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1. Introduction

Probabilistic metric spaces were initiated by Menger [19] in 1942 and fixed point
theory in these space was presented by Sehgal and Bharucha-Reid [25] in 1972. A
mapping L : X → X is called a probabilistic ψ-contraction if it satisfies

ΦLx,Ly(ψ(ξ)) ≥ Φx,y(ξ)

for all x, y ∈ X and ξ > 0, where ψ : R+ → R+ is a gauge function satisfying certain
conditions.

Fixed point results for probabilistic ψ-contractions in Menger probabilistic metric
space were investigated by many researchers (for example, see [2], [3], [13], [15], [18]
and [21]). However, some of these results are obtained under the assumption that

the function ψ is non-decreasing and

∞∑
n=1

ψn(ξ) < ∞ for any ξ > 0 (see [7], [9],

[10], [20], [27]). Ćirić pointed out that the condition “the gauge function ψ is non-

decreasing and

∞∑
n=1

ψn(ξ) <∞ for any ξ > 0 ” can be strong and difficult to check in
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practice. A natural question is whether the conditions can be improved. Jachymski
[14] established the following.
Theorem of Jachymski. Assume that

(i) (X,F ,Γ) is a complete Menger probabilistic metric space such that Γ is a con-
tinuous t-norm of H-type;

(ii) ψ: R+ → R+ is a gauge function satisfying ψ(ξ) < ξ, ψ−1({0}) = {0} and
lim
n→∞

ψn(ξ) = 0 for all ξ > 0;

(iii) L : X → X is a mapping with the property that:

ΦLx,Ly(ψ(ξ)) ≥ Φx,y(ξ)

for all x, y ∈ X.
Then there is a unique u ∈ X such that u = Lu.
In [27], using the properties of the pseudo-metric and the triangular norm, Xiao,

Zhu and Cao gave the following common coupled fixed point theorem for probabilistic
ψ-contractions in Menger probabilistic metric space.
Theorem of XZC. Assume that

(i) (X,F ,Γ) is a complete Menger probabilistic metric space, where Γ is a Hadžić
type t-norm;

(ii) ψ: R+ → R+ is a gauge function satisfying ψ(ξ) > ξ, ψ−1({0}) = {0} and
lim
n→∞

ψn(ξ) = +∞ for all ξ > 0;

(iii) L : X ×X → X and g : X → X are two mappings with the property that

ΦL(x,y),L(p,q)(ψ(ξ)) ≥ min{ΦAx,Ap(ξ),ΦAy,Aq(ξ)}

for all x, y, p, q ∈ X, where L(X ×X) ⊂ A(X);
(iv) A is continuous and commutative with L.
Then there is a unique u ∈ X such that u = Au = L(u, u).
In 2014, Luo, Zhu and Wu [17] gave a generalization of the above theorem.

Theorem of LZW. Assume that
(i) (X,F ,Γ) is a complete generalized Menger probabilistic metric space, where Γ

is a Hadžić type t-norm;
(ii) ψ: R+ → R+ is a gauge function satisfying ψ(ξ) > ξ, ψ−1({0}) = {0} and

lim
n→∞

ψn(ξ) = +∞ for all ξ > 0;

(iii) L : X×X×X → X and g : X → X are two mappings with the property that:

ΦL(x,y,z),L(p,q,r)(ψ(ξ)) ≥ min{ΦAx,Ap(ξ),ΦAy,Aq(ξ),ΦAz,Ar(ξ)}

for all x, y, z, p, q, r ∈ X, where L(X ×X ×X) ⊂ A(X);
(iv) A is continuous and commutative with L.
Then there is a unique u ∈ X such that u = Au = L(u, u, u).

Remark 1.1 There are many gauge functions ψ that do not satisfy the conditions
in the above theorems. For example, if the gauge function ψ : [0,+∞) → [0,+∞) is
defined by

ψ(ξ) =

{
5
2 , ξ = 1,
t
3 , ξ ∈ [0, 1) ∪ (1,+∞),
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then lim
n→+∞

ψn(ξ) = 0 for any ξ > 0. However, for ξ = 1, ψ(ξ) = 5
2 > 1 contrary to

ψ(ξ) < ξ.
If the gauge function ψ : [0,+∞)→ [0,+∞) is defined by

ψ(ξ) =

{
1
3 , ξ = 1,

2ξ, ξ ∈ [0, 1) ∪ (1,+∞),

then lim
n→+∞

ψn(ξ) = +∞ for any ξ > 0.

However, for ξ = 1, ψ(ξ) = 1
3 < 1 = ξ contrary to ψ(ξ) > ξ.

A natural question is whether the conditions “ lim
n→∞

ψn(ξ) = 0 and ψ(ξ) < ξ for

any ξ > 0” and “ψ(ξ) > ξ and lim
n→∞

ψn(ξ) = +∞ for any ξ > 0” can be weakened?

We give an affirmative answer to this question.
In Section 2, we recall some concepts and results in Menger probabilistic metric

spaces. In Section 3, by using methods similar to that in [26] we prove some fixed point
and common fixed point (common coupled fixed point, common tripled fixed point)
theorems for nonlinear mappings with a gauge function ψ in Menger probabilistic
metric spaces. Our results improve and generalize the corresponding ones from [14,
17, 27]. Moreover, we use an example to illustrate the theory.

2. Preliminaries

Suppose that R denotes the real, R+ = [0,+∞), and Z+ is the set of all positive
integers. A function Φ : R → [0, 1] is called a distribution function if it is left-
continuous and nondecreasing with Φ(−∞) = 0,Φ(+∞) = 1. Let D∞ be the set of
all distribution functions. Write D = {Φ ∈ D∞ : inft∈R Φ(t) = 0, supt∈R Φ(t) = 1},
D+
∞ = {Φ ∈ D∞ : Φ(0) = 0}, and D+ = D ∩D+

∞.
Definition 2.1. ([23]) If a mapping Γ : [0, 1] × [0, 1] → [0, 1] satisfies the following
conditions:
(Γ-1) Γ(ξ, 1) = ξ;
(Γ-2) Γ(ξ, η) = Γ(η, ξ);
(Γ-3) Γ(ξ, η) ≥ Γ(µ, ν), for ξ ≥ µ, η ≥ ν;
(Γ-4) Γ(Γ(ξ, η), µ) = Γ(ξ,Γ(η, µ)), then Γ is called a triangular norm (for short, a
t-norm), where ξ, η, µ, ν ∈ [0, 1].

By the definition of Γ, it is easy to see that min{ξ, η} ≥ Γ(ξ, η) for all ξ, η ∈ [0, 1].
Two typical examples of continuous t-norm are ΓM (ξ, η) = min{ξ, η} and

Γp(ξ, η) = ξη for all ξ, η ∈ [0, 1].
Definition 2.2. ([12]) A t-norm Γ is called a Hadžić type t-norm if the family
{Γn(ξ)}+∞n=1 of its iterates defined for each ξ ∈ [0, 1] by

Γ1(ξ) = Γ(ξ, ξ),Γ2(ξ) = Γ(ξ,Γ1(ξ)), · · · ,Γn(ξ) = Γ(ξ,Γn−1(ξ)), · · · .

is equi-continuous at ξ = 1. Obviously, Γn(ξ) ≤ ξ for any n ∈ Z+ and ξ ∈ [0, 1], and
ΓM is a Hadžić type t-norm [11].
Definition 2.3. A function ψ : R+ → R+ is said to be a gauge function (a G-
function) if ψ(0) = 0.

In the paper, we assume that ψn(ξ) denotes the nth iteration of ψ(ξ), where ξ ∈ R+.
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Definition 2.4. ([19]) A Menger probabilistic metric space (shortly, Menger PM-
space) is a triple (X,F ,Γ), whereX is a nonempty set, F is a mapping ofX×X → D+

∞
and Γ is a t-norm which satisfies the following conditions (we denote the distribution
function F(x, y) by Φx,y):

(PM-1) Φx,y(ξ) = 1 for all ξ > 0 if and only if x = y;
(PM-2) Φx,y(ξ) = Φy,x(ξ), ∀x, y ∈ X, ξ > 0;
(PM-3) Φx,z(ξ1 + ξ2) ≥ Γ(Φx,y(ξ1),Φy,z(ξ2)), ∀x, y, z ∈ X, ξ1 > 0, ξ2 > 0.

Remark 2.5. Schweizer et al. [23] have pointed out that if the t-norm Γ of a Menger
probabilistic metric space satisfies the condition sup0<a<1 Γ(a, a) = 1, then (X,F ,Γ)
is a first countable Hausdorff topological space in the (ε, λ)-topology τ , that is, the
family

{Up(ε, λ) : ε > 0, λ ∈ (0, 1], p ∈ X}
is a base of neighborhoods of point p for τ , where

Up(ε, λ) = {x ∈ X : Φp,x(ε) > 1− λ}.

Definition 2.6. ([23]) Assume that (X,F ,Γ) is a Menger probabilistic metric space.
(a) A sequence {xn} ⊂ X is convergent to x (we write xn → x or lim

n→∞
xn = x) if

lim
n→∞

Φxn,x(ξ) = 1 for all ξ > 0.

(b) A sequence {xn} ⊂ X is a Cauchy sequence if for any given ε > 0 and λ ∈ (0, 1],
there is N = N(ε, λ) ∈ Z+ such that Φxn,xm

(ε) > 1− λ whenever n,m ≥ N .
(c) A Menger probabilistic metric space (X,F ,Γ) is complete if every Cauchy

sequence in X converges to an element in X.
In this paper, we shall always suppose that (X,F ,Γ) is a Menger space with the

(ε, λ)-topology.
Definition 2.7. ([4]) An element (x, y) ∈ X ×X is said to be a coupled coincidence
point of the mappings L : X ×X → X and A : X → X if

L(x, y) = Ax, L(y, x) = Ay.

Definition 2.8. ([24]) A mapping A : X → X is said to be commutative with a
mapping L : X ×X → X if AL(x, y) = L(Ax,Ay) for all x, y ∈ X.
Definition 2.9. ([1]) The mappings L : X × X → X and A : X → X are called
weakly compatible (or w-compatible) if L(x, y) = Ax and L(y, x) = Ay, then

AL(x, y) = L(Ax,Ay)

and

AL(y, x) = L(Ay,Ax)

for all x, y ∈ X.
Definition 2.10. ([16]) An element x ∈ X is said to be a common fixed point of the
mappings L : X ×X → X and A : X → X if

L(x, x) = Ax = x.

Definition 2.11. ([5]) An element (x, y, z) ∈ X ×X ×X is said to be a tripled fixed
point of L : X ×X ×X → X if L(x, y, z) = x,L(y, x, y) = y, and L(z, y, x) = z.
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Definition 2.12. ([6]) An element (x, y, z) ∈ X × X × X is said to be a tripled
coincidence point of the mappings L : X ×X ×X → X and A : X → X if

L(x, y, z) = Ax, L(y, x, y) = Ay, L(z, y, x) = Az.

Moreover, (x, y, z) is said to be a tripled common fixed point of L and A if L(x, y, z) =
Ax = x,L(y, x, y) = Ay = y, and L(z, y, x) = Az = z.
Definition 2.13. ([22]) A mapping A : X → X is said to be commutative with a
mapping L : X ×X ×X → X if AL(x, y, z) = L(Ax,Ay,Az) for all x, y, z ∈ X.
Definition 2.14. ([22]) The mappings L : X × X × X → X and A : X → X
are called w-compatible if AL(x, y, z) = L(Ax,Ay,Az) whenever Ax = L(x, y, z),
Ay = L(y, x, y), and Az = L(z, y, x).
Lemma 2.15. ([14]) Let Φ ∈ D+, and let Φn : R → [0, 1] be nondecreasing for each
n ∈ Z+. Suppose gn : (0,+∞)→ (0,+∞) satisfies lim

n→∞
gn(ξ) = 0 for any ξ > 0. If

Φn(gn(ξ)) ≥ Φ(ξ)

for any ξ > 0, then lim
n→∞

Φn(ξ) = 1 for any ξ > 0.

3. Common fixed point results for nonlinear contractive mappings
in Menger probabilistic metric spaces

Theorem 3.1. Assume that
(i) (X,F ,Γ) is a Menger PM-space, where Γ is a Hadžić type t-norm;
(ii) ψ : R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and lim

n→∞
ψn(ξ) = +∞

for any ξ > 0;
(iii) The mappings L : X ×X → X and A : X → X satisfy the property:

ΦL(x,y),L(p,q)(ξ) ≥ min{ΦAx,Ap(ψ(ξ)),ΦAy,Aq(ψ(ξ))} (3.1)

∀x, y, p, q ∈ X, where L(X ×X) ⊆ A(X);
(iv) L(X ×X) is complete;
(v) A and L are ω-compatible.
Then there is a unique u ∈ X such that u = Au = L(u, u).

Proof. Assume that x0, y0 are two arbitrary points of X. Since L(X ×X) ⊂ A(X),
we can choose x1, y1 ∈ X such that Ax1 = L(x0, y0) and Ay1 = L(y0, x0). Again
from L(X × X) ⊂ A(X), we can choose x2, y2 ∈ X such that Ax2 = L(x1, y1) and
Ay2 = L(y1, x1). Continue this process and we can construct sequences {xn} and
{yn} in X such that

Axn+1 = L(xn, yn)

and

Ayn+1 = L(yn, xn)

for all n ∈ N.
Using condition (3.1) we get (for ξ > 0)

ΦAxn,Axn+1
(ξ) = ΦL(xn−1,yn−1),L(xn,yn)(ξ)

≥ min{ΦAxn−1,Axn(ψ(ξ)),ΦAyn−1,Ayn(ψ(ξ))}
(3.2)
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and
ΦAyn,Ayn+1

(ξ) = ΦL(yn−1,xn−1),L(yn,xn)(ξ)

≥ min{ΦAyn−1,Ayn(ψ(ξ)),ΦAxn−1,Axn(ψ(ξ))}.
(3.3)

Let Dn(ξ) = min{ΦAxn−1,Axn
(ξ),ΦAyn−1,Ayn(ξ)}. Using inequalities (3.2) and (3.3),

we find that Dn+1(ξ) ≥ Dn(ψ(ξ)). This implies that

Dn+1(ξ) ≥ Dn(ψ(ξ)) ≥ Dn−1(ψ2(ξ)) ≥ · · · ≥ D1(ψn(ξ)). (3.4)

Since
lim

ξ→+∞
D1(ξ) = lim

ξ→+∞
min{ΦAx0,Ax1

(ξ),ΦAy0,Ay1(ξ)} = 1

and
lim

n→+∞
ψn(ξ) = +∞

for each ξ > 0, we have lim
n→+∞

D1(ψn(ξ)) = 1.

Also using (3.2)-(3.4), we get

ΦAxn,Axn+1
(ξ) ≥ Dn+1(ξ) ≥ Dn(ψ(ξ)) ≥ . . . ≥ D1(ψn(ξ))

and
ΦAyn,Ayn+1(ξ) ≥ Dn+1(ξ) ≥ Dn(ψ(ξ)) ≥ . . . ≥ D1(ψn(ξ)).

Hence, we have
lim

n→+∞
ΦAxn,Axn+1(ξ) = 1

and
lim

n→+∞
ΦAyn,Ayn+1(ξ) = 1.

These imply that
lim

n→+∞
Dn(ξ) = 1 for all ξ > 0. (3.5)

Since lim
n→+∞

ψn(ξ) = +∞, for any fixed ξ > 0, there is a n0 = n0(ξ) ∈ N such that

ψn0+1(ξ) > ψn0(ξ) > ξ.

Similarly, since lim
n→+∞

ψn(ψn0+1(ξ)− ψn0(ξ)) = +∞, there exists a m0 = m0(ξ) ∈ N
such that

ψm0(ψn0+1(ξ)− ψn0(ξ)) > ψn0+1(ξ)− ψn0(ξ).

From (3.4), we get

ΦAxn+m0
,Axn+m0+1

(ψn0+1(ξ)− ψn0(ξ)) ≥ Dn+m0
(ψ(ψn0+1(ξ)− ψn0(ξ)))

≥ . . . ≥ Dn(ψm0(ψn0+1(ξ)− ψn0(ξ))) ≥ Dn(ψn0+1(ξ)− ψn0(ξ)). (3.6)

Similarly, we find that

ΦAyn+m0
,Ayn+m0+1

(ψn0+1(ξ)− ψn0(ξ)) ≥ Dn(ψn0+1(ξ)− ψn0(ξ)). (3.7)

Next we prove that for any k ∈ Z+ ∪ {0},
ΦAxn+m0 ,Axn+m0+k

(ψn0+1(ξ)) ≥ Γk(Dn(ψn0+1(ξ)− ψn0(ξ))) (3.8)

and
ΦAyn+m0

,Ayn+m0+k
(ψn0+1(ξ)) ≥ Γk(Dn(ψn0+1(ξ)− ψn0(ξ))). (3.9)



ON ψ-CONTRACTIONS AND COMMON FIXED POINT RESULTS 325

We use mathematical induction. It is obvious that (3.8) and (3.9) hold for k = 0 since

ΦAxn+m0
,Axn+m0+k

(ψn0+1(ξ)) = ΦAyn+m0
,Ayn+m0+k

(ψn0+1(ξ)) = 1.

Now, assume that inequalities (3.8) and (3.9) are valid for some fixed k ∈ Z+ ∪ {0}.
From (PM-3), (3.1), (3.8), (3.9), (3.6), (3.7) and the monotonicity of Γ, we have

ΦAxn+m0 ,Axn+m0+k+1
(ψn0+1(ξ))

= ΦAxn+m0
,Axn+m0+k+1

(ψn0+1(ξ)− ψn0(ξ) + ψn0(ξ))

≥ Γ(ΦAxn+m0
,Axn+m0+1(ψn0+1(ξ)− ψn0(ξ)),ΦAxn+m0+1,Axn+m0+k+1

(ψn0(ξ)))

= Γ(ΦAxn+m0
,Axn+m0+1(ψn0+1(ξ)− ψn0(ξ)),

ΦL(xn+m0 ,yn+m0 ),L(xn+m0+k,yn+m0+k)(ψ
n0(ξ)))

≥ Γ(ΦAxn+m0
,Axn+m0+1

(ψn0+1(ξ)− ψn0(ξ)),

min{ΦAxn+m0
,Axn+m0+k

(ψn0+1(ξ)),ΦAyn+m0
,Ayn+m0+k

(ψn0+1(ξ))})
≥ Γ(ΦAxn+m0 ,Axn+m0+1

(ψn0+1(ξ)− ψn0(ξ)),Γk(Dn(ψn0+1(ξ)− ψn0(ξ))))

≥ Γ(min{ΦAxn+m0
,Axn+m0+1

(ψn0+1(ξ)− ψn0(ξ)),

ΦAyn+m0
,Ayn+m0+1(ψn0+1(ξ)− ψn0(ξ))},Γk(Dn(ψn0+1(ξ)− ψn0(ξ))))

= Γ(Dn(ψn0+1(ξ)− ψn0(ξ)),Γk(Dn(ψn0+1(ξ)− ψn0(ξ))))

= Γk+1(Dn(ψn0+1(ξ)− ψn0(ξ))).

Similarly we obtain

ΦAyn+m0
,Ayn+m0+k+1

(ψn0+1(ξ)) ≥ Γk+1(Dn(ψn0+1(ξ)− ψn0(ξ))).

Thus by mathematical induction, we find that (3.8) and (3.9) hold for all k ∈ Z+∪{0}.
Assume that ξ > 0 and ε > 0 is given. By hypothesis, {Γn : n ∈ N} is equi-continuous
at 1 and Γn(1) = 1, so there is a δ > 0 such that, for any µ ∈ (1− δ, 1],

Γn(µ) > 1− ε (3.10)

for all n ∈ N. By (3.5), we have lim
n→+∞

Dn(ψn0+1(ξ) − ψn0(ξ)) = 1. Then there is a

N0 ∈ N such that Dn(ψn0+1(ξ)−ψn0(ξ)) ∈ (1− δ, 1] for all n > N0. Hence, by (3.8),
(3.9) and (3.10) we have

ΦAxn+m0 ,Axn+m0+k
(ψn0+1(ξ)) > 1− ε

and

ΦAyn+m0
,Ayn+m0+k

(ψn0+1(ξ)) > 1− ε.
Thus, for any k ∈ N ∪ {0} and all n > N0 we have

min{ΦAxn+m0
,Axn+m0+k

(ψn0+1(ξ)),ΦAyn+m0
,Ayn+m0+k

(ψn0+1(ξ))} > 1− ε.

Noting (3.2), (3.3) and (3.4), we get

ΦAxn+m0+n0+1,Axn+m0+n0+1+k
(ξ)

≥ min{ΦAxn+m0 ,Axn+m0+k
(ψn0+1(ξ)),ΦAyn+m0 ,Ayn+m0+k

(ψn0+1(ξ))

> 1− ε
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and

ΦAyn+m0+n0+1,Ayn+m0+n0+1+k
(ξ)

≥ min{ΦAxn+m0
,Axn+m0+k

(ψn0+1(ξ)),ΦAyn+m0
,Ayn+m0+k

(ψn0+1(ξ))

> 1− ε.

These imply that for all k ∈ N,

ΦAxm,Axm+k
(ξ) > 1− ε

and

ΦAym,Aym+k
(ξ) > 1− ε,

where m > N0 + n0 + m0 + 1. Thus {Axn} and {Ayn}, that is, {L(xn, yn)} and
{L(yn, xn)} are Cauchy sequences. Since L(X×X) is complete and L(X×X) ⊆ A(X),
there exists (x̂, ŷ) ∈ X ×X such that

lim
n→+∞

L(xn, yn) = Ax̂

and

lim
n→+∞

L(yn, xn) = Aŷ.

Next we shall prove that Ax̂ = L(x̂, ŷ) and Aŷ = L(ŷ, x̂). Using condition (3.1), we
obtain that

ΦL(x̂,ŷ),L(xn,yn)(ξ) ≥ min{ΦAx̂,Axn
(ψ(ξ)),ΦAŷ,Ayn(ψ(ξ))} (3.11)

for any ξ > 0.
Taking the limit as n→ +∞ in (3.11), since lim

n→+∞
Axn = Ax̂ and lim

n→+∞
Ayn = Aŷ,

we get

lim
n→+∞

L(xn, yn) = L(x̂, ŷ),

from which it follows that

L(x̂, ŷ) = Ax̂.

Similarly, we have

L(ŷ, x̂) = Aŷ.

Let u = Ax̂ and v = Aŷ. Since A and L are w-compatible, we obtain

Au = A(Ax̂) = A(L(x̂, ŷ)) = L(Ax̂,Aŷ) = L(u, v) (3.12)

and

Av = A(Aŷ) = A(L(ŷ, x̂)) = L(Aŷ,Ax̂) = L(v, u). (3.13)

These imply that the mappings A and L have a coupled coincidence point (u, v).
The next step is to show that Au = Ax̂ and Av = Aŷ. Using condition (3.1), we have

ΦAu,Axn
(ξ) = ΦL(u,v),L(xn−1,yn−1)(ξ)

≥ min{ΦAu,Axn−1(ψ(ξ)),ΦAv,Ayn−1(ψ(ξ))}
(3.14)

and
ΦAv,Ayn(ξ) = ΦL(v,u),L(yn−1,xn−1)(ξ)

≥ min{ΦAv,Ayn−1
(ψ(ξ)),ΦAu,Axn−1

(ψ(ξ))}.
(3.15)
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Let us define En(ξ) := min{ΦAu,Axn
(ξ),ΦAv,Ayn(ξ)}. Then, from (3.14) and (3.15)

we obtain that En(ξ) ≥ En−1(ψ(ξ)). This implies that

En(ξ) ≥ En−1(ψ(ξ)) ≥ · · · ≥ E0(ψn(ξ)).

Since lim
n→+∞

ψn(ξ) = +∞, we have

E0(ψn(ξ)) = min{ΦAv,Ax0
(ψn(ξ)),ΦAu,Ay0(ψn(ξ))} → 1

as n→ +∞. This shows that En(ξ)→ 1 as n→ +∞, and so we have Au = Ax̂ and
Av = Aŷ. Therefore, we obtain that Au = u and Av = v. From (3.12) and (3.13) we
have u = Au = L(u, v) and v = Av = L(v, u).

Now, we show that u = v. In fact, using condition (3.1) we get, for any ξ > 0,

Φu,v(ξ) = ΦL(u,v),L(v,u)(ξ) ≥ min{ΦAu,Av(ψ(ξ)),ΦAv,Au(ψ(ξ))} = Φu,v(ψ(ξ)).

By induction we obtain that Φu,v(ξ) ≥ Φu,v(ψ
n(ξ)). Passing to the limit when n →

+∞ and since ψn(ξ)→ +∞ as n→ +∞, we have Φu,v(ξ) = 1 for any ξ > 0, that is,
u = v. Hence, u is a common fixed point of A and L.

Finally, we show that u is a unique common fixed point of A and L. Let û ∈ X be
another common fixed point of A and L. Using condition (3.1) we have

Φu,û(ξ) = ΦL(u,u),L(û,û)(ξ) ≥ min{ΦAu,Aû(ψ(ξ)),ΦAu,Aû(ψ(ξ))} = Φu,û(ψ(ξ)),

and then we have
Φu,û(ξ) ≥ Φu,û(ψn(ξ)).

Applying Lemma 2.15 it follows that u = û, i.e. the mappings A and L have a unique
common fixed point. The proof of Theorem 3.1 is complete. �

With A = I (I is the identity mapping) in Theorem 3.1, we obtain the following
corollary.

Corollary 3.2. Let (X,F ,Γ) be a Menger PM-space such that Γ is a Hadžić type
t-norm. Suppose ψ : R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and

lim
n→+∞

ψn(ξ) = +∞ for any ξ > 0. If L : X ×X → X is a mapping with

ΦL(x,y),L(p,q)(ξ) ≥ min{Φx,p(ψ(ξ)),Φy,q(ψ(ξ))},
∀x, y, p, q ∈ X, ξ > 0, and if L(X × X) is complete, then there is a unique u ∈ X
such that u = L(u, u).

Theorem 3.3. Assume that
(i) (X,F ,Γ) is a Menger PM-space, where Γ is a Hadžić type t-norm;
(ii) ψ: R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and lim

n→+∞
ψn(ξ) = 0

for any ξ > 0;
(iii) The mappings L: X ×X → X and A : X → X satisfy the property:

ΦL(x,y),L(p,q)(ψ(ξ)) ≥ min{ΦAx,Ap(ξ),ΦAy,Aq(ξ)}, (3.16)

∀x, y, p, q ∈ X, where L(X ×X) ⊆ A(X);
(iv) L(X ×X) is complete;
(v) A and L are ω-compatible.
Then there is a unique u ∈ X such that u = Au = L(u, u).
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Proof. As in the proof of Theorem 3.1, we can construct two sequences {xn}∞n=1 and
{yn}∞n=1 in X such that Axn+1 = L(xn, yn) and Ayn+1 = L(yn, xn). Using condition
(3.16), we get

ΦAxn,Axn+1(ψ(ξ)) = ΦL(xn−1,yn−1),L(xn,yn)(ψ(ξ))
≥ min{ΦAxn−1,Axn(ξ),ΦAyn−1,Ayn(ξ)} (3.17)

and
ΦAyn,Ayn+1

(ψ(ξ)) = ΦL(yn−1,xn−1),L(yn,xn)(ψ(ξ))
≥ min{ΦAyn−1,Ayn(ξ),ΦAxn−1,Axn

(ξ)} (3.18)

for any ξ > 0.
To simplify let Pn(ξ) = min{ΦAxn,Axn+1(ξ),ΦAyn,Ayn+1(ξ)}. It follows from (3.17)

and (3.18) that Pn+1(ψ(ξ)) ≥ Pn(ξ). Thus

Pn(ψn(ξ)) ≥ Pn−1(ψn−1(ξ)) ≥ · · · ≥ P0(ξ)

for n ≥ 1. Since P0(ξ) = min{ΦAx0,Ax1
(ξ),ΦAy0,Ay1(ξ)} ∈ D+ and lim

n→+∞
ψn(ξ) = 0

for any ξ > 0, by Lemma 2.15 we get

lim
n→+∞

Pn(ξ) = 1.

Noting that ΦAxn,Axn+1
(ξ) ≥ Pn(ξ), we get for any ξ > 0 that

lim
n→+∞

ΦAxn,Axn+1(ξ) = 1. (3.19)

Similarly, we have

lim
n→+∞

ΦAyn,Ayn+1
(ξ) = 1. (3.20)

Since lim
n→+∞

ψn(ξ) = 0, for any fixed ξ > 0, there is a n0 = n0(ξ) ∈ N such that

ψn0+1(ξ) < ψn0(ξ) < ξ. Next, by mathematical induction we prove that for any
k ∈ N ∪ {0},

ΦAxn,Axn+k
(ψn0(ξ)) ≥ Γk(Pn(ψn0(ξ)− ψn0+1(ξ))) (3.21)

and

ΦAyn,Ayn+k
(ψn0(ξ)) ≥ Γk(Pn(ψn0(ξ)− ψn0+1(ξ))). (3.22)

It is obvious that (3.21) and (3.22) hold for k = 0 since

ΦAxn,Axn+k
(ψn0(ξ)) = ΦAyn,Ayn+k

(ψn0(ξ)) = 1.

Now assume that inequalities (3.21) and (3.22) are valid for some fixed k ∈ N ∪ {0}.
Noting that ψn0(ξ)− ψn0+1(ξ) > 0, by (PM-3) and the monotonicity of Γ we get

ΦAxn,Axn+k+1
(ψn0(ξ))

= ΦAxn,Axn+k+1
(ψn0(ξ)− ψn0+1(ξ) + ψn0+1(ξ))

≥ Γ(ΦAxn,Axn+1
(ψn0(ξ)− ψn0+1(ξ)),ΦAxn+1,Axn+k+1

(ψn0+1(ξ)))

≥ Γ(min{ΦAxn,Axn+1(ψn0(ξ)− ψn0+1(ξ)),

ΦAyn,Ayn+1
(ψn0(ξ)− ψn0+1(ξ))},ΦAxn+1,Axn+k+1

(ψn0+1(ξ)))

= Γ(Pn(ψn0(ξ)− ψn0+1(ξ)),ΦAxn+1,Axn+k+1
(ψn0+1(ξ))). (3.23)
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Using inequalities (3.16), (3.21) and (3.22), we get

ΦAxn+1,Axn+k+1
(ψn0+1(ξ)) = ΦL(xn,yn),L(xn+k,yn+k)(ψ

n0+1(ξ))

≥ min{ΦAxn,Axn+k
(ψn0(ξ)),ΦAyn,Ayn+k

(ψn0(ξ))}
≥ Γk(Pn(ψn0(ξ)− ψn0+1(ξ))). (3.24)

Therefore, combining (3.23) and (3.24), and using the monotonicity of Γ, we obtain
that

ΦAxn,Axn+k+1
(ψn0(ξ)) ≥ Γ(Pn(ψn0(ξ)− ψn0+1(ξ)),Γk(Pn(ψn0(ξ)− ψn0+1(ξ))))

= Γk+1(Pn(ψn0(ξ)− ψn0+1(ξ))).

Similarly, we have ΦAyn,Ayn+k+1
(ψn0(ξ)) ≥ Γk+1(Pn(ψn0(ξ)− ψn0+1(ξ))).

Thus if (3.21) and (3.22) hold for some fixed k ∈ N ∪ {0}, then (3.21) and (3.22)
hold for k + 1. Then by mathematical induction we conclude that (3.21) and (3.22)
hold for all k ∈ N ∪ {0}.

Now we prove that {Axn} and {Ayn}, that is, {L(xn, yn)} and {L(yn, xn)} are
Cauchy sequences. Suppose that ξ > 0 and ε > 0 is given. Since lim

n→+∞
ψn(ξ) = 0,

there is a n1 = n1(ξ) ∈ N such that ψn1+1(ξ) < ψn1(ξ) < ξ.
By hypothesis, {Γn : n ∈ N} is equi-continuous at 1 and Γ(1) = 1, so there exists a
δ > 0 such that, for any µ ∈ (1− δ, 1],

Γn(µ) > 1− ε (3.25)

for all n ∈ N. It follows from (3.19) and (3.20) that

lim
n→+∞

ΦAxn,Axn+1(ψn1(ξ)− ψn1+1(ξ)) = lim
n→+∞

ΦAyn,Ayn+1(ψn1(ξ)− ψn1+1(ξ)) = 1.

Then, there is a N ∈ N such that

ΦAxn,Axn+1
(ψn1(ξ)− ψn1+1(ξ)) > 1− δ

and
ΦAyn,Ayn+1(ψn1(ξ)− ψn1+1(ξ)) > 1− δ

for all n > N .
Hence, from (3.21) and (3.22) (replacing n0 with n1) and (3.25), we have

ΦAxn,Axn+k
(ψn1(ξ)) > 1− ε

and
ΦAyn,Ayn+k

(ψn1(ξ)) > 1− ε
for any k ∈ N ∪ {0}.
Noting that ξ > ψn1(ξ), and using the monotonicity of Φ, we have for any k ∈ N∪{0},

ΦAxn,Axn+k
(ξ) ≥ ΦAxn,Axn+k

(ψn1(ξ)) > 1− ε
and

ΦAyn,Ayn+k
(ξ) ≥ ΦAyn,Ayn+k

(ψn1(ξ)) > 1− ε.
Thus {Axn} and {Ayn}, that is, {L(xn, yn)} and {L(yn, xn)} are Cauchy sequences.
Since L(X ×X) is complete and L(X ×X) ⊆ A(X), there are x̂, ŷ ∈ X such that

lim
n→+∞

L(xn, yn) = Ax̂
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and

lim
n→+∞

L(yn, xn) = Aŷ.

Next we show that Ax̂ = L(x̂, ŷ) and Aŷ = L(ŷ, x̂).
Suppose that ξ > 0. Since lim

n→+∞
ψn(ξ) = 0, there exists a n1 = n1(ξ) ∈ N such that

ψn1+1(ξ) < ψn1(ξ) < ξ. Using condition (3.16) and (PM-3), we have

ΦL(x̂,ŷ),Ax̂(ξ) ≥ ΦL(x̂,ŷ),Ax̂(ψn1(ξ))

≥ Γ(ΦL(x̂,ŷ),L(xn+n1
,yn+n1

)(ψ
n1+1(ξ)),ΦL(xn+n1

,yn+n1
),Ax̂(ψn1(ξ)− ψn1+1(ξ)))

≥ Γ(min{ΦAx̂,Axn+n1
(ψn1(ξ)),ΦAŷ,Ayn+n1

(ψn1(ξ))},
ΦL(xn+n1

,yn+n1
),Ax̂(ψn1(ξ)− ψn1+1(ξ))).

(3.26)
Since lim

n→+∞
Axn = Ax̂, lim

n→+∞
Ayn = Aŷ and lim

n→+∞
L(xn+n1

, yn+n1
) = Ax̂, taking

the limit as n→ +∞ in (3.26), we obtain

ΦL(x̂,ŷ),Ax̂(ξ) ≥ Γ(1, 1) = 1.

Hence L(x̂, ŷ) = Ax̂. Similarly, we have L(ŷ, x̂) = Aŷ.
Now we show that if (x∗, y∗) ∈ X ×X is another coupled coincidence point of A

and L, then Ax̂ = Ax∗ and Aŷ = Ay∗.
Since lim

n→+∞
ψn(ξ) = 0, there is a n2 = n2(ξ) ∈ N such that ψn2(ψ(ξ)) < ψ(ξ).

Using condition (3.16) we have

ΦAx̂,Ax∗(ψn2+1(ξ)) = ΦL(x̂,ŷ),Φ(x∗,y∗)(ψ
n2+1(ξ))

≥ min{ΦAx̂,Ax∗(ψn2(ξ)),ΦAŷ,Ay∗(ψn2(ξ))}
(3.27)

and

ΦAŷ,Ay∗(ψn2+1(ξ)) = ΦL(ŷ,x̂),L(y∗,x∗)(ψ
n2+1(ξ))

≥ min{ΦAŷ,Ay∗(ψn2(ξ)),ΦAx̂,Ax∗(ψn2(ξ))}.
(3.28)

It follows from (3.27) and (3.28) that

min{ΦAx̂,Ax∗(ψ(ψn2(ξ))),ΦAŷ,Ay∗(ψ(ψn2(ξ)))}
= min{ΦAx̂,Ax∗(ψn2+1(ξ)),ΦAŷ,Ay∗(ψn2+1(ξ))}
≥ min{ΦAx̂,Ax∗(ψn2(ξ)),ΦAŷ,Ay∗(ψn2(ξ))}.

By induction we get

min{ΦAx̂,Ax∗(ψn(ψn2(ξ))),ΦAŷ,Ay∗(ψn(ψn2(ξ)))}
≥ min{ΦAx̂,Ax∗(ψn2(ξ)),ΦAŷ,Ay∗(ψn2(ξ))}.

(3.29)

Applying Lemma 2.15 and from (3.29) we have Ax̂ = Ax∗ and Aŷ = Ay∗. These
show that A and L have a unique coupled coincidence point.

Now we prove that Ax̂ = Aŷ. In fact, using condition (3.16) we get

ΦAx̂,Ayn(ψ(ξ)) = ΦL(x̂,ŷ),L(yn−1,xn−1)(ψ(ξ))

≥ min{ΦAx̂,Ayn−1
(ξ),ΦAŷ,Axn−1

(ξ)}
(3.30)
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and
ΦAŷ,Axn

(ψ(ξ)) = ΦL(ŷ,x̂),L(xn−1,yn−1)(ψ(ξ))

≥ min{ΦAŷ,Axn−1
(ξ),ΦAx̂,Ayn−1

(ξ)}.
(3.31)

Let us define Qn(ξ) := min{ΦAŷ,Axn
(ξ),ΦAx̂,Ayn(ξ)}. From inequalities (3.30) and

(3.31), we find that

Qn(ψn(ξ)) ≥ Qn−1(ψn−1(ξ)) ≥ · · · ≥ Q0(ξ).

From Lemma 2.15 we have lim
n→+∞

Qn(ξ) = 1, which implies that

lim
n→+∞

ΦAŷ,Axn
(ξ) = lim

n→+∞
ΦAx̂,Ayn(ξ) = 1.

Since {Axn} converges to Ax̂ and {Ayn} converges to Aŷ, we see that Aŷ = Ax̂.
Suppose now that u = Ax̂. Then we get u = Aŷ (because Ax̂ = Aŷ). In view of

condition (v), we obtain

Au = A(Ax̂) = A(L(x̂, ŷ)) = L(Ax̂,Aŷ) = L(u, u),

and then we obtain that the mappings A and L have a coupled coincidence point (u, u).
Since A and L have a unique coupled coincidence point, we obtain that Au = Ax̂,
that is, Au = u. Hence, we get u = Au = L(u, u). The uniqueness of the common
fixed point of A and L is similar to that in the proof of Theorem 3.1, and then the
proof is complete. �

With A = I in Theorem 3.3, we obtain the following corollary.

Corollary 3.4. Let (X,F ,Γ) be a Menger PM-space such that Γ is a Hadžić type
t-norm. Suppose ψ: R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and

lim
n→+∞

ψn(ξ) = 0 for any ξ > 0. If the mapping L: X × X → X satisfies the

property:

ΦL(x,y),L(p,q)(ψ(ξ)) ≥ min{Φx,p(ξ),Φy,q(ξ)},
∀x, y, p, q ∈ X, ξ > 0, and if L(X ×X) is complete. Then there is a unique u ∈ X
such that u = L(u, u).

By a similar argument to the above we can prove the following results.

Theorem 3.5. Assume that
(i) (X,F ,Γ) is a Menger PM-space, where Γ is a Hadžić type t-norm;
(ii) ψ: R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and

lim
n→+∞

ψn(ξ) = +∞

for any ξ > 0;
(iii) The mappings L : X → X and g : X → X satisfy the property:

ΦLx,Ly(ξ) ≥ ΦAx,Ay(ψ(ξ)),

∀x, y ∈ X, where L(X) ⊆ A(X);
(iv) L(X) is complete;
(v) A and L are ω-compatible.

Then there is a unique u ∈ X such that Au = Lu = u.
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Theorem 3.6. Assume that
(i) (X,F ,Γ) is a Menger PM-space, where Γ is a Hadžić type t-norm;
(ii) ψ: R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and lim

n→+∞
ψn(ξ) = 0

for any ξ > 0;
(iii) The mappings L : X → X and g : X → X satisfy the property:

ΦLx,Ly(ψ(ξ)) ≥ ΦAx,Ay(ξ),

∀x, y ∈ X, where L(X) ⊆ A(X);
(iv) L(X) is complete;
(v) A and L are ω-compatible.

Then there is a unique u ∈ X such that Au = Lu = u.

In Theorem 3.6 and Theorem 3.5, if we let A = I, then the following corollaries
can be obtained.

Corollary 3.7. Let (X,F ,Γ) be a Menger PM-space such that Γ is a Hadžić type
t-norm. Suppose ψ: R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and

lim
n→+∞

ψn(ξ) = +∞ for any ξ > 0. If L : X → X is a mapping with

ΦLx,Ly(ξ) ≥ Φx,y(ψ(ξ)),

∀x, y ∈ X, and if L(X) is complete, then there is a unique u ∈ X such that u = Lu.

Corollary 3.8. Let (X,F ,Γ) be a Menger PM-space such that Γ is a Hadžić type
t-norm. Suppose ψ: R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and

lim
n→+∞

ψn(ξ) = 0 for any ξ > 0. If L : X → X is a mapping with

ΦLx,Ly(ψ(ξ)) ≥ Φx,y(ξ),

∀x, y ∈ X, and if L(X) is complete, then there is a unique u ∈ X such that u = Lu.

Using the same methods as in Theorem 3.1 and Theorem 3.3, we can obtain the
following common tripled fixed point theorems in generalized Menger probabilistic
metric spaces proposed by Luo, Zhu and Wu [17].

Theorem 3.9. Assume that
(i) (X,F ,Γ) is a generalized Menger probabilistic metric space, where Γ is a Hadžić

type t-norm;
(ii) ψ : R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and

lim
n→+∞

ψn(ξ) = +∞

for any ξ > 0;
(iii) The mappings L : X ×X ×X → X and A : X → X satisfy the property:

ΦL(x,y,z),L(p,q,r)(ξ) ≥ min{ΦAx,Ap(ψ(ξ)),ΦAy,Aq(ψ(ξ)),ΦAz,Ar(ψ(ξ))}
∀x, y, z, p, q, r ∈ X, where L(X ×X ×X) ⊆ A(X);

(iv) L(X ×X ×X) is complete;
(v) A and L are ω-compatible.

Then there is a unique u ∈ X such that u = Au = L(u, u, u).
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Theorem 3.10. Assume that
(i) (X,F ,Γ) is a generalized Menger probabilistic metric space, where Γ is a Hadžić

type t-norm;
(ii) ψ: R+ → R+ is a G-function satisfying ψ−1({0}) = {0} and

lim
n→+∞

ψn(ξ) = 0

for any ξ > 0;
(iii) The mappings L: X ×X ×X → X and A : X → X satisfy the property:

ΦL(x,y,z),L(p,q,r)(ψ(ξ)) ≥ min{ΦAx,Ap(ξ),ΦAy,Aq(ξ),ΦAz,Ar(ξ)},
∀x, y, z, p, q, r ∈ X, where L(X ×X ×X) ⊆ A(X);

(iv) L(X ×X ×X) is complete;
(v) A and L are ω-compatible.

Then there is a unique u ∈ X such that u = Au = L(u, u, u).

In Theorem 3.9 and Theorem 3.10, if we let A = I, then the following results can
be obtained.

Corollary 3.11. Let (X,F ,Γ) be a generalized Menger probabilistic metric space
such that Γ is a Hadžić type t-norm. Suppose ψ : R+ → R+ is a G-function satisfying
ψ−1({0}) = {0} and lim

n→+∞
ψn(ξ) = +∞ for any ξ > 0. If L : X ×X ×X → X is a

mapping with

ΦL(x,y,z),L(p,q,r)(ξ) ≥ min{Φx,p(ψ(ξ)),Φy,q(ψ(ξ)),Φz,r(ψ(ξ))},
∀x, y, z, p, q, r ∈ X, ξ > 0, and if L(X ×X ×X) is complete, then there is a unique
u ∈ X such that u = L(u, u, u).

Corollary 3.12. Let (X,F ,Γ) be a generalized Menger probabilistic metric space
such that Γ is a Hadžić type t-norm. Suppose ϕ: R+ → R+ is a G-function satisfying
ψ−1({0}) = {0} and lim

n→+∞
ψn(ξ) = 0 for any ξ > 0. If L: X × X × X → X is a

mapping with

ΦL(x,y,z),L(p,q,r)(ψ(ξ)) ≥ min{Φx,p(ξ),Φy,q(ξ),Φz,r(ξ)}
∀x, y, z, p, q, r ∈ X, ξ > 0, and if L(X ×X ×X) is complete, then there is a unique
u ∈ X such that u = L(u, u, u).

Finally, we provide an example to illustrate our theory.
Example 3.13. Let X = [0, 1

2 ) ∪ {1} and define Φ : X ×X → D+ as follows:

Φ(x, y)(ξ) = Φx,y(ξ) =
ξ

ξ + |x− y|
for all ξ > 0. Then (X,F ,ΓM ) is a Menger PM-space, but it is not complete. Let
A : X → X be defined by

A(x) =


x
4 if x ∈ [0, 1

4 ],
x
2 if x ∈ ( 1

4 ,
1
2 ),

1
4 if x = 1,
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and L : X ×X → X be defined by

L(x, y) =

{
x
16 if x ∈ [0, 1

2 ),
1
64 if x = 1.

Clearly, L(X ×X) ⊆ A(X) and L(X ×X) is complete.
Noting that A(L(1, 1)) 6= L(A(1), A(1)), we immediately obtain that A and L do not
commute.

Let ψ : R+ → R+ be defined by

ψ(ξ) =

{
1
3 if ξ = 1,

2ξ if ξ 6= 1.

Then lim
n→+∞

ψn(ξ) = +∞ for any ξ > 0.

Now, we prove that the mappings A and L satisfy condition (3.1) of Theorem 3.1.
We consider the case ξ 6= 1 and ξ = 1 separately.

(I). Let ξ 6= 1. We consider four cases.
Case 1. When x 6= 1 and p 6= 1.
Case 1.1. If 0 ≤ x ≤ 1

4 and 0 ≤ p ≤ 1
4 , then for any y, q ∈ X, we have

ΦL(x,y),L(p,q)(ξ) =
ξ

ξ + | x16 −
p
16 |

=
4ξ

4ξ + |x4 −
p
4 |
≥ 2ξ

2ξ + |x4 −
p
4 |

= ΦA(x),A(p)(ψ(ξ)) ≥ min{ΦA(x),A(p)(ψ(ξ)),ΦA(y),A(q)(ψ(ξ))}.

Case 1.2. If 0 ≤ x ≤ 1
4 and 1

4 < p < 1
2 , then for any y, q ∈ X we have

ΦL(x,y),L(p,q)(ξ) =
ξ

ξ + | x16 −
p
16 |

=
4ξ

4ξ + (p4 −
x
4 )
≥ 4ξ

4ξ + (p2 −
x
4 )

≥ 2ξ

2ξ + |p2 −
x
4 |

= ΦA(x),A(p)(ψ(ξ)) ≥ min{ΦA(x),A(p)(ψ(ξ)),ΦA(y),A(q)(ψ(ξ))}.

Case 1.3. If 1
4 < x < 1

2 and 0 ≤ p ≤ 1
4 . This case is similar to Case 1.2.

Case 1.4. If 1
4 < x < 1

2 and 1
4 < p < 1

2 , then for any y, q ∈ X we have

ΦL(x,y),L(p,q)(ξ) =
ξ

ξ + | x16 −
p
16 |

=
4ξ

4ξ + |x4 −
p
4 |
≥ 2ξ

2ξ + |x4 −
p
4 |

≥ 2ξ

2ξ + |x2 −
p
2 |

= ΦA(x),A(p)(ψ(ξ)) ≥ min{ΦA(x),A(p)(ψ(ξ)),ΦA(y),A(q)(ψ(ξ))}.

Case 2. If x = 1 and p = 1, then for any y, q ∈ X we get

ΦL(x,y),L(p,q)(ξ) = ΦL(1,y),L(1,q)(ξ) =
ξ

ξ + | 1
64 −

1
64 |

= 1 ≥ min{ΦA(1),A(1)(ψ(ξ)),ΦA(y),A(q)(ψ(ξ))}.

Case 3. When x = 1 and p 6= 1.
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Case 3.1. Suppose that 0 ≤ p ≤ 1
4 . Then for any y, q ∈ X we obtain

ΦL(x,y),L(p,q)(ξ) = ΦL(1,y),L(p,q)(ξ) =
ξ

ξ + | 1
64 −

p
16 |

=
2ξ

2ξ + | 1
32 −

p
8 |

≥ 2ξ

2ξ + | 18 −
p
2 |
≥ 2ξ

2ξ + | 14 −
p
4 |
≥ min{ΦA(1),A(p)(ψ(ξ)),ΦA(y),A(q)(ψ(ξ))}.

Case 3.2. If 1
4 < p < 1

2 , then for any y, q ∈ X we have

ΦL(x,y),L(p,q)(ξ) = ΦL(1,y),L(p,q)(ξ) =
ξ

ξ + | 1
64 −

p
16 |

=
2ξ

2ξ + | 1
32 −

p
8 |

≥ 2ξ

2ξ + | 14 −
p
2 |
≥ min{ΦA(1),A(p)(ψ(ξ)),ΦA(y),A(q)(ψ(ξ))}.

Case 4. When x 6= 1 and p = 1. This case is similar to Case 3.

(II). Let ξ = 1. From Cases 1-4 above, we get

ΦL(x,y),L(p,q)(1) ≥ min{ΦAx,Ap(ψ(1)),ΦAy,Aq(ψ(1))}

for all x, y, p, q ∈ X.
Moreover, it can be seen that mappings A and L have a coupled coincidence point.

Here (0, 0) is a coupled coincidence point of A and L in X. Also, the mappings A and
L are weakly compatible at (0, 0). Thus all the required hypotheses of Theorem 3.1
hold. Therefore, we deduce the existence of a unique common fixed point of A and
L. Indeed, a point 0 is the unique common fixed point of A and L.

Note that A(x) is not continuous at x = 1
4 and (X,F ,Γ) is not complete, and

therefore the unique common fixed point of A and L cannot be obtained from Theorem
of XZC.
Remark 3.14. (a) Note in Corollary 3.8, the function ψ is only required to satisfy
the condition ψ−1({0}) = {0} and lim

n→+∞
ψn(ξ) = 0 for any ξ > 0. Note, ψ in

Jachymski’s result is required to satisfy the condition ψ−1({0}) = {0}, ψ(ξ) < ξ and
lim

n→+∞
ψn(ξ) = 0 for any ξ > 0.

(b) Note in some of our results, the function ψ is only required to satisfy the
condition ψ−1({0}) = {0} and lim

n→+∞
ψn(ξ) = +∞ for any ξ > 0. Note, ψ in the

results of Luo et al. [17] and Xiao et al. [27] are required to satisfy the conditions
ψ−1({0}) = {0}, ψ(ξ) > ξ and lim

n→+∞
ψn(ξ) = +∞ for any ξ > 0;

(c) Note in our results, the Menger PM-space (X,F ,Γ) is not required to be com-
plete.

(d) Note in our results, the operator A is not necessarily continuous, while the
operator A in the results of Luo et al. [17] and Xiao et al. [27] is required to be
continuous;

(e) Note in our results, the function L and A are only required to be weakly
compatible, but in the results of Xiao et al. [27] and Luo et al. [17] they are required
to be commutable.
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