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1. Introduction

In 1955, Tarski [22] first proved a fixed point theorem on complete lattices for
single-valued mappings. It was extended to chain-complete partially ordered sets by
Abian and Brown [1] in 1961. In 1984, Fujimoto [9] extended the Tarski’s fixed point
theorem from single-valued mappings to set-valued mappings on complete lattices.
In 2014, Li [13] extended the Abian-Brown fixed point theorem from single-valued
mappings to set-valued mappings on chain-complete partially ordered sets, which is
also an extension of Fujimoto fixed point theorem from complete lattices to chain-
complete partially ordered sets. In 2015, Li [17] proved the inductive properties
of fixed points of some mappings on chain-complete partially ordered sets. Since
then, the fixed point theorems of set-valued mappings on chain-complete partially
ordered sets have been applied to equilibrium problems with incomplete preferences
on partially ordered topological vector spaces; solving ordered variational inequalities
in partially ordered Banach spaces; solving nonlinear Hammerstein integral equations
(see [13-18]).

In all theorems proved in the above-mentioned papers, in the underlying spaces, the
ordering structures are only considered (they may be equipped with neither algebraic
structures nor topology structures), the considered mappings are only required to
satisfy some order monotone conditions. It is clear that this is a new aspect in fixed
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point theory, in which some fixed point theorems are proved without any continuity
conditions for the considered mappings.

On the other hand, since any non-singleton pointed closed and convex cone in a
Banach space can induce a partial order on it and then, this Banach space becomes
a partially ordered Banach space. In any partially ordered Banach space, in addition
to the algebraic and topology structures, it is naturally (from a non-singleton pointed
closed and convex cone) equipped with an ordering structure, which can play an
important role in the analysis in Banach spaces. For example, the ordering structures
in partially ordered Banach spaces have been used in fixed point theory (see [2-
6], [21], [23]). In the fixed point theorems on partially ordered Banach spaces, the
considered mappings may be required to satisfy both of order monotone conditions
and some continuity conditions. These theorems have been widely applied to: solving
integral equations (see [8-9], [10-12], [18]); solving differential equations and nonlinear
fractional evolution equations (see [19-20], [24]); solving equilibrium problems (see
[13], [25]).

In this paper, we first prove some fixed point theorems on partially ordered Ba-
nach spaces for single-valued mappings. We will take account the order monotone
properties and some continuity of the considered mappings to show the existence of a
fixed point. By the continuity, we construct some iteration schemes to approximate
some fixed points of some mappings. Then, we introduce C-continuity of set-valued
mappings. Combining the C-continuity and order monotony, we prove the existence
of fixed points for some set-valued mappings on partially ordered Banach spaces.
Finally, we use these theorems to prove an existence theorem of solutions to some
Hammerstein integral equations, in which the conditions are relatively weaker and
are simpler than that used by some publications.

2. Preliminaries

2.1. Partially ordered Banach spaces. Let X be a Banach space and K a non-
singleton pointed closed and convex cone in X satisfying K 6= {0}. An ordering
relation < is defined on X by K as follows:

y < x if and only if y − x ∈ K, for x, y ∈ X. (2.1)

Then < is a partial order on X and X, equipped with this partial order <, is called
a partially ordered Banach space induced by K. It is denoted by (X,<). The partial
order < on X has the following properties:

(O1) x < y implies x+ z < y + z, for x, y, z ∈ X.
(O2) x < y implies αx < αy, for x, y ∈ X and α < 0.
(O3) There are distinct points x, y ∈ X satisfying x < y.
(O4) For any u,w ∈ X, with u 4 w, the <-intervals [u), (w] and [u,w] are closed,

where

[u) = {x ∈ X : x < u}, (w] = {x ∈ X : x 4 w}

and

[u,w] = [u) ∩ (w] = {x ∈ X : u 4 x 4 w}.



FIXED POINT THEOREMS ON PARTIALLY ORDERED BANACH SPACES 261

The first two properties (O1) − (O2) are called the order-linearity of the partial
order <. The cone K is the <-positive cone (simply written as positive cone) of
(X,<), which is rewritten as

K = [0) = {x ∈ X : x < 0}.
It is well known that if a Banach space X is equipped with a partial order < which

satisfies the conditions (O1)− (O4), then there is a non-singleton pointed closed and
convex cone K ⊂ X such that < is induced by K as defined in (2.1).

Hence, consequently, for every Banach spaceX there is a one-to-one correspondence
between the family of partial orders satisfying conditions (O1)− (O4) and the family
of non-singleton pointed closed and convex cones in X.

Let (X,<), (Y,<Y ) be partially ordered Banach spaces. Let D and C be nonempty
subsets of X and Y , respectively. A single-valued mapping f from (D,<) to (C,<Y )
is said to be order-increasing whenever x 4 y implies f(x) 4Y f(y). f is said to be
strictly order-increasing whenever x ≺ y implies f(x) ≺T f(y).

Let F : D → 2C \ {∅} be a set-valued mapping. F is said to be isotonic, or to be
order-increasing upward, if x 4 y in D implies that, for any z ∈ Fx, there is a w ∈ Fy
such that z <Y w. F is said to be order-increasing downward, if x 4 y in D implies,
for any z ∈ Fx, there is a w ∈ Fy such that z 4Y w. F is said to be order-increasing
downward, if x 4 y in D implies, for any w ∈ Fy, there is a z ∈ Fx such that z <Y w.
If F is both order-increasing upward and order-increasing downward, then F is said
to be order-increasing.

2.2. Fixed point theorems on partially ordered Banach spaces with con-
tinuity conditions. As discussed in the previous section, in the literature of fixed
point theory on partially ordered Banach spaces, many authors proved fixed point
theorems for some mappings that, in addition to the continuity condition, have some
order increasing properties. For example, Amann proved the following fixed point
theorem on partially ordered Banach spaces for single-valued mappings.
Theorem 1.0. [3]. Let (X,<) be a partially ordered Banach space induced by a
pointed closed and convex cone K in X and let D be an order convex subset of X.
Suppose that f : D → X is an <-increasing map which is compact on every order
interval in D.

If there exist y, ỹ ∈ D with y 4 ỹ such that y 4 f(y) and f(ỹ) 4 ỹ, then f has a
minimal fixed point x in (y +K) ∩D. Moreover, x 4 ỹ and x = lim

n→∞
fn(y), that is,

the minimal fixed point x can be computed iteratively by means of the iteration scheme

x0 = y

xn+1 = f(xn), n = 0, 1, 2, . . .

Moreover, the sequence {xn} is <-increasing.
In the above fixed point theorem, the underlying space D is supposed to be an

order convex subset of the partially ordered Banach space E. That is,

x, y ∈ D implies [x, y] ⊆ D. (2.2)

The considered mapping, in addition to the order increasing condition, f is required
to be a compact operator that is a very strong continuity condition. So, in this
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fixed point theorem, the considered mapping is required to satisfy both of an order
increasing condition and a strong continuity condition.

2.3. Fixed point theorems on partially ordered Banach spaces without con-
tinuity conditions. Numerous fixed point theorems on partially ordered Banach
spaces have been proved, in which the considered mappings are not required to satisfy
any continuity conditions and are only required to be order monotone. Meanwhile, the
underlying spaces are not required to be compact that is replaced by chain-complete
condition. These theorems have been applied to solving some equilibrium problems
with incomplete preferences and to solving ordered variational inequalities, etc. (see
[15], [16]). Since the chain-complete condition is broader than the compactness (see
Examples 2.1 and 2.2 below), from both aspects of the conditions for the consid-
ered mappings and the underlying spaces, the conditions for the fixed point theorems
proved in [13], [14], [17] are weaker than the conditions in the fixed point theorems
proved in [3] which are required conditions of continuity and compactness.

Before we list some fixed point theorems on partially ordered Banach spaces with-
out continuity conditions, we recall some concepts and some results about chain-
complete and universally inductive for easy reference.

Let (X,<) be a partially ordered Banach space and D a subset of X. (D,<) is
said to be chain-complete if every chain in D has the least <-upper bound that is
contained in D. A partially ordered Banach space (X,<) is said to have the chain-
complete property (or it is simply said to be chain-complete) if, for every w ∈ X, the
<-interval (w] of (X,<) is chain-complete.

We provide the following examples to demonstrate that the chain-complete condi-
tion is broader than the compactness.
Example 2.1. Let (R,≥) be the totally ordered Banach space of real numbers with
the ordinary order ≥. Let D = [0, 1)∪ [2, 3]. Then (D,≥) is ≥-chain-complete, which
is considered as a partially ordered set. But D is not a compact subset in R.
Example 2.2. Every nonempty bounded closed and convex subset of a partially
ordered reflexive Banach space is chain-complete, which may not be compact.

Now we recall some examples from [10], [12] about chain-complete subsets in par-
tially ordered Banach spaces, which have been used in the proofs of some fixed point
theorems in some publications and will be used in this paper.
Lemma 2.1. Every non-empty compact subset in a partially ordered Banach space
is chain-complete.
Lemma 2.2. Every non-empty norm-bounded closed and convex subset of a partially
ordered reflexive Banach space is chain-complete.
Lemma 2.3. Let (X,<) be a normal partially ordered reflexive Banach space. Then
very order interval [u, v], for u, v ∈ X with u 4 v, is chain-complete.
Lemma 2.4. Every regular partially ordered Banach space has the chain-complete
property.

We found that when we prove some fixed point theorems on partially ordered
Banach spaces, the concept of universally inductive subsets plays important role (it
is also true even on posets, which are broader than partially ordered Banach space.
In this paper, we concentrate to partially ordered Banach spaces).
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A nonempty subset A of a partially ordered Banach space (X,<) is said to be
universally inductive in X, whenever for any given chain {xa} ⊆ X, if it satisfies
that every element xβin{xα} has an <-upper cover in A, then the chain {xα} has an
<-upper bound in A.

Some useful universally inductive subsets in partially ordered Banach spaces (and
in posets) are provided in [11], which shows that the class of universally inductive
subsets in partially ordered Banach spaces are relatively broad that includes many
useful cases.
Lemma 2.5. Every nonempty compact subset of a partially ordered Banach space is
universally inductive.
Lemma 2.6. Every nonempty bounded closed and convex subset of a partially ordered
reflexive Banach space is universally inductive.

Using the concept of universally inductive subsets, the following fixed point theorem
on partially ordered Banach spaces with set-valued mappings has been proved (we
only list the case that the underlying spaces are partially ordered Banach spaces. For
the case of posets, which are more general, the readers are referred to [17]).

As usual, we denote by F(F ) the set of fixed points of a set-valued mapping F .
Theorem 2.1. Let (X,<) be a partially ordered Banach space and C a chain-complete
subset in X and let F : C → 2C \ {∅} be a set-valued mapping satisfying the following
three conditions:
A1. F is order-increasing upward.
A2. (F (x),<) is universally inductive, for every x ∈ C.
A3. There is an element x0 in C and v0 ∈ F (x0) with x0 4 v0.

Then
(i) (F(F ),<) is a nonempty inductive poset;
(ii) (F(F ) ∩ [x0),<) is a nonempty inductive poset.

Consequently, we have
(iii) F has an <-maximal fixed point;
(iv) F has an <-maximal fixed point x∗ with x∗ < x0.
In Theorem 2.1, the underlying set C is just required to be chain-complete. From

Examples 2.1, it is a weaker condition than the compactness. The considered mapping
F is only needed to have the order monotone property and with universally inductive
ranges (if F is a single valued mapping, condition A2 is automatically satisfied). In
contrast with Theorem 1.0, the conditions in Theorem 2.1 are much weaker. The
results in Theorem 2.1 are stranger than that in Theorem 1.0 [3], except the conver-
gent properties of the iteratively calculated iteration scheme in which the limit is a
fixed point of the considered mapping. It is because that the considered mapping in
Theorem 2.1 is not required to be continuous.

Theorem 2.1 has been applied in solving ordered or vector variational inequalities,
equilibrium problems with incomplete preferences, etc.

In the following sections of this paper, we will prove more fixed point theorems
on partially ordered Banach spaces, in which the conditions are weaker than that in
Theorem 1.0 and stranger than that in Theorem 2.1. For the case of single valued
mappings, to iteratively construct an iteration scheme like Theorem 1.0 to approach
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a fixed point of the considered mapping, the considered mappings will be required to
be continuous.

3. Fixed point theorems for mappings with chain-complete ranges

3.1. Fixed point theorems on posets for set-valued mappings. Notice that
in the fixed point theorems proved in [1], [10], [13-18], and [22], or the theorems
provided in the previous sections 1 and 2, the underlying spaces are required to be
chain-complete (the regularity and inductivity of partially ordered Banach spaces
imply the chain-completeness). In the applications, chain-completeness of a given
partial order may not be satisfied. On the other hand, the ranges of some useful
mappings (operators) may be chain-complete (for example, the compactness implies
the chain-completeness). So, in this section, we prove some fixed point theorems
in which the underlying spaces may not be chain-complete and the ranges of the
considered mappings are chain-complete.
Theorem 3.1. Let (C,<) be a poset. Let F : C → 2C \ {0} be a set-valued map-
ping. Suppose that, in addition to conditions A1−A3 in Theorem 2.1, F satisfies the
following condition
A0. the range R(F ) = ∪{F (x) : x ∈ C} is <-chain-complete.

Then F and F(F ) have the properties (i)-(iv) stated in Theorem 2.1.
Proof. Let FC = F |R(F ) be the restriction of F on R(F ). Then FC is a set-valued
mapping. FC and its domain R(F ) satisfy all conditions A1 − A2 on the chain-
complete set (R(F ),<). Next we show that FC satisfies condition A3. To this end,
from condition A3 for the mapping F , there is an element x0 in C and v0 ∈ F (x0)
with x0 4 v0. It implies that v0 ∈ R(F ). From the increasing condition on F , for
x0 4 v0 and v0 ∈ F (x0), there is w0 ∈ F (v0) with v0 4 w0. So w0 ∈ R(F ) and
FC satisfies condition A3 on R(F ). Hence FC and F(FC) have the properties (i)-(iv)
listed in Theorem 2.1. It is clear to see that F(FC) = F(F ). It completes the proof
of this theorem. �

3.2. Fixed point theorems on partially ordered Banach spaces for set-valued
mappings. We immediately obtain the following corollaries as consequences of Theo-
rem 3.1, as it is applied to partially ordered Banach spaces.
Corollary 3.1. Let (X,<) be a partially ordered Banach space and C a subset in X.
Let F : C → 2C \{∅} be a set-valued mapping. Suppose that, in addition to conditions
A1 −A3 in Theorem 2.1, the following condition is satisfied:
A0. the range R(F ) = ∪{F (x) : x ∈ C} is chain-complete.

Then F and F(F ) have the properties (i)-(iv) stated in Theorem 2.1.
Corollary 3.2. Let (X,<) be a partially ordered Banach space and C a subset in X.
Let F : C → 2C \{∅} be a set-valued mapping. Suppose that, in addition to conditions
A1 −A3 in Theorem 2.1, the following condition is satisfied
A0. the range R(F ) = ∪{F (x) : x ∈ C} is weakly compact.

Then F and F(F ) have the properties (i)-(iv) stated in Theorem 2.1.
Corollary 3.3. Let (X,<) be a partially ordered reflexive Banach space and C a
subset in X. Let F : C → 2C \{∅} be a set-valued mapping. Suppose that, in addition
to conditions A1 −A3 in Theorem 2.1, the following condition is satisfied:
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A0. the range R(F ) = ∪{F (x) : x ∈ C} is norm bounded closed and convex.
Then F and F(F ) has the properties (i)-(iv) stated in Theorem 2.1.

4. Fixed point theorems on regular partially ordered Banach spaces
for single-valued mappings

We recall some concepts about the normality and regularity of the partial orders
that are induced by respected cones on partially ordered Banach spaces. These prop-
erties have been applied to solve some equations which includes integral equations,
ordinary differential equations and partial differential equations. For details, the
readers are referred to [3-4] and [10-11].

Let (X,<) be a partially ordered Banach space induced by a non-singleton pointed
closed and convex cone K in X. If there is a constant λ > 0 such that

0 4 x 4 y implies that ‖x‖ ≤ λ‖y‖,

then < (or the cone K) is said to be normal and (X,<) is called a normal partially
ordered Banach space. If every <-upper bounded and <-increasing sequence {xn} of
X is a ‖ · ‖-convergent sequence, that is,

x1 4 x2 4 . . . 4 y, for some y ∈ X

⇒ there is x ∈ X such that ‖xn − x‖ → 0 as n→∞,
then < is said to be regular and (X,<) is called a regular partially ordered Banach
space. It is well known that the regularity implies the normality and the following
statements are equivalent:
(i) < is normal;
(ii) the norm ‖·‖ has an equivalent norm ‖·‖1 such that 0 4 x 4 y implies ‖x‖1 ≤ ‖y‖1;
(iii) every <-interval [x, y] = {z ∈ X : x 4 z 4 y} is ‖ · ‖-bounded.

Some fixed point theorems on regular partially ordered Banach spaces for set valued
mappings have been proved in [17]. We list one of them below.
Theorem 3.9 in [17]. Let (X,<) be a regular partially ordered Banach space. Let
C be a closed inductive subset of X. Let F : C → 2C \ {∅} be a set-valued isotonic
mapping with universally inductive values. Suppose that there are points x0 ∈ C,
x1 ∈ Fx0 satisfying x0 4 x1. Then

(i) (F(F ),<) is a nonempty inductive subset of C;
(ii) (F(F ) ∩ [x0),<) is a nonempty inductive subset of C.
By the above theorem, we prove a fixed point theorem for single-valued mappings.

Theorem 4.1. Let (X,<) be a regular partially ordered Banach space and C a closed
inductive subset of X. Let f : C → C be a single-valued <-increasing mapping.
Suppose that there is a point x0 ∈ C satisfying x0 4 f(x0). Then

(i) (F(f),<) is a nonempty inductive poset;
(ii) (F(f) ∩ [x0),<) is a nonempty inductive poset;
(iii) f has an <-maximal fixed point;
(iv) f has an <-maximal fixed point x∗ with x∗ < x0.

We compute iteratively the following iteration scheme

xn+1 = f(xn), n = 0, 1, 2, . . .
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Then
(a) the sequence {xn} is <-increasing;
(b) ∨{xn} exists.

Furthermore, in addition, if f is continuous, then

xn → ∨{xn}, as n→∞ and ∨ {xn} ∈ F(f). (4.1)

Proof. Parts (i)-(iii) follow immediately from Theorem 3.9 in [17]. Part (a) is a
consequence of the <-increasing property of f . In [17], it is proved that every closed
and inductive subset in a regular partially ordered Banach space is chain-complete.
It implies (b). So, we only need to prove part (2). Since {xn} is <-increasing and C
is a closed and inductive subset of X, from the regularity of X, there is x ∈ X such
that

xn → x, as n→∞. (4.2)

For every n, since [xn) is closed, from (4.2), it implies that x ∈ [xn). That is xn 4 x,
for n = 1, 2, . . . So, x is an <-upper bound of {xn}. It follows that

∨{xn} 4 x. (4.3)

Since the regularity implies the normality, from (4.3), we have

‖x− ∨{xn}‖ ≤ λ‖x− xm‖, for m = 1, 2, . . . , (4.4)

where λ is the normality constant. Combining (4.2) and (4.4), we obtain

∨{xn} = x. (4.5)

It proves (4.1). From (4.2), (4.5), the iterated construction of {xn} and the continuity
of f , we have

f(∨{xn}) = ∨{xn}. �

Next, we extend Theorem 4.1 to set-valued mappings. We first need the following
concept.
Definition 4.1. Let (X,<) be a partially ordered Banach space and C a nonempty
subset of X. Let F : C → 2C \ {∅} be a set-valued mapping. F is said to be
C-continuous if, for any convergent sequence {xn} ⊆ C with

xn → x, as n→∞, for some x ∈ C,
and, for any convergent sequence {yn} ⊆ C satisfying

yn ∈ F (xn), for n = 1, 2, . . . , with yn → y, as n→∞, for some y ∈ C,
we have y ∈ F (x).
Theorem 4.2. Let (X,<) be a regular partially ordered Banach space and C a closed
inductive subset of X. Let F : C → 2C \ {∅} be a set-valued mapping satisfying the
conditions A1, A2 and A3 listed in Theorem 2.1 in Section 2. In addition, suppose
that F is C-continuous. Then, F(F ) has the properties (i)-(iii) given in Theorem
2.1. Furthermore, we can iteratively choose an iteration scheme

xn+1 ∈ F (xn) such that xn 4 xn+1, for n = 0, 1, 2, . . . (4.6)

It satisfies that ∨{xn} ∈ F(f) and

xn → ∨{xn}, as n→∞.
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Proof. Let x0 ∈ C, x1 ∈ F (x0) be the points given in condition A3, which satisfy
x0 4 x1. By condition A1, there is x2 ∈ F (x1) satisfying x1 4 x2. Repeating
condition A1, we can iterated choose a sequence {xn} satisfying (4.6). By using the
C-continuity of F , rest of the proof is like the proof of Theorem 4.1. �

5. Applications to Hammerstein integral equations

Let (Σ, τ, µ) be a τ -compact topological space with a σ-finite measure µ satisfying
0 < µ(Σ) ≤ 1. For given nonlinear real functions T and g defined on Σ×Σ and Σ×R,
respectively, we consider a nonlinear integral equation of Hammerstein type on Σ of
the form

x(t) =

∫
Σ

T (t, s)g(s, x(s))dµ(s), (5.1)

where T (t, s) is called the kernel of this Hammerstein integral equation.
Nonlinear integral equations of Hammerstein type on a measure space Σ have been

studied by many authors and have a lot of applications, such as: to differential equa-
tions, to the theory of feedback of control systems, etc. For example, see [3-4], [8]
and [11]. In [8], the existence of solutions to some Hammerstein integral equations
has been deeply studied. The techniques used in [8] are as follows: Hammerstein
integral equations can be converted to operator problems such that the solutions of
the corresponding Hammerstein integral equations are the fixed points of the con-
structed operators. Meanwhile, some useful iterated schemes are provided for the
approximations of the solutions.

In [3-4] and [11], the proofs of the existence of solutions to some Hammerstein
integral equations are based on fixed point theorems on partially ordered Banach
spaces. In book [11], for a given class of integral equations of Hammerstein type,
a pointed closed convex cone is constructed which induces a partial order on the
considered Banach space. Then the existence problems become fixed point problems
on partial ordered Banach spaces, in which, in addition to the continuity, the order
increasing properties of the corresponding operators play important roles.

In contrast to [3-4], [11], in this section, we apply the fixed point theorems proved
in the previous section to prove the existence of nonnegative solutions to some Ham-
merstein integral equations by seeking some weaker conditions.

Let C(Σ) denote the set of continuous real functions on Σ with the usual maximum
norm ‖ · ‖. Then (C(Σ), ‖ · ‖) is a Banach space. Let C+(Σ) denote the positive cone
in C(Σ), that is,

C+(Σ) = {x ∈ C(Σ) : x(t) ≥ 0, for every t ∈ Σ}. (5.2)

Then C+(Σ) is a pointed closed and convex cone in C(Σ) and it induces a partial
order on C(Σ), denoted by <. It follows that, for any x, y ∈ C(Σ),

y < x if and only if y(t) ≥ x(t), for every t ∈ Σ. (5.3)

For a given continuous kernel T defined on Σ × Σ and a continuous real function g
defined on Σ×R of a Hammerstein integral equation, define a mapping

F : C(Σ)→ C(Σ)
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by

(Fx)(t) =

∫
Σ

T (t, s)g(s, x(s))dµ(s), for all x ∈ C(Σ). (5.4)

One can see that this mapping F : C(Σ) → C(Σ) is well-defined. It will be used in
the sequel.

Now we apply Theorem 3.1 to prove a theorem for the existence of continuous
solutions of nonlinear Hammerstein integral equations like [18]. In here, the proof is
much simpler than that in [18].
Theorem 5.1. Let T and g be continuous real functions respectively defined on Σ×Σ
and on Σ×R. Suppose that T and g satisfy the following conditions:

(E1) T (t, s) ≥ 0, for all (t, s) ∈ Σ× Σ;
(E2) for every s ∈ Σ, g(x, ·) is increasing and g(s, 0) ≥ 0;

(E3) there is M > 0, such that

∫
Σ

T (t, s)g(s,M)dµ(s) ≤M , for every t ∈ Σ;

(E4)

∫
Σ

T (t, s)g(s, 0)dµ(s) > 0, for some t ∈ Σ.

Then the Hammerstein integral equation (5.1) has a positive continuous solution x∗ ∈
C+(Σ) satisfying

0 < ‖x∗‖ ≤M. (5.5)

Furthermore, for any given z ∈ C+(Σ) with ‖z‖ ≤ M satusfying z 4 F (z), we
construct an iterative scheme as below

z, F (z), F 2(z), F 3(z), . . .

Then
(a) Fn(z) 4 Fn+1(z), for n = 1, 2, . . .;
(b) Fn(z)→ z∗, as n→∞, for some z∗ ∈ C+(Σ) satisfying

∨{z, F (z), F 2(z), F 3(z), . . .} = z∗;

(c) z∗ is a solution of the Hammerstein integral equation (5.1).
Proof. From the definition of the partial order < on C(Σ) by (5.2) and (5.3), (C(Σ),<)
is a partially ordered Banach space. From the given positive number M in this
theorem, we write 0 and M for the constant functions on Σ with values 0 and M ,
respectively. Then we define the <-interval [0,M ] ⊆ C+(Σ) by

CM (Σ) = [0,M ] = {x ∈ C(Σ) : 0 4 x 4M}.

(It is equivalently rewritten as

CM (Σ) = [0,M ] = {x ∈ C(Σ) : 0 ≤ x(t) ≤M, for every t ∈ Σ}
= {x ∈ C+(Σ) : ‖x‖ ≤M}).

Let F : C(Σ) → C(Σ) be the mapping defined in (5.4). From conditions E1 − E3

in this theorem, we have that F (CM (Σ)) ⊆ CM (Σ). Condition E2 implies that
F : CM (Σ)→ CM (Σ) is <-increasing. From condition E4, the zero function satisfies
0 4 F (0). So F satisfies the conditions A1 − A3 in Theorem 2.1 with respect to the
set CM (Σ) (since F here is a single-valued mapping, condition A2 in Theorem 2.1 is
automatically satisfied).
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On the other hand, since T and g are continuous real functions respectively defined
on Σ × Σ and on Σ × R and Σ is compact, so T and g are uniformly continuous on
Σ× Σ, Σ× [0,M ], respectively. Then from the Ascoli-Arzela Theorem, we can show
that F (CM (Σ)) is a compact subset in CM (Σ). From Lemma 2.1 listed in section 2,
(F (CM (Σ)),<) is an <-chain-complete subset in (CM (Σ),<). Hence, from Theorem
3.1, F has a fixed point x∗ ∈ CM (Σ). By (5.4), x∗ is a solution to the Hammerstein
integral equation (5.1). It is clear to see that F (0) 6= 0 (it is the zero function). So,
x∗ satisfies (5.5).

For any given z ∈ C+(Σ) with ‖z‖ ≤ M satisfying z 4 F (z), since F : CM (Σ) →
CM (Σ) is an <-increasing mapping, it yields that {Fn(z)} is <-increasing, which
proves (a). From the fact that F (CM (Σ)) is a compact subset in CM (Σ), {Fn(z)}
is a Cauchy sequence in CM (Σ), by (a), {Fn(z)} is a convergent sequence. So there
is z∗ ∈ CM (Σ) ⊆ C+(Σ) such that Fn(z) → z∗, as n → ∞. By the <-increasing
property of {Fn(z)} again, one can show

∨{z, F (z), F 2(z), F 3(z), . . .} = z∗.

From (5.4) and the fact that T and g are uniformly continuous on Σ×Σ, Σ× [0,M ],
respectively, F : CM (Σ) → CM (Σ) is a continuous mapping. By Fn(z) → z∗, it
follows that F (z∗) → z∗. So z∗ is a fixed point of F . It implies that z∗ is a solution
of (5.1). �
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