Fixed Point Theory, 21(2020), No. 1, 211-220 DOI: 10.24193/fpt-ro.2020.1.15 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

A NOTE ON A RATIONAL FORM CONTRACTIONS WITH DISCONTINUITIES AT FIXED POINTS

E. KARAPINAR

Atilim University, Department of Mathematics,06836, İncek, Ankara, Turkey and

Department of Medical Research, China Medical University, 40402, Taichung, Taiwan E-mail: erdalkarapinar@yahoo.com

Abstract. In this paper, we investigate one of the classical problems of the metric fixed point theory: Whether there is a contraction condition which does not force the mapping to be continuous at the fixed point. We propose a contraction conditions in rational form that has a unique fixed point but not necessarily continuous at the given fixed point.

Key Words and Phrases: Discontinuity, fixed point theorems, metric space.

2010 Mathematics Subject Classification: 47H10, 54H10, 54H25.

1. INTRODUCTION

In the metric fixed point theory literature, the contraction conditions in the fixed point theorems preponderantly concern the continuous mapping. Only in a few of published papers, the discontinuous operators were investigated whether they posses a fixed point. In 1969, Kannan [8] proved the first metric fixed point theorem that is not necessarily continuous. Following this initial result, a number of authors have proposed some contraction conditions which do not force the mapping to be continuous at the fixed point, see e.g. [15, 13, 2]. For the sake of completeness, we recollect some fundamental results.

Throughout this paper, we shall denote the set of positive numbers and the set of real numbers by \mathbb{N} and \mathbb{R} , respectively. Moreover, we set $\mathbb{R}_0^+ = [0, \infty)$.

In 1999, Pant [13] proved the following fixed point theorem in which the continuity of mapping at the fixed point is not necessary.

Theorem 1.1. ([13]) If a self-mapping T of a complete metric space (X, d) satisfies the conditions;

- (i) $d(Tx,Ty) \leq \phi(\max\{d(x,Tx), d(y,Ty)\})$, where ϕ is a self-mapping on \mathbb{R}_0^+ such that $\phi(t) < t$ for each t > 0;
- (ii) for a given $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that

 $\varepsilon < \max\{d(x, Tx), d(y, Ty)\} < \varepsilon + \delta(\varepsilon) \text{ implies } d(Tx, Ty) \le \varepsilon$

then T has a unique fixed point, say z. Moreover, T is continuous at z if and only if

$$\lim_{x \to z} \max\{d(x, Tx), d(z, Tz)\} = 0.$$
(1.1)

Very recently, the result of Pant [13] was extended by Bisht and Pant [2] in the following way:

Theorem 1.2. ([2]) If a self-mapping T of a complete metric space (X, d) satisfies the conditions;

- (i) T^2 is continuous,
- (ii) $d(Tx, Ty) \leq \phi(M(x, y))$, where ϕ is a self-mapping on \mathbb{R}^+_0 such that $\phi(t) < t$ for each t > 0;
- (iii) for a given $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that

$$\varepsilon < M(x,y) < \varepsilon + \delta(\varepsilon)$$
 implies $d(Tx,Ty) \le \varepsilon$,

where

$$M(x,y) = \left\{ d(x,y), d(x,Tx), d(Ty,y), \frac{d(x,Ty) + d(Tx,y)}{2} \right\}$$

then T has a unique fixed point, say z, and and $T^n x \to z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$\lim_{x \to z} M(x, z) \neq 0.$$

In what follows, we recall two interesting contraction types that involve rational expression (see also e.g. [1, 4, 9, 12]).

Theorem 1.3. Let (X, d) be a complete metric space and $T : X \to X$ be a continuous mapping. If there exist $\alpha, \beta \in [0, 1)$, with $\alpha + \beta < 1$ such that

$$d(Tx, Ty) \le \alpha \cdot \frac{d(x, Tx)d(y, Ty)}{d(x, y)} + \beta d(x, y), \tag{1.2}$$

for all distinct $x, y \in X$, then, T posses a unique fixed point in X.

Theorem 1.4. ([3]) Let (X, d) be a complete metric space and $T : X \to X$ be a self-mapping. If there exist $\alpha, \beta \in [0, 1)$, with $\alpha + \beta < 1$ such that

$$d(Tx, Ty) \le \alpha \cdot d(y, Ty) \frac{1 + d(x, Tx)}{1 + d(x, y)} + \beta d(x, y)$$

$$(1.3)$$

for all $x, y \in X$, then, T has a unique fixed point $u \in X$. Moreover, the sequence $\{T^nx\}$ converges to the fixed point u for all $x \in X$.

In this paper, we provide answers for the question whether there is a contraction condition which does not force the mapping to be continuous at the fixed point. In particular, we propose a contraction conditions in rational forms that possess a fixed point but not need to be continuous at the given fixed point.

2. Main results

The following is the first main results of this paper.

Theorem 2.1. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;

- (i) T^2 is continuous,
- (ii) $d(Tx,Ty) \leq \phi(R(x,y))$, where ϕ is a self-mapping on \mathbb{R}^+_0 such that $\phi(t) < t$ for each t > 0;
- (iii) for a given $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that

$$\varepsilon < R(x, y) < \varepsilon + \delta(\varepsilon)$$
 implies $d(Tx, Ty) \le \varepsilon$,

where

$$R(x,y) = \max\left\{\frac{d(x,Tx)d(y,Ty)}{d(x,y)}, d(x,y)\right\}, x \neq y,$$

then T has a unique fixed point, say z, and and $T^n x \to z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$\lim_{x \to z} R(x, z) \neq 0.$$

Remark 2.2. The last conclusion of Theorem 1.1 can be written as, T is continuous at z if and only if

$$\lim_{x \to z} d(x, Tx) = 0, \tag{2.1}$$

since d(z, Tz) = 0. The same remark is also valid for Theorem 2.1. Thus, the second conclusion of Theorem 2.1 could be represented as (2.1).

Proof. Let $x_0 \in X$. We built an iterative sequence $\{x_n\}$ in X by letting

$$x_n = T^n x_0 = T x_{n-1}, \text{ for } n \in \mathbb{N}.$$

In case of $x_{n_0} = x_{n_0+1} = Tx_{n_0}$ for some $n_0 \in \mathbb{N}_0$, we conclude that $x^* = x_{n_0}$ forms a fixed point for T which completes the proof. Consequently, throughout the proof, we assume that

$$x_n \neq x_{n+1} \Leftrightarrow d(x_n, x_{n+1}) > 0 \text{ for all } n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}.$$

$$(2.2)$$

Furthermore, we shall assume that

$$x_n \neq x_{n+k} \Leftrightarrow d(x_n, x_{n+k}) > 0 \text{ for all } n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} \text{ and } k \in \mathbb{N}.$$

$$(2.3)$$

Indeed, if $x_n = x_{n+k}$, then $T^k x_n = x_n$, that is, x_n is a fixed point of T^k . Now, we shall show that , x_n is also a fixed point of T. To show this, it is sufficient to use (*ii*) with the method of *Reductio ad Absurdum*.

Suppose, on the contrary that $d(Tx_n, x_n) > 0$.

$$0 < d(Tx_n, x_n) = d(T^{k+1}x_n, T^kx_n) = d(T^k(Tx_n), T^kx_n)$$

$$\leq \phi(R(T^{k-1}(Tx_n), T^{k-1}x_n)) = \phi(R(T^kx_n, T^{k-1}x_n))$$

$$< R(T^kx_n, T^{k-1}x_n)$$

$$= \max\left\{\frac{d(T^kx_n, TT^kx_n)d(T^{k-1}x_n, TT^{k-1}x_n)}{d(T^kx_n, T^{k-1}x_n)}, d(T^kx_n, T^{k-1}x_n)\right\}$$

$$= \max\left\{\frac{d(T^kx_n, T^{k+1}x_n)d(T^{k-1}x_n, T^kx_n)}{d(T^kx_n, T^{k-1}x_n)}, d(T^kx_n, T^{k-1}x_n)\right\}$$

$$= d(T^kx_n, T^{k-1}x_n).$$
(2.4)

Notice that this is the only possible case, since, the case

$$R(T^{k}x_{n}, T^{k-1}x_{n}) = d(T^{k}x_{n}, T^{k+1}x_{n})$$

brings a contradiction. Recursively, after k-1 steps, we find that

$$0 < d(Tx_n, x_n) = d(T^k(Tx_n), T^k x_n) \le \phi(R(T^{k-1}(Tx_n), T^{k-1} x_n))$$

$$< R(T^{k-1}(Tx_n), T^{k-1} x_n) = d(T^{k-1}(Tx_n), T^{k-1} x_n)$$

$$\le \cdots$$

$$\le \phi(d(Tx_n, x_n)) < d(Tx_n, x_n),$$
(2.5)

a contradiction. Hence, we deduce the validity of (2.3). By taking $x = x_n$ and $y = x_{n+1}$ in the inequality in (*ii*) together with (2.2), we derive that

$$d(x_{n}, x_{n+1}) = d(Tx_{n-1}, T_{n}) \le \phi(R(x, y))$$

$$= \phi\left(\max\left\{\frac{d(x_{n-1}, Tx_{n-1})d(x_{n}, Tx_{n})}{d(x_{n-1}, x_{n})}, d(x_{n-1}, x_{n})\right\}\right)$$

$$= \phi\left(\max\left\{\frac{d(x_{n-1}, x_{n})d(x_{n}, x_{n+1})}{d(x_{n-1}, x_{n})}, d(x_{n-1}, x_{n})\right\}\right)$$

$$< \max\left\{d(x_{n}, x_{n+1}), d(x_{n-1}, x_{n})\right\}.$$
(2.6)

Since the case

$$d(x_n, x_{n+1}) \ge d(x_{n-1}, x_n)$$

yields a contradiction, we conclude that the inequality (2.6) turns into

$$d(x_n, x_{n+1}) \le \phi(d(x_{n-1}, x_n)) < d(x_{n-1}, x_n).$$
(2.7)

Thus, the sequence $\{d(x_n, x_{n+1})\}$ is decreasing and bounded below by 0. Accordingly, the sequence $\{d(x_n, x_{n+1})\}$ is convergent to some $L \ge 0$. We shall show that L = 0.

Suppose, on the contrary, that L > 0. For this $L = \varepsilon$, there exists a positive integer $k_0 \in \mathbb{N}$ such that

$$L < d(x_n, x_{n+1}) < L + \delta(L), \text{ for all } n \ge k_0.$$
 (2.8)

Employing (*iii*) together with (2.7), we conclude that $d(x_n, x_{n+1}) < L$, a contradiction. Accordingly, we conclude that L = 0.

As a next step, we shall show that the recursive sequence $\{x_n\}$ is Cauchy. Fix an $\varepsilon > 0$. Without loss of generality, we may assume that $\delta = \delta(\varepsilon) < \varepsilon$. On account of the fact that $\{d(x_n, x_{n+1})\}$ converges to 0, there positive integer $k \in \mathbb{N}$ such that

$$d(x_n, x_{n+1}) \le \frac{1}{2}\delta, \text{ for all } n \ge k.$$
(2.9)

By using the method of the induction, we shall show that, for any $n \in \mathbb{N}$,

$$d(x_n, x_{n+k}) \le \varepsilon + \frac{1}{2}\delta.$$
(2.10)

It is clear that the inequality (2.10) holds for n = 1. Now, we suppose that the inequality (2.10) is satisfied for n. To show our assertion, we shall prove it for n + 1. Taking the triangle inequality into account, we have

$$d(x_k, x_{n+k+1}) \le d(x_k, x_{k+1}) + d(x_{k+1}, x_{n+k+1})$$
(2.11)

To conclude our claim, it is enough to indicate that

$$d(x_{k+1}, x_{n+k+1}) \le \varepsilon. \tag{2.12}$$

Indeed, when we prove that $R(x_k, x_{n+k}) \leq \varepsilon + \delta(\varepsilon)$, by (*iii*) together with (2.3), we deduce (2.12), where

$$R(x_k, x_{n+k}) = \max\left\{\frac{d(x_k, Tx_k)d(x_{n+k}, Tx_{n+k})}{d(x_k, x_{n+k})}, d(x_k, x_{n+k})\right\}.$$
(2.13)

Regarding the induction assumptions (2.9) and (2.10), we derive that

$$R(x_k, x_{n+k}) < \varepsilon + \delta. \tag{2.14}$$

On account of (*iii*), we get that $d(x_{k+1}, x_{n+k+1}) < \varepsilon$ that completes the induction. Moreover, (2.10) yields that the constructed sequence $\{x_n\}$ is Cauchy.

Regarding that X is complete, there exists a point $z \in X$ such that $x_n \to z$ as $n \to \infty$. Also $Tx_n = x_{n+1} \to z$ and $T^2x_n \to z$. By continuity of T^2 , we have $T^2x_n \to T^2z$. This implies $T^2z = z$.

As a final step, we assert that Tz = z. Suppose, on the contrary, that $z \neq Tz$. So, we have

$$d(z,Tz) = d(T^{2}z,Tz) \leq \phi(R(z,Tz)) < R(z,Tz)$$

= $\max\left\{\frac{d(z,Tz)d(Tz,T^{2}z)}{d(z,Tz)}, d(z,Tz)\right\} = d(z,Tz),$ (2.15)

which is a contradiction. Consequently, z is a fixed point of T. It is easy to see that the uniqueness of the fixed point follows from (ii).

Example 2.3. Let d be the standard metric on $X := \mathbb{R}_0^+$. Define a self-mapping T on X by

$$T(x) = 1$$
 if $x \le 1, T(x) = 0$ if $x > 1$.

It is easy to see that T fulfills the axioms of Theorem 2.1 and has a unique fixed point x = 1. The mapping T fulfills the contractive condition (ii) with $\phi(t) = 1$ for t > 1 and $\phi(t) = \frac{t}{3}$ for $t \leq 1$. Also, T fulfills the condition (iii) with $\delta(\varepsilon) = 1$ for $\varepsilon \geq 1$ and $\delta(\varepsilon) = 1 - \varepsilon$ for $\varepsilon < 1$. Notice also that

$$\lim_{x \to 1} R(x, 1) \neq 0$$

and T is discontinuous at the fixed point x = 1. Furthermore, $\phi(t)$ is not upper semi-continuous at t = 1 and $\delta(\varepsilon)$ is not lower semi-continuous at $\varepsilon = 1$. On the other hand, T^2 is continuous, since $T^2(x) = 1$ for all $x \in X$.

Theorem 2.4. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;

- (i) T^2 is continuous,
- (ii) $d(Tx,Ty) \leq \phi(Q(x,y))$, where ϕ is a self-mapping on \mathbb{R}^+_0 such that $\phi(t) < t$ for each t > 0;
- (iii) for a given $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that

$$\varepsilon < Q(x, y) < \varepsilon + \delta(\varepsilon)$$
 implies $d(Tx, Ty) \le \varepsilon$,

where

$$Q(x,y) = \max\left\{d(y,Ty)\frac{1+d(x,Tx)}{1+d(x,y)}, d(x,y)\right\}$$

then T has a unique fixed point, say z, and and $T^n x \to z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$\lim_{x \to z} Q(x, z) \neq 0.$$

Proof. The proof is the mimic of the proof of Theorem 2.1. As in the proof of Theorem 2.1, we construct an recursive sequence $\{x_n\}$ in X by letting $x_n = T^n x_0 = T x_{n-1}$, for $n \in \mathbb{N}$. Analogously, we derive that (2.2).

On account of (ii), we derive that

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, T_n) \le \phi(Q(x, y))$$

= $\phi\left(\max\left\{d(x_n, Tx_n)\frac{1 + d(x_{n-1}, Tx_{n-1})}{1 + d(x_{n-1}, x_n)}, d(x_{n-1}, x_n)\right\}\right)$
= $\phi\left(\max\left\{d(x_n, x_{n+1})\frac{1 + d(x_{n-1}, x_n)}{1 + d(x_{n-1}, x_n)}, d(x_{n-1}, x_n)\right\}\right)$
< $\max\left\{d(x_n, x_{n+1}), d(x_{n-1}, x_n)\right\}.$ (2.16)

Note that the case

$$d(x_n, x_{n+1}) \ge d(x_{n-1}, x_n)$$

bring a contradiction. Accordingly, we deduce that the inequality (2.16) turns into

$$d(x_n, x_{n+1}) \le \phi(d(x_{n-1}, x_n)) < d(x_{n-1}, x_n).$$
(2.17)

Consequently, we observe that the sequence $\{d(x_n, x_{n+1})\}$ is decreasing and bounded below by 0. Thus, the sequence $\{d(x_n, x_{n+1})\}$ is convergent to some $L \ge 0$. We shall show that L = 0. Suppose, on the contrary, that L > 0. For this $L = \varepsilon$, there exists a positive integer $k_0 \in \mathbb{N}$ such that

$$L < d(x_n, x_{n+1}) < L + \delta(L), \text{ for all } n \ge k_0.$$
 (2.18)

Taking (*iii*) into account together with (2.17), we find that $d(x_n, x_{n+1}) < L$, a contradiction. Hence, we derive that L = 0.

To show that the sequence $\{x_n\}$ is Cauchy, we shall use the induction again, as in the proof of Theorem 2.1. First, we fix an $\varepsilon > 0$ and suppose that $\delta = \delta(\varepsilon) < \varepsilon$, without loss of generality. Since $\{d(x_n, x_{n+1})\}$ converges to 0, there positive integer $k \in \mathbb{N}$ such that

$$d(x_n, x_{n+1}) \le \frac{1}{2}\delta, \text{ for all } n \ge k.$$
(2.19)

Our goal is to get the inequality below

$$d(x_n, x_{n+k}) \le \varepsilon + \frac{1}{2}\delta$$
, for any $n \in \mathbb{N}$, (2.20)

by using the induction steps. The inequality (2.20) trivially holds for n = 1. Now, we assume that the inequality (2.20) is fulfilled for n, and show it holds for n + 1. By the triangle inequality, we observe that

$$d(x_k, x_{n+k+1}) \le d(x_k, x_{k+1}) + d(x_{k+1}, x_{n+k+1})$$
(2.21)

To conclude our claim, it is enough to indicate that

$$d(x_{k+1}, x_{n+k+1}) \le \varepsilon. \tag{2.22}$$

Indeed, when we prove that $Q(x_k, x_{n+k}) \leq \varepsilon + \delta(\varepsilon)$, by (*iii*, we get (2.22), where

$$Q(x_k, x_{n+k}) = \max\left\{ d(x_{n+k}, Tx_{n+k}) \frac{1 + d(x_k, Tx_k)}{1 + d(x_k, x_{n+k})}, d(x_k, x_{n+k}) \right\}.$$
 (2.23)

Regarding the induction assumptions (2.19) and (2.20), we derive that

$$R(x_k, x_{n+k}) < \varepsilon + \delta. \tag{2.24}$$

On account of (*iii*), we get that $d(x_{k+1}, x_{n+k+1}) < \varepsilon$ that completes the induction. Moreover, (2.10) yields that the constructed sequence $\{x_n\}$ is Cauchy.

Regarding that X is complete, there exists a point $z \in X$ such that $x_n \to z$ as $n \to \infty$. Also $Tx_n = x_{n+1} \to z$ and $T^2x_n \to z$. By continuity of T^2 , we have $T^2x_n \to T^2z$. This implies $T^2z = z$.

As a final step, we assert that Tz = z. Suppose, on the contrary, that $z \neq Tz$. So, we have

$$d(z,Tz) = d(T^{2}z,Tz) \leq \phi(Q(z,Tz)) < Q(z,Tz)$$

= max $\left\{ d(Tz,T^{2}z) \frac{1+d(z,Tz)}{1+d(z,Tz)}, d(z,Tz) \right\} = d(z,Tz),$ (2.25)

a contradiction. As a result, we derive that z is a fixed point of T. The uniqueness of the fixed point follows from (ii).

Example 2.5. Let d be the standard metric on X := [0, 2]. Define a self-mapping T on X by

$$T(x) = \frac{1}{2}$$
 if $x \le \frac{1}{2}$, and $T(x) = \frac{x}{8}$ if $x > \frac{1}{2}$.

It is easy to see that T fulfills the axioms of Theorem 2.4 and has a unique fixed point $x = \frac{1}{2}$.

Corollary 2.6. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;

- (i) T^2 is continuous,
- $(ii) \quad d(Tx, Ty) < R(x, y),$
- (iii) for a given $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that

$$\varepsilon < R(x, y) < \varepsilon + \delta(\varepsilon)$$
 implies $d(Tx, Ty) \le \varepsilon$,

where

$$R(x,y) = \max\left\{\frac{d(x,Tx)d(y,Ty)}{d(x,y)}, d(x,y)\right\}$$

then T has a unique fixed point, say z, and and $T^n x \to z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$\lim_{x \to z} R(x, z) \neq 0$$

Corollary 2.7. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;

- (i) T^2 is continuous,
- $(ii) \ d(Tx,Ty) < Q(x,y),$
- (iii) for a given $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that

$$\varepsilon < R(x, y) < \varepsilon + \delta(\varepsilon)$$
 implies $d(Tx, Ty) \le \varepsilon$,

where

$$Q(x,y) = \max\left\{d(y,Ty)\frac{1+d(x,Tx)}{1+d(x,y)}, d(x,y)\right\}$$

then T has a unique fixed point, say z, and and $T^n x \to z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$\lim_{x \to z} Q(x, z) \neq 0.$$

Corollary 2.8. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;

- (i) T^2 is continuous,
- (ii) $d(Tx, Ty) \leq \phi(d(x, y))$, where ϕ is a self-mapping on \mathbb{R}_0^+ such that $\phi(t) < t$ for each t > 0;
- (iii) for a given $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that

 $\varepsilon < R(x, y) < \varepsilon + \delta(\varepsilon)$ implies $d(Tx, Ty) \le \varepsilon$,

then T has a unique fixed point, say z, and and $T^n x \to z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$\lim_{x \to z} d(x, z) \neq 0.$$

Corollary 2.9. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;

- (i) T^2 is continuous,
- (ii) $d(Tx, Ty) \leq \phi(r_i(x, y))$ holds for i = 1 or i = 2 where ϕ is a self-mapping on \mathbb{R}^+_0 such that $\phi(t) < t$ for each t > 0;
- (iii) for a given $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that

$$\varepsilon < r_i(x, y) < \varepsilon + \delta(\varepsilon)$$
 implies $d(Tx, Ty) \le \varepsilon$, for $i = 1$ or $i = 2$

where

$$r_1(x,y) = \frac{d(y,Ty)d(x,Tx)}{d(x,y)}$$
 and $r_2(x,y) = d(y,Ty)\frac{1+d(x,Tx)}{1+d(x,y)}$

Then T has a unique fixed point, say z, and and $T^n x \to z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$\lim_{x \to z} r_i(x, z) \neq 0, \text{ for } i = 1 \text{ or } i = 2.$$

Corollary 2.10. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;

- (i) T^2 is continuous,
- (ii) $d(Tx,Ty) < r_i(x,y)$ holds for i = 1 or i = 2 where ϕ is a self-mapping on \mathbb{R}_0^+ such that $\phi(t) < t$ for each t > 0;
- (iii) for a given $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that

$$\varepsilon < r_i(x, y) < \varepsilon + \delta(\varepsilon)$$
 implies $d(Tx, Ty) \leq \varepsilon$, for $i = 1$ or $i = 2$

where

$$r_1(x,y) = \frac{d(y,Ty)d(x,Tx)}{d(x,y)}$$
 and $r_2(x,y) = d(y,Ty)\frac{1+d(x,Tx)}{1+d(x,y)}$.

Then T has a unique fixed point, say z, and and $T^n x \to z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$\lim_{x \to z} r_i(x, z) \neq 0, \text{ for } i = 1 \text{ or } i = 2.$$

Remark 2.11. Note that the discussion in Remark 2.2 is also valid for Theorem 2.4 and the consequences of both Theorem 2.1 and Theorem 2.4.

References

- M. Arshad, E. Karapinar, J. Ahmad, Some unique fixed point theorems for rational contractions in partially ordered metric spaces, J. Inequal. Appl., 2013, 2013:248.
- [2] R.K. Bisht, R.P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl., 445(2017), 1239-1242.
- B.K. Dass, S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure Appl. Math., 6(1975), 1455-1458.

- [4] S. Chandok, E. Karapinar, Common fixed point of generalized rational type contraction mappings in partially ordered metric spaces, Thai J. Math., 11(2013), no. 2. 251-260.
- [5] J. Jachymski, Common fixed point theorems for some families of maps, Indian J. Pure Appl. Math., 25(1994), 925-937.
- [6] J. Jachymski, Equivalent conditions and Meir-Keeler type theorems, J. Math. Anal. Appl., 194(1995), 293-303.
- [7] D.S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math., 8(1977), 223-230.
- [8] R. Kannan, Some results on fixed points II, Amer. Math. Monthly, 76(1969), 405-408.
- [9] E. Karapinar, A. Dehici, N. Redjel, On some fixed points of (α ψ)-contractive mappings with rational expressions, J. Nonlinear Sci. Appl., 10(2017), 1569-1581.
- [10] J. Matkowski, Integrable solutions of functional equations, Dissertationes Math., 127(1975), 1-68.
- [11] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969), 326-329.
- [12] Z. Mustafa, E. Karapinar, H. Aydi, A discussion on generalized almost contractions via rational expressions in partially ordered metric spaces, J. Inequal. Appl., 2014, 2014:219.
- [13] R.P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl., **240**(1999), 284-289.
- [14] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226(1977), 257-290.
- [15] B.E. Rhoades, Contractive definitions and continuity, Contemp. Math., 72(1988), 233-245.

Received: June 7, 2018; Accepted: October 31, 2018.