A NOTE ON A RATIONAL FORM CONTRACTIONS WITH DISCONTINUITIES AT FIXED POINTS

E. KARAPINAR
Atilim University, Department of Mathematics,06836, İncek, Ankara, Turkey
and
Department of Medical Research, China Medical University, 40402, Taichung, Taiwan E-mail: erdalkarapinar@yahoo.com

Abstract

In this paper, we investigate one of the classical problems of the metric fixed point theory: Whether there is a contraction condition which does not force the mapping to be continuous at the fixed point. We propose a contraction conditions in rational form that has a unique fixed point but not necessarily continuous at the given fixed point.

Key Words and Phrases: Discontinuity, fixed point theorems, metric space.
2010 Mathematics Subject Classification: 47H10, 54H10, 54H25.

1. Introduction

In the metric fixed point theory literature, the contraction conditions in the fixed point theorems preponderantly concern the continuous mapping. Only in a few of published papers, the discontinuous operators were investigated whether they posses a fixed point. In 1969, Kannan [8] proved the first metric fixed point theorem that is not necessarily continuous. Following this initial result, a number of authors have proposed some contraction conditions which do not force the mapping to be continuous at the fixed point, see e.g. $[15,13,2]$. For the sake of completeness, we recollect some fundamental results.

Throughout this paper, we shall denote the set of positive numbers and the set of real numbers by \mathbb{N} and \mathbb{R}, respectively. Moreover, we set $\mathbb{R}_{0}^{+}=[0, \infty)$.

In 1999, Pant [13] proved the following fixed point theorem in which the continuity of mapping at the fixed point is not necessary.
Theorem 1.1. ([13]) If a self-mapping T of a complete metric space (X, d) satisfies the conditions;
(i) $d(T x, T y) \leq \phi(\max \{d(x, T x), d(y, T y)\})$, where ϕ is a self-mapping on \mathbb{R}_{0}^{+} such that $\phi(t)<t$ for each $t>0$;
(ii) for a given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\varepsilon<\max \{d(x, T x), d(y, T y)\}<\varepsilon+\delta(\varepsilon) \text { implies } d(T x, T y) \leq \varepsilon
$$

then T has a unique fixed point, say z. Moreover, T is continuous at z if and only if

$$
\begin{equation*}
\lim _{x \rightarrow z} \max \{d(x, T x), d(z, T z)\}=0 \tag{1.1}
\end{equation*}
$$

Very recently, the result of Pant [13] was extended by Bisht and Pant [2] in the following way:

Theorem 1.2. ([2]) If a self-mapping T of a complete metric space (X, d) satisfies the conditions;
(i) T^{2} is continuous,
(ii) $d(T x, T y) \leq \phi(M(x, y))$, where ϕ is a self-mapping on \mathbb{R}_{0}^{+}such that $\phi(t)<t$ for each $t>0$
(iii) for a given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\varepsilon<M(x, y)<\varepsilon+\delta(\varepsilon) \text { implies } d(T x, T y) \leq \varepsilon
$$

where

$$
M(x, y)=\left\{d(x, y), d(x, T x), d(T y, y), \frac{d(x, T y)+d(T x, y)}{2}\right\}
$$

then T has a unique fixed point, say z, and and $T^{n} x \rightarrow z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$
\lim _{x \rightarrow z} M(x, z) \neq 0
$$

In what follows, we recall two interesting contraction types that involve rational expression (see also e.g. [1, 4, 9, 12]).

Theorem 1.3. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a continuous mapping. If there exist $\alpha, \beta \in[0,1)$, with $\alpha+\beta<1$ such that

$$
\begin{equation*}
d(T x, T y) \leq \alpha \cdot \frac{d(x, T x) d(y, T y)}{d(x, y)}+\beta d(x, y) \tag{1.2}
\end{equation*}
$$

for all distinct $x, y \in X$, then, T posses a unique fixed point in X.
Theorem 1.4. ([3]) Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a self-mapping. If there exist $\alpha, \beta \in[0,1)$, with $\alpha+\beta<1$ such that

$$
\begin{equation*}
d(T x, T y) \leq \alpha \cdot d(y, T y) \frac{1+d(x, T x)}{1+d(x, y)}+\beta d(x, y) \tag{1.3}
\end{equation*}
$$

for all $x, y \in X$, then, T has a unique fixed point $u \in X$. Moreover, the sequence $\left\{T^{n} x\right\}$ converges to the fixed point u for all $x \in X$.

In this paper, we provide answers for the question whether there is a contraction condition which does not force the mapping to be continuous at the fixed point. In particular, we propose a contraction conditions in rational forms that possess a fixed point but not need to be continuous at the given fixed point.

2. Main Results

The following is the first main results of this paper.
Theorem 2.1. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;
(i) T^{2} is continuous,
(ii) $d(T x, T y) \leq \phi(R(x, y))$, where ϕ is a self-mapping on \mathbb{R}_{0}^{+}such that $\phi(t)<t$ for each $t>0$;
(iii) for a given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\varepsilon<R(x, y)<\varepsilon+\delta(\varepsilon) \text { implies } d(T x, T y) \leq \varepsilon
$$

where

$$
R(x, y)=\max \left\{\frac{d(x, T x) d(y, T y)}{d(x, y)}, d(x, y)\right\}, x \neq y
$$

then T has a unique fixed point, say z, and and $T^{n} x \rightarrow z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$
\lim _{x \rightarrow z} R(x, z) \neq 0
$$

Remark 2.2. The last conclusion of Theorem 1.1 can be written as, T is continuous at z if and only if

$$
\begin{equation*}
\lim _{x \rightarrow z} d(x, T x)=0 \tag{2.1}
\end{equation*}
$$

since $d(z, T z)=0$. The same remark is also valid for Theorem 2.1. Thus, the second conclusion of Theorem 2.1 could be represented as (2.1).
Proof. Let $x_{0} \in X$. We built an iterative sequence $\left\{x_{n}\right\}$ in X by letting

$$
x_{n}=T^{n} x_{0}=T x_{n-1}, \text { for } n \in \mathbb{N}
$$

In case of $x_{n_{0}}=x_{n_{0}+1}=T x_{n_{0}}$ for some $n_{0} \in \mathbb{N}_{0}$, we conclude that $x^{*}=x_{n_{0}}$ forms a fixed point for T which completes the proof. Consequently, throughout the proof, we assume that

$$
\begin{equation*}
x_{n} \neq x_{n+1} \Leftrightarrow d\left(x_{n}, x_{n+1}\right)>0 \text { for all } n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} . \tag{2.2}
\end{equation*}
$$

Furthermore, we shall assume that

$$
\begin{equation*}
x_{n} \neq x_{n+k} \Leftrightarrow d\left(x_{n}, x_{n+k}\right)>0 \text { for all } n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} \text { and } k \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

Indeed, if $x_{n}=x_{n+k}$, then $T^{k} x_{n}=x_{n}$, that is, x_{n} is a fixed point of T^{k}. Now, we shall show that , x_{n} is also a fixed point of T. To show this, it is sufficient to use (ii) with the method of Reductio ad Absurdum.

Suppose, on the contrary that $d\left(T x_{n}, x_{n}\right)>0$.

$$
\begin{align*}
0<d\left(T x_{n}, x_{n}\right) & =d\left(T^{k+1} x_{n}, T^{k} x_{n}\right)=d\left(T^{k}\left(T x_{n}\right), T^{k} x_{n}\right) \\
& \leq \phi\left(R\left(T^{k-1}\left(T x_{n}\right), T^{k-1} x_{n}\right)\right)=\phi\left(R\left(T^{k} x_{n}, T^{k-1} x_{n}\right)\right) \\
& <R\left(T^{k} x_{n}, T^{k-1} x_{n}\right) \\
& =\max \left\{\frac{d\left(T^{k} x_{n}, T T^{k} x_{n}\right) d\left(T^{k-1} x_{n}, T T^{k-1} x_{n}\right)}{d\left(T^{k} x_{n}, T^{k-1} x_{n}\right)}, d\left(T^{k} x_{n}, T^{k-1} x_{n}\right)\right\} \\
& =\max \left\{\frac{d\left(T^{k} x_{n}, T^{k+1} x_{n}\right) d\left(T^{k-1} x_{n}, T^{k} x_{n}\right)}{d\left(T^{k} x_{n}, T^{k-1} x_{n}\right)}, d\left(T^{k} x_{n}, T^{k-1} x_{n}\right)\right\} \\
& =d\left(T^{k} x_{n}, T^{k-1} x_{n}\right) \tag{2.4}
\end{align*}
$$

Notice that this is the only possible case, since, the case

$$
R\left(T^{k} x_{n}, T^{k-1} x_{n}\right)=d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)
$$

brings a contradiction. Recursively, after $k-1$ steps, we find that

$$
\begin{align*}
0<d\left(T x_{n}, x_{n}\right) & =d\left(T^{k}\left(T x_{n}\right), T^{k} x_{n}\right) \leq \phi\left(R\left(T^{k-1}\left(T x_{n}\right), T^{k-1} x_{n}\right)\right) \\
& <R\left(T^{k-1}\left(T x_{n}\right), T^{k-1} x_{n}\right)=d\left(T^{k-1}\left(T x_{n}\right), T^{k-1} x_{n}\right) \tag{2.5}\\
& \leq \cdots \\
& \leq \phi\left(d\left(T x_{n}, x_{n}\right)\right)<d\left(T x_{n}, x_{n}\right)
\end{align*}
$$

a contradiction. Hence, we deduce the validity of (2.3).
By taking $x=x_{n}$ and $y=x_{n+1}$ in the inequality in (ii) together with (2.2), we derive that

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & =d\left(T x_{n-1}, T_{n}\right) \leq \phi(R(x, y)) \\
& =\phi\left(\max \left\{\frac{d\left(x_{n-1}, T x_{n-1}\right) d\left(x_{n}, T x_{n}\right)}{d\left(x_{n-1}, x_{n}\right)}, d\left(x_{n-1}, x_{n}\right)\right\}\right) \tag{2.6}\\
& =\phi\left(\max \left\{\frac{d\left(x_{n-1}, x_{n}\right) d\left(x_{n}, x_{n+1}\right)}{d\left(x_{n-1}, x_{n}\right)}, d\left(x_{n-1}, x_{n}\right)\right\}\right) \\
& <\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)\right\} .
\end{align*}
$$

Since the case

$$
d\left(x_{n}, x_{n+1}\right) \geq d\left(x_{n-1}, x_{n}\right)
$$

yields a contradiction, we conclude that the inequality (2.6) turns into

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \phi\left(d\left(x_{n-1}, x_{n}\right)\right)<d\left(x_{n-1}, x_{n}\right) . \tag{2.7}
\end{equation*}
$$

Thus, the sequence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is decreasing and bounded below by 0 . Accordingly, the sequence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is convergent to some $L \geq 0$. We shall show that $L=0$.

Suppose, on the contrary, that $L>0$. For this $L=\varepsilon$, there exists a positive integer $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
L<d\left(x_{n}, x_{n+1}\right)<L+\delta(L), \text { for all } n \geq k_{0} \tag{2.8}
\end{equation*}
$$

Employing (iii) together with (2.7), we conclude that $d\left(x_{n}, x_{n+1}\right)<L$, a contradiction. Accordingly, we conclude that $L=0$.

As a next step, we shall show that the recursive sequence $\left\{x_{n}\right\}$ is Cauchy. Fix an $\varepsilon>0$. Without loss of generality, we may assume that $\delta=\delta(\varepsilon)<\varepsilon$. On account of the fact that $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ converges to 0 , there positive integer $k \in \mathbb{N}$ such that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \frac{1}{2} \delta, \text { for all } n \geq k \tag{2.9}
\end{equation*}
$$

By using the method of the induction, we shall show that, for any $n \in \mathbb{N}$,

$$
\begin{equation*}
d\left(x_{n}, x_{n+k}\right) \leq \varepsilon+\frac{1}{2} \delta . \tag{2.10}
\end{equation*}
$$

It is clear that the inequality (2.10) holds for $n=1$. Now, we suppose that the inequality (2.10) is satisfied for n. To show our assertion, we shall prove it for $n+1$. Taking the triangle inequality into account, we have

$$
\begin{equation*}
d\left(x_{k}, x_{n+k+1}\right) \leq d\left(x_{k}, x_{k+1}\right)+d\left(x_{k+1}, x_{n+k+1}\right) \tag{2.11}
\end{equation*}
$$

To conclude our claim, it is enough to indicate that

$$
\begin{equation*}
d\left(x_{k+1}, x_{n+k+1}\right) \leq \varepsilon \tag{2.12}
\end{equation*}
$$

Indeed, when we prove that $R\left(x_{k}, x_{n+k}\right) \leq \varepsilon+\delta(\varepsilon)$, by (iii) together with (2.3), we deduce (2.12), where

$$
\begin{equation*}
R\left(x_{k}, x_{n+k}\right)=\max \left\{\frac{d\left(x_{k}, T x_{k}\right) d\left(x_{n+k}, T x_{n+k}\right)}{d\left(x_{k}, x_{n+k}\right)}, d\left(x_{k}, x_{n+k}\right)\right\} \tag{2.13}
\end{equation*}
$$

Regarding the induction assumptions (2.9) and (2.10), we derive that

$$
\begin{equation*}
R\left(x_{k}, x_{n+k}\right)<\varepsilon+\delta \tag{2.14}
\end{equation*}
$$

On account of (iii), we get that $d\left(x_{k+1}, x_{n+k+1}\right)<\varepsilon$ that completes the induction. Moreover, (2.10) yields that the constructed sequence $\left\{x_{n}\right\}$ is Cauchy.

Regarding that X is complete, there exists a point $z \in X$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$. Also $T x_{n}=x_{n+1} \rightarrow z$ and $T^{2} x_{n} \rightarrow z$. By continuity of T^{2}, we have $T^{2} x_{n} \rightarrow T^{2} z$. This implies $T^{2} z=z$.

As a final step, we assert that $T z=z$. Suppose, on the contrary, that $z \neq T z$. So, we have

$$
\begin{align*}
d(z, T z) & =d\left(T^{2} z, T z\right) \leq \phi(R(z, T z))<R(z, T z) \\
& =\max \left\{\frac{d(z, T z) d\left(T z, T^{2} z\right)}{d(z, T z)}, d(z, T z)\right\}=d(z, T z) \tag{2.15}
\end{align*}
$$

which is a contradiction. Consequently, z is a fixed point of T. It is easy to see that the uniqueness of the fixed point follows from (ii).

Example 2.3. Let d be the standard metric on $X:=\mathbb{R}_{0}^{+}$. Define a self-mapping T on X by

$$
T(x)=1 \text { if } x \leq 1, T(x)=0 \text { if } x>1
$$

It is easy to see that T fulfills the axioms of Theorem 2.1 and has a unique fixed point $x=1$. The mapping T fulfills the contractive condition (ii) with $\phi(t)=1$ for $t>1$ and $\phi(t)=\frac{t}{3}$ for $t \leq 1$. Also, T fulfills the condition (iii) with $\delta(\varepsilon)=1$ for $\varepsilon \geq 1$ and $\delta(\varepsilon)=1-\varepsilon$ for $\varepsilon<1$. Notice also that

$$
\lim _{x \rightarrow 1} R(x, 1) \neq 0
$$

and T is discontinuous at the fixed point $x=1$. Furthermore, $\phi(t)$ is not upper semi-continuous at $t=1$ and $\delta(\varepsilon)$ is not lower semi-continuous at $\varepsilon=1$. On the other hand, T^{2} is continuous, since $T^{2}(x)=1$ for all $x \in X$.
Theorem 2.4. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;
(i) T^{2} is continuous,
(ii) $d(T x, T y) \leq \phi(Q(x, y))$, where ϕ is a self-mapping on \mathbb{R}_{0}^{+}such that $\phi(t)<t$ for each $t>0$;
(iii) for a given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\varepsilon<Q(x, y)<\varepsilon+\delta(\varepsilon) \text { implies } d(T x, T y) \leq \varepsilon
$$

where

$$
Q(x, y)=\max \left\{d(y, T y) \frac{1+d(x, T x)}{1+d(x, y)}, d(x, y)\right\}
$$

then T has a unique fixed point, say z, and and $T^{n} x \rightarrow z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$
\lim _{x \rightarrow z} Q(x, z) \neq 0
$$

Proof. The proof is the mimic of the proof of Theorem 2.1. As in the proof of Theorem 2.1, we construct an recursive sequence $\left\{x_{n}\right\}$ in X by letting $x_{n}=T^{n} x_{0}=T x_{n-1}$, for $n \in \mathbb{N}$. Analogously, we derive that (2.2).

On account of (ii), we derive that

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & =d\left(T x_{n-1}, T_{n}\right) \leq \phi(Q(x, y)) \\
& =\phi\left(\max \left\{d\left(x_{n}, T x_{n}\right) \frac{1+d\left(x_{n-1}, T x_{n-1}\right)}{1+d\left(x_{n-1}, x_{n}\right)}, d\left(x_{n-1}, x_{n}\right)\right\}\right) \\
& =\phi\left(\max \left\{d\left(x_{n}, x_{n+1}\right) \frac{1+d\left(x_{n-1}, x_{n}\right)}{1+d\left(x_{n-1}, x_{n}\right)}, d\left(x_{n-1}, x_{n}\right)\right\}\right) \tag{2.16}\\
& <\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)\right\} .
\end{align*}
$$

Note that the case

$$
d\left(x_{n}, x_{n+1}\right) \geq d\left(x_{n-1}, x_{n}\right)
$$

bring a contradiction. Accordingly, we deduce that the inequality (2.16) turns into

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \phi\left(d\left(x_{n-1}, x_{n}\right)\right)<d\left(x_{n-1}, x_{n}\right) \tag{2.17}
\end{equation*}
$$

Consequently, we observe that the sequence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is decreasing and bounded below by 0 . Thus, the sequence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is convergent to some $L \geq 0$. We shall show that $L=0$. Suppose, on the contrary, that $L>0$. For this $L=\varepsilon$, there exists a positive integer $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
L<d\left(x_{n}, x_{n+1}\right)<L+\delta(L), \text { for all } n \geq k_{0} \tag{2.18}
\end{equation*}
$$

Taking (iii) into account together with (2.17), we find that $d\left(x_{n}, x_{n+1}\right)<L$, a contradiction. Hence, we derive that $L=0$.

To show that the sequence $\left\{x_{n}\right\}$ is Cauchy, we shall use the induction again, as in the proof of Theorem 2.1. First, we fix an $\varepsilon>0$ and suppose that $\delta=\delta(\varepsilon)<\varepsilon$, without loss of generality. Since $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ converges to 0 , there positive integer $k \in \mathbb{N}$ such that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \frac{1}{2} \delta, \text { for all } n \geq k \tag{2.19}
\end{equation*}
$$

Our goal is to get the inequality below

$$
\begin{equation*}
d\left(x_{n}, x_{n+k}\right) \leq \varepsilon+\frac{1}{2} \delta, \text { for any } n \in \mathbb{N} \tag{2.20}
\end{equation*}
$$

by using the induction steps. The inequality (2.20) trivially holds for $n=1$. Now, we assume that the inequality (2.20) is fulfilled for n, and show it holds for $n+1$. By the triangle inequality, we observe that

$$
\begin{equation*}
d\left(x_{k}, x_{n+k+1}\right) \leq d\left(x_{k}, x_{k+1}\right)+d\left(x_{k+1}, x_{n+k+1}\right) \tag{2.21}
\end{equation*}
$$

To conclude our claim, it is enough to indicate that

$$
\begin{equation*}
d\left(x_{k+1}, x_{n+k+1}\right) \leq \varepsilon \tag{2.22}
\end{equation*}
$$

Indeed, when we prove that $Q\left(x_{k}, x_{n+k}\right) \leq \varepsilon+\delta(\varepsilon)$, by (iii, we get (2.22), where

$$
\begin{equation*}
Q\left(x_{k}, x_{n+k}\right)=\max \left\{d\left(x_{n+k}, T x_{n+k}\right) \frac{1+d\left(x_{k}, T x_{k}\right)}{1+d\left(x_{k}, x_{n+k}\right)}, d\left(x_{k}, x_{n+k}\right)\right\} \tag{2.23}
\end{equation*}
$$

Regarding the induction assumptions (2.19) and (2.20), we derive that

$$
\begin{equation*}
R\left(x_{k}, x_{n+k}\right)<\varepsilon+\delta \tag{2.24}
\end{equation*}
$$

On account of (iii), we get that $d\left(x_{k+1}, x_{n+k+1}\right)<\varepsilon$ that completes the induction. Moreover, (2.10) yields that the constructed sequence $\left\{x_{n}\right\}$ is Cauchy.
Regarding that X is complete, there exists a point $z \in X$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$. Also $T x_{n}=x_{n+1} \rightarrow z$ and $T^{2} x_{n} \rightarrow z$. By continuity of T^{2}, we have $T^{2} x_{n} \rightarrow T^{2} z$. This implies $T^{2} z=z$.
As a final step, we assert that $T z=z$. Suppose, on the contrary, that $z \neq T z$. So, we have

$$
\begin{align*}
d(z, T z)= & d\left(T^{2} z, T z\right) \leq \phi(Q(z, T z))<Q(z, T z) \\
& =\max \left\{d\left(T z, T^{2} z\right) \frac{1+d(z, T z)}{1+d(z, T z)}, d(z, T z)\right\}=d(z, T z) \tag{2.25}
\end{align*}
$$

a contradiction. As a result, we derive that z is a fixed point of T. The uniqueness of the fixed point follows from (ii).

Example 2.5. Let d be the standard metric on $X:=[0,2]$. Define a self-mapping T on X by

$$
T(x)=\frac{1}{2} \text { if } x \leq \frac{1}{2}, \text { and } T(x)=\frac{x}{8} \text { if } x>\frac{1}{2}
$$

It is easy to see that T fulfills the axioms of Theorem 2.4 and has a unique fixed point $x=\frac{1}{2}$.

Corollary 2.6. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;
(i) T^{2} is continuous,
(ii) $d(T x, T y)<R(x, y)$,
(iii) for a given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\varepsilon<R(x, y)<\varepsilon+\delta(\varepsilon) \text { implies } d(T x, T y) \leq \varepsilon
$$

where

$$
R(x, y)=\max \left\{\frac{d(x, T x) d(y, T y)}{d(x, y)}, d(x, y)\right\}
$$

then T has a unique fixed point, say z, and and $T^{n} x \rightarrow z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$
\lim _{x \rightarrow z} R(x, z) \neq 0
$$

Corollary 2.7. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;
(i) T^{2} is continuous,
(ii) $d(T x, T y)<Q(x, y)$,
(iii) for a given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\varepsilon<R(x, y)<\varepsilon+\delta(\varepsilon) \text { implies } d(T x, T y) \leq \varepsilon
$$

where

$$
Q(x, y)=\max \left\{d(y, T y) \frac{1+d(x, T x)}{1+d(x, y)}, d(x, y)\right\}
$$

then T has a unique fixed point, say z, and and $T^{n} x \rightarrow z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$
\lim _{x \rightarrow z} Q(x, z) \neq 0
$$

Corollary 2.8. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;
(i) T^{2} is continuous,
(ii) $d(T x, T y) \leq \phi(d(x, y))$, where ϕ is a self-mapping on \mathbb{R}_{0}^{+}such that $\phi(t)<t$ for each $t>0$;
(iii) for a given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\varepsilon<R(x, y)<\varepsilon+\delta(\varepsilon) \text { implies } d(T x, T y) \leq \varepsilon
$$

then T has a unique fixed point, say z, and and $T^{n} x \rightarrow z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$
\lim _{x \rightarrow z} d(x, z) \neq 0
$$

Corollary 2.9. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;
(i) T^{2} is continuous,
(ii) $d(T x, T y) \leq \phi\left(r_{i}(x, y)\right)$ holds for $i=1$ or $i=2$ where ϕ is a self-mapping on \mathbb{R}_{0}^{+}such that $\phi(t)<t$ for each $t>0 ;$
(iii) for a given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\varepsilon<r_{i}(x, y)<\varepsilon+\delta(\varepsilon) \text { implies } d(T x, T y) \leq \varepsilon, \text { for } i=1 \text { or } i=2
$$

where

$$
r_{1}(x, y)=\frac{d(y, T y) d(x, T x)}{d(x, y)} \text { and } r_{2}(x, y)=d(y, T y) \frac{1+d(x, T x)}{1+d(x, y)}
$$

Then T has a unique fixed point, say z, and and $T^{n} x \rightarrow z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$
\lim _{x \rightarrow z} r_{i}(x, z) \neq 0, \text { for } i=1 \text { or } i=2
$$

Corollary 2.10. If a self-mapping T of a complete metric space (X, d) satisfies the conditions;
(i) T^{2} is continuous,
(ii) $d(T x, T y)<r_{i}(x, y)$ holds for $i=1$ or $i=2$ where ϕ is a self-mapping on \mathbb{R}_{0}^{+} such that $\phi(t)<t$ for each $t>0$;
(iii) for a given $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\varepsilon<r_{i}(x, y)<\varepsilon+\delta(\varepsilon) \text { implies } d(T x, T y) \leq \varepsilon, \text { for } i=1 \text { or } i=2
$$

where

$$
r_{1}(x, y)=\frac{d(y, T y) d(x, T x)}{d(x, y)} \text { and } r_{2}(x, y)=d(y, T y) \frac{1+d(x, T x)}{1+d(x, y)}
$$

Then T has a unique fixed point, say z, and and $T^{n} x \rightarrow z$ for each $x \in X$. Moreover, T is discontinuous at z if and only if

$$
\lim _{x \rightarrow z} r_{i}(x, z) \neq 0, \text { for } i=1 \text { or } i=2
$$

Remark 2.11. Note that the discussion in Remark 2.2 is also valid for Theorem 2.4 and the consequences of both Theorem 2.1 and Theorem 2.4.

References

[1] M. Arshad, E. Karapinar, J. Ahmad, Some unique fixed point theorems for rational contractions in partially ordered metric spaces, J. Inequal. Appl., 2013, 2013:248.
[2] R.K. Bisht, R.P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl., 445(2017), 1239-1242.
[3] B.K. Dass, S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure Appl. Math., 6(1975), 1455-1458.
[4] S. Chandok, E. Karapinar, Common fixed point of generalized rational type contraction mappings in partially ordered metric spaces, Thai J. Math., 11(2013), no. 2. 251-260.
[5] J. Jachymski, Common fixed point theorems for some families of maps, Indian J. Pure Appl. Math., 25(1994), 925-937.
[6] J. Jachymski, Equivalent conditions and Meir-Keeler type theorems, J. Math. Anal. Appl., 194(1995), 293-303.
[7] D.S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math., 8(1977), 223-230.
[8] R. Kannan, Some results on fixed points II, Amer. Math. Monthly, 76(1969), 405-408.
[9] E. Karapinar, A. Dehici, N. Redjel, On some fixed points of ($\alpha-\psi$)-contractive mappings with rational expressions, J. Nonlinear Sci. Appl., 10(2017), 1569-1581.
[10] J. Matkowski, Integrable solutions of functional equations, Dissertationes Math., 127(1975), 1-68.
[11] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969), 326329.
[12] Z. Mustafa, E. Karapinar, H. Aydi, A discussion on generalized almost contractions via rational expressions in partially ordered metric spaces, J. Inequal. Appl., 2014, 2014:219.
[13] R.P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl., 240(1999), 284-289.
[14] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226(1977), 257-290.
[15] B.E. Rhoades, Contractive definitions and continuity, Contemp. Math., 72(1988), 233-245.
Received: June 7, 2018; Accepted: October 31, 2018.

