yns p) + 2(1 + up)vnd(yYn, p) + v7]

+20m(1 = an)[(F )0 TG + 12 (s )] + 20m(1 — ) (F (0) G
< [(1 = an) 1+ wn) + 2900 (1 — an)| (2, p)

| and(£(yn). p) + 201 = )d(T"w0,5) | d(f () 2)

F(1 = n)vn[2(1 + Un)d(Yn, P) + vn] + 205, (1 — O‘n)<m7 m) (3.10)
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Therefore

[0nd(f(Yn), p) + 2(1 — ) d(T" Y yn)]d(f (yn), P)
[1—(1—an)wy/an —27(1 — ay)]

(1 — an)vn/an[ ( + Un)d(yn,p) + Un]

dz(xn,p) <

T T (1= an)wnfan — 27(1— an)]
—
11— (1 —an)wy/on —29(1 — ay)]’ '
Since {yn,} A—converges to a point p € I', by Lemma 2.6, we obtain
hm p, yn]z (3.12)

From (3.11) and (3.12), we get
lim d*(z,,,p) = 0.

j—o0
Hence, lim x,; = p. Next, we show that p € I is a solution of variational inequality
j—oo -

(3.2). From Lemma 2.2 and (3.1), and for all ¢ € T, letting w,, := u2, + 2u,,, we
obtain

q) + (1 = o) d* (T yrm, q)
am(l — Oy d (f(ym>7Tmym)

O‘md2(f(ym)a
)

(f(?hn)a q) + (1 — ) [(1 + um)d(Ym, q) + Um]2
)d=(
)

d* (2, q)

IA

IN

am(l — apy)d? FWm): T ym)

(f(ym 1) + (1 —am)(1+ wm)dQ(mm, q)
Um(l — ) [2(1 + U )d(Ym, q) + Vi)
am (1 — O‘m)dQ(f(ym) T"Ym),

_|_
+

+ IA

Therefore,

(@ (f(Yym), @) + v/ [2(1 + Um)d(Ym;: @) + V]
(1= (1= am)wmn/omn]
(1 — am) (1 4+ wm)vm/am[2(1 + wm)d(Ym, @) + Vm)
[1 - (1 - am)wm/am]
(1- O‘m)dQ(f(ym)v T ym)

— = (1= o )wmn fom] (3.13)

Since lim z,, = p, then taking limit through as m — oo in (3.13), we obtain
m—0o0

d*(zm, q)

IN

d*(p,q) < d*(f(p),q) — d*(f(p),p).

Hence

I W), a) = 5 (@.0) + P B).0) ~ P(p.0) ~ E(FB)0) 20,
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where ¢ € T', it implies that p solves the variational inequality (3.2). Assume there
exists a subsequence {z,, } of {x,} which A—converges to ¢ by the same argument,
we have that ¢ € I' which solve the variational inequality (3.2), that is

(af(q), @) <0 also (pf(p),pd) <0,

adding the two, we obtain

0 > (pf(p).pd) — (af(a), pd)
= (f(a), 5 + (F(@)F (), )
— (@b, p0) — (pf(q Iﬁ
= (p4.p4) f pi ab)
> (G, pg) — f(p))d(g,p)
> d*(p.q) - vdz(q p)

(L =7)d*(p.q)-

Since v € (0,1), we d(p,q) = 0, and so p = ¢q. Hence, {z,} converges strongly to p,
which is a solution of the variational inequality (3.2). O

We now give the following remark which will be needed in what follows.
Remark 3.2. If X is a CAT(0) space and A : X — 2% is a multivalued monotone
mapping, then for 0 < A < u, we have that

[ A
d(JIre, Jux) < ( 1- N) d(z, J,x), Vo € X.

Indeed, from Lemma 2 (iii), we obtain that

A - A
B2 (e gy < PP, ),
which implies that

d*(Jaz, J,x) < (1 - :) d*(z, J,x).

d(Jae, Jux) < (1 [1— 2) d(z, J,x).

Theorem 3.3. Let X be a Hadamard space and X* be its dual space. Let
T: X — X be uniformly asymptotically reqular and uniformly L-Lipschitzian gener-
alized asymptotically nonexpansive mapping with sequences {u,},{v,} C [0,00) and

lim uw,, = 0, hm 0 vy = 0. Let A: X — 2% be a multivalued monotone mapping
n—oo

which satzsﬁes the range condition and f be a contraction mapping on X with coeffi-
cient v € (0,1). Suppose that T := F(T) N A=1(0) # 0 and for arbitrary x1 = x € C,

That is,
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the sequence {x,}°2 | is generated by
Wy, = Jx, Tn,
Yn = anf(wp) @ (1 — an)T"wy, (3.14)
Tpt1 = Bpwn ® (1 — Bn)T"yn, n > 1,

where 0 < A < A, Yn > 1 and {a,}321,{Bn}22, C (0,1), satisfying

oo

U/TL . Un _
(a) lim o, =0, Zan = oo, lim - =0 and lim - =0,
(b) 0 < liminf Bn < hm sup 5, < 1,
n—oo n—oo
(c) 1m |an+1 —an| =0,
(d) L ( O‘H’Y)/(l —ap),
e) lim =1.
Then, {x,}52, converges strongly to p € T' which solves the variational inequality
(pf(p),ab) >0, qeT. (3.15)

Proof. From condition (a) in Theorem 3.3, we get that

nh_}n;@(l — Qp)Up /o, =0,

lim (1 — ap)un/[an (1 +uy)] = 0,

n—oo

nlgrgo(l —ap)p /e, =0

and
lim (1 — an)vn/[an (1 + uy)] = 0.

n—r oo

Thus, there exists ng € N such that
(1= an)un/an < (1—7)/4,
(I = an)un/lan(l +u,)] < (1—7)/4,
(1—ap)vp/ay < (1—7)/4
and
(1 —an)vn/[om(1 4+ un)] < (1 —7)/4
respectively for all n > ng. Letting p € ', we obtain from (3.14) that

(o f(wy) @ (1 — an)T wy, p)

d(Yn,p)

< and(f(wa),p) + (1= n)d(T"wn, )
< apyd(wn,p) + and(f(p), p) + (1 — an)[(1 4 un)d(wn, p) + vn)

= (1= anl(l =9) = (1 = aw)un/an] )d(wa,p) + and(f(p), p)

+ (1—an)vp. (3.16)
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From (3.14) and (3.16), we obtain
d($n+1,p) = d(ﬁnwn D (1 - Bn)Tnyn,p)
< ﬁnd(wnnp) + (1 - ﬁn)(l + Un)d(ymp) + (1 - Bn)vn
< (1 = (1= Bp)(L 4+ un)[(L =) = (1 = an)un/an — un/[om (1 + un)]})d(wn,p)
+ o (1= Bn) (1 + un)[d(f(p),p) + (1 — an)vn/cn + vn/[on (1 + un)]
< (1= an(t = B+ ) (1= 9) = (1= an)un/an = wn/[on(1 + )] ) | d(zn, p)
a1 = )L+ ua) (1= %) = (1= @Jun /= tn/fon (1 +u,)])
% 2[d(f(p),p) + (1 — an)vn/an + vn/lom (1 + un)]]

I—v

By induction, we have

2d(f (p)

d(xyn,p) < max {d(aﬁno,p)7 T P) + 1} Yn > ng.

Thus, {z,} is bounded and so {y,}, {T"w,} and {f(wn)} are all bounded. Further-
more, from (3.14), Lemma 2.1 and 2.2(5), we obtain

d(Yn+1,Yn) = d(any1 f(wny1) © (1 — an+1)Tn+1wn+1»anf(wn) ® (1 — an)T"wy)
< d(ans1f(wns1) © (1= an+1)Tn+1wn+1a nt1f(Wnt1) ® (1 - O‘n+1)Tn+1wn)
Fd(ani1 f(wns1) © (1= @y )T g, g1 f(wn) @ (1= anga) T wy,)
Fd(ans1f(wn) © (1 = ang1)T" Wy, an fwn) @ (1 — o) T"wp)
(1- O‘n+1)d(Tn+1wn+1aTn+1wn) + app1d(f(wns1), f(wn))
+(1 - an+1)d(Tn+lwn7ann) + ant1 — anld(f(wn), T"wy)
(1 = ant)[(1 + uny1)d(wWny1, wn) + vngi] + angp1yvd(wns1, wn)
+(1 — any1)d (Tn+1menwn> + a1 — anld(f(wn), T"wy)
= [l—=app1(l =)+ (1 = ant1)unp1]d(wngr, wn)
+(1 = apy)d(T Hw,, T™w,,)
Flant1r — anld(f(wy), T"wy) + (1 — apt1)Vnt1- (3.17)

IN

IN

Without loss of generality, we may assume that 0 < A, < A1 Vn > 1. Now, from
Remark 3.2, we obtain

d(wn+la wn) = d(JAn+1$7l+17 J)\"l‘n)
S d(JAn+1xn+1a J)\nJrlxn) + d(J)\n+lxn’ J>\niEn)

IN

d(Tpa1,Tn) + < 1-—= )d(,],\nﬂxn,a:n). (3.18)

>\n+1
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Thus, from (3.17) and (3.18), we obtain

d(yn+1a yn) - d(anrlv -Tn) S [(1 - an+1)un+1 - anJrl(]- - ’7)]d(xn+17 xn)

An
)\n+1

) d(‘])\n+1xnv xn)

+ (1= 4 )d(T™ wp, TMwn) + |ang1 — anld(f(wn), T"w,)
+ (]- - anJrl)’UnJrlv

which implies that

+[1 = a1 (T =) + (1 = ang1)ungi] < 1-

lim Sup(d(ynJrla yn) - d(xn+17 xn)) S 0.

n—oo

Therefore, it follows from Lemma 2.7 that

lim d(yn,xn) = 0.

n— oo

Also, from (3.14), we obtain
lim d(yn, T"w,) < lm a,d(f(w,), T"w,) = 0.

n—oo n— o0

By repeating similar arguments in (3.4)-(3.8), we can easily show that
lim d(wp,z,) = lim d(Jx,zn,x,) =0,
n—oo n—o0

and
lim d(Jxxp,z,) = 0.

n—oQ

From (3.19) and (3.21), we obtain
lim d(wp,y,) = 0.

n—oo

Also, from (3.20) and (3.23), we have
A(Yn, T"yn) < d(Yn, T"wy) + Ld(wy, y,) — 0 as n — .
Furthermore, from (3.23) and (3.24), we obtain
d(@nt1,wn) < (1= B)[d(T"Yn, Yn) + d(Yn, wn)] — 0 as n — oco.
Since
d(w,, T"w,) < d(wp,Tnt1) + d(@p1, T wy,)
< d(wp,Tpt1) + Bud(wp, T™wy,)
(1 = Bn) Ld(yn, wn),
then, from (3.23) and (3.25), we obtain
d(wp, T"w,) = 1/(1 = Bp)d(zpt1,wn) + Ld(yn, n) — 0 as n — co.
Thus,

+

A2y, T"xy) < (14 L)d(2p, wy) + d(wy, T"w,) — 0 as n — oo.
Also, from (3.21) and (3.25), we obtain

lim d(xpi1,2,) =0.

n—oo

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Again, from (3.27) and (3.28), we get

d(Zn, Tns1) + d(Tnp1, T" M 20g1)

d(T”+19:n+1, T e,) + d(TT‘+1x,L7 Tx,)

(1+ L)d(nt1,2n) + d(Tny1, Tn+1xn+1)
Ld(T"xp,x,) — 0 as n — oo. (3.29)

d(xpn, Txy)

+ IN 4+ IA

Similarly, we obtain

1i_>m AYn, Tyn) < dYn,zn) +d(@n, Txn) + d(Txn, Tyn)
n oo

< (14 L)d(xp,yn)+ d(xn, Tx,) — 0asn— oco. (3.30)
For each m > 0, let z,, € X be the unique fixed point of the contraction mapping

such that 2, = Bmzm © (1 = B )T ™ Ym, where ypm = am f(2m) & (1 — o) T™ 2, (see
Theorem 3.1), we obtain

d(Zm, yn) = d(ﬂnzm S2) (1 - ﬂm)Tmymy ym)

< Bmd(zm, yn) + (1 = Bmn)d(T"" Y, yn)

< Brd(zm,yn) + (1= Bu) (AT Y, T yn) + d(T" Y, yn)]

< Bnd(zZm yn) + (1 = Bi)[(1 + un)d(Ym, yn) + vn + d(T"yn, yn ),
which implies

d(zm, Yn) < (1 + un)d(Yms Yn) + vn + AT Yn, Yn)- (3.31)
Now, let t,, := 2u,, + u2,, then from (3.31), Lemma 2.2(4) and lim z,, = p, we

m—0o0

obtain

& Ym,Yn) = GmUn, Ymn)
= (YT 2> Ymn) + (T Zm Y YY)
< I o) T 2 Gon) + (T 2antis Gl
= (7 G T 2, GnZen) + s (F o s Zal) + s (Y T 2 2o
AT 2 T s Gori) + (T s i)
< amd(f(2m), T 2m)d(Ym, 2m) + am (f(2 )Zm’m>+am<2mezm7zm—%>>
+ d(T" 2, T Y3 ) (Y yn) + d(T ymyn) (Y Yn)
< amd(f(2m)s T™ 2m)d(Yims 2m) + am (f ( )Zm,zmyn>+@m<ZmT Zims Zmn)
(2m, Yn) + Um]d(Ym, yn) + AT Yn, Yn)d(Y, Yn)
< amd(f(zm), T™ 2m)A(Yrms 2m) + 0 (f (2m) 2 Zmmn) + (2, T™ 2 ) A2 Y
+ (14 b)) A (Yo Yn) + 0m (2 4 i)Y yn) + (2 + ) AT Y, Y ) A (Yo Y-

+ (1 +um)d
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Therefore,

< d(f(zm)s T™2m)d(Yrms 2m) + d(Zms T 2 ) d(2im s Yn)
+ Wi/ (Yo Yn) + Um0 (2 + U ) A (Y Yn)
+ (2 + Um)/amd(Tmym yn)d(ym7 yn)

Thus, taking the upper limit as n — oo first, and then as m — oo, we obtain from
(3.19), (3.27) and (3.30) that

<f(zm)zm7yn—zm>>

— ;
lim sup lim sup{f(zm)zm; Ynzm) < 0. (3.32)

m—o0 n—oo

Furthermore
T o) = |
(

(p)f(zm , Wn, > Zm ZM7W>

I (Zm)zm, ynzm> f(zm Zms ﬁ 2777% m>

~

l

< d(f(p), f(zm))d(wn, p) + d(f (2m), 2m )d(wn, yn)
+ {f(zm)Zms Yazm) + d(f (), 20)d (20, D)
+  d(zm,p)d(wn, p)
< (1+7)d(zm, p)d(wn, p) + {f (2m) 2m, GnZm)
+ [d(wn, yn) + d(zm, P)IA(f (2m), 2m),
which implies from (3.23) and n}gnoozm = p that
limsup(]m, wpp) = limsup limsup(]m, W)
n—ro0 m—oo  n—00

< limsup limsup(f(zm)zm,m> <0.

m—roo n—oo

Finally, we show that x, — p as n — .
Since

n11_>rr010(1 — Qp)n/a, =0

and

HILH;O(I — ap)Un /o, =0,

then there exists ng € N such that
(1 —ap)un /o, < (1—7)/4

and
nlggo(l — ap)vp /o < (1—=7)/4
respectively for all n > ng. Thus, using Lemma 2.2, we obtain
dz(:zrn_H,p) = dQ(ﬁnwn © (1= Bn)T"Yn, p)
< Bud®(wp,p) + (1 - 5n)d2(T"yn,p)

e
ﬁnd2(wmp) +(1 5n)<T YnD> T" Yn)

RS
ﬁndQ(wnap) ( n)[(TnynpyT ynwn>
+ Ty, T"Ynwn) + (Y, D)), (3.33)
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and

b D) < (F(wa)p ) + (1 - an><T o WD)
< an(Fwa) F(0), ) + anF(p)p, )
+ (1 - O‘n)d(T Wn, p)d(wn p)
< and(f(wn), FP)d(wa,p) + o (FP)p, W)
+ (1= an)[(1 + up)d(wp, p) + vy]d(wy, p) -
< oy + (1= an) (1 + un)]d*d(wn, p) + an(f (p)p, wnD)
+ (1 — an)vad(wy,p). (3.34)

Since {wy,} and {T"y,} are bounded, there exists M > 0 such that
M = igg{d(T"ymp),d(wn,p)}-
Thus, we obtain from (3.33) and (3.34) that
P(eni1p) < [Bot (1= Ba)lany + (1= an)(1+wn)] | (wn, p)
+H1= )1~ anJundwn, )+ (1 = BTy, T g
+(1 = B) (T gy, m + an(1 = Ba) (F ()P, )
(1= an(t = B[ =7 = (1= an)un/an]|d(wn, p)
(1= Ba) (1~ an>vnd<wn,p> + (1= BTy, P)AT . )
(1= BTy, o), p) + (1 = o) (F (), )
1= an(l =Bt =7 = (1 = an)un/an] | (@n,p)
+an(l = Al =5 = (1= an)un /o]
L Op, Tab) + (1 = aw)vn /o]
(17— (1~ an)tn/an)
(1= B) M[A(T" g, wn) + ATy, )
1= an(1= B[ = = (1 = an)unfan] | d¥(zn,p)
(1= Ba)[L =7 — (1 = avn)un /e,
00, o) + (1= an)vnfa]
(17— (1— an)un/on)
+(1 = Bn) M [d(Yn, wn) 4+ 2d(T" Y, yn)],

IN

IN

IN

that is,
d*(zpi1,p) < (1= 6,)d* (20, D) + 60bp + O, (3.35)

where
O = an(l = Bp)[1 =7 = (1 — an)un/an],
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0. — [<mv m> + (]- - an)vn/an}
" [1 I (1 - an)un/an]

and

op = (1 = Bn) M[d(yn, wn) + 2d(T"Yn, yn)]-
Thus, applying Lemma 2.11 in (3.35), we obtain that d(z,,p) — 0 as n — co. Hence
{zn} converges strongly to p which solves the variational inequality (3.15). O

The following corollaries follows from Theorem 3.1 and Theorem 3.3 respectively.
Corollary 3.4. Let X be a Hadamard space and X* be its dual space. Let T : X —
X be uniformly asymptotically reqular and uniformly L-Lipschitzian asymptotically
nonezpansive mapping with sequence {u,} C [0,00) such that nh_{roloun =0.

Let A : X — 2X7 be a multivalued monotone mapping which satisfies the range
condition and f be a contraction mapping on X with coefficient v € (0,1). Suppose
that T := F(T) N A~1(0) # 0 and for arbitrary x1 = x € C, the sequence {x,}°2, is
generated by

{yn = J)xn(xn)v (3.36)

Tn = f(yn) ® (1 — an)T"yy n > 1,
where {an o2, C (0,1) satisfying

(oo}
. . u7l
lim o, = 0, g a, = o0 and lim — =0,
n—o00 1 n—00 (g,
—

assuming that L < (1 — a,y)/(1 —ap) and 0 < A < A, Vn > 1.
Then {x,}52, converges strongly to p € T' which solves the variational inequality

(pf(p), @) >0, qeT. (3.37)

Corollary 3.5. Let X be a Hadamard space and X* be its dual space.
Let T : X — X be uniformly asymptotically reqular and uniformly L-Lipschitzian
asymptotically nonexpansive mapping with sequence {u,} C [0,00) such that

lim u,, = 0.

n—oo
Let A : X — 2% be a multivalued monotone mapping which satisfies the range
condition and f be a contraction mapping on X with coefficient v € (0,1). Suppose
that T := F(T) N A~1(0) # 0 and for arbitrary x1 = x € C, the sequence {x,}°2, is
generated by

Wp = J)\n.’En,
Yn = anf(wy) @ (1 — ap)T"w,, (3.38)
Tn41 = ﬁnwn ® (1 - Bn)Tnyna n Z 1;

where 0 < A < A, Vn > 1 and {an}224,{Bn}22, C (0,1), satisfying

: = -
(a) nl;rr;oan =0, E_l oy, =00 and nl;n;oa—n =0,
(b) 0 < liminf 8, <limsup S, <1,
n—oo

n—oo
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(¢) lim |opy1 —an| =0,
n—oo

(d) L< (1 - an’}/)/(l - an)7

e) lim -2 =1.

Then, {x,}52, converges strongly to p € I' which solves the variational inequality

(pf(p), @) >0, qeT. (3.39)
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