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and
Department of Medical Research, China Medical University, 40402, Taichung, Taiwan

E-mail: erdalkarapinar@yahoo.com
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1. Introduction

In the metric fixed point theory literature, the contraction conditions in the fixed
point theorems preponderantly concern the continuous mapping. Only in a few of
published papers, the discontinuous operators were investigated whether they posses
a fixed point. In 1969, Kannan [8] proved the first metric fixed point theorem that
is not necessarily continuous. Following this initial result, a number of authors have
proposed some contraction conditions which do not force the mapping to be continu-
ous at the fixed point, see e.g. [15, 13, 2]. For the sake of completeness, we recollect
some fundamental results.

Throughout this paper, we shall denote the set of positive numbers and the set of
real numbers by N and R, respectively. Moreover, we set R+

0 = [0,∞).
In 1999, Pant [13] proved the following fixed point theorem in which the continuity

of mapping at the fixed point is not necessary.

Theorem 1.1. ([13]) If a self-mapping T of a complete metric space (X, d) satisfies
the conditions;

(i) d(Tx, Ty) ≤ φ(max{d(x, Tx), d(y, Ty)}), where φ is a self-mapping on R+
0

such that φ(t) < t for each t > 0;
(ii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < max{d(x, Tx), d(y, Ty)} < ε+ δ(ε) implies d(Tx, Ty) ≤ ε
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then T has a unique fixed point, say z. Moreover, T is continuous at z if and only if

lim
x→z

max{d(x, Tx), d(z, Tz)} = 0. (1.1)

Very recently, the result of Pant [13] was extended by Bisht and Pant [2] in the
following way:

Theorem 1.2. ([2]) If a self-mapping T of a complete metric space (X, d) satisfies
the conditions;

(i) T 2 is continuous,
(ii) d(Tx, Ty) ≤ φ(M(x, y)), where φ is a self-mapping on R+

0 such that φ(t) < t
for each t > 0;

(iii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < M(x, y) < ε+ δ(ε) implies d(Tx, Ty) ≤ ε,

where

M(x, y) =

{
d(x, y), d(x, Tx), d(Ty, y),

d(x, Ty) + d(Tx, y)

2

}
then T has a unique fixed point, say z, and and Tnx→ z for each x ∈ X. Moreover,
T is discontinuous at z if and only if

lim
x→z

M(x, z) 6= 0.

In what follows, we recall two interesting contraction types that involve rational ex-
pression (see also e.g. [1, 4, 9, 12]).

Theorem 1.3. Let (X, d) be a complete metric space and T : X → X be a continuous
mapping. If there exist α, β ∈ [0, 1), with α+ β < 1 such that

d(Tx, Ty) ≤ α · d(x, Tx)d(y, Ty)

d(x, y)
+ βd(x, y), (1.2)

for all distinct x, y ∈ X, then, T posses a unique fixed point in X.

Theorem 1.4. ([3]) Let (X, d) be a complete metric space and T : X → X be a
self-mapping. If there exist α, β ∈ [0, 1), with α+ β < 1 such that

d(Tx, Ty) ≤ α · d(y, Ty)
1 + d(x, Tx)

1 + d(x, y)
+ βd(x, y) (1.3)

for all x, y ∈ X, then, T has a unique fixed point u ∈ X. Moreover, the sequence
{Tnx} converges to the fixed point u for all x ∈ X.

In this paper, we provide answers for the question whether there is a contraction
condition which does not force the mapping to be continuous at the fixed point. In
particular, we propose a contraction conditions in rational forms that possess a fixed
point but not need to be continuous at the given fixed point.
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2. Main results

The following is the first main results of this paper.

Theorem 2.1. If a self-mapping T of a complete metric space (X, d) satisfies the
conditions;

(i) T 2 is continuous,
(ii) d(Tx, Ty) ≤ φ(R(x, y)), where φ is a self-mapping on R+

0 such that φ(t) < t
for each t > 0;

(iii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < R(x, y) < ε+ δ(ε) implies d(Tx, Ty) ≤ ε,

where

R(x, y) = max

{
d(x, Tx)d(y, Ty)

d(x, y)
, d(x, y)

}
, x 6= y,

then T has a unique fixed point, say z, and and Tnx→ z for each x ∈ X. Moreover,
T is discontinuous at z if and only if

lim
x→z

R(x, z) 6= 0.

Remark 2.2. The last conclusion of Theorem 1.1 can be written as, T is continuous
at z if and only if

lim
x→z

d(x, Tx) = 0, (2.1)

since d(z, Tz) = 0. The same remark is also valid for Theorem 2.1. Thus, the second
conclusion of Theorem 2.1 could be represented as (2.1).
Proof. Let x0 ∈ X. We built an iterative sequence {xn} in X by letting

xn = Tnx0 = Txn−1, for n ∈ N.

In case of xn0
= xn0+1 = Txn0

for some n0 ∈ N0, we conclude that x∗ = xn0
forms a

fixed point for T which completes the proof. Consequently, throughout the proof, we
assume that

xn 6= xn+1 ⇔ d(xn, xn+1) > 0 for all n ∈ N0 := N ∪ {0}. (2.2)

Furthermore, we shall assume that

xn 6= xn+k ⇔ d(xn, xn+k) > 0 for all n ∈ N0 := N ∪ {0} and k ∈ N. (2.3)

Indeed, if xn = xn+k, then T kxn = xn, that is, xn is a fixed point of T k. Now, we
shall show that , xn is also a fixed point of T . To show this, it is sufficient to use (ii)
with the method of Reductio ad Absurdum.
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Suppose, on the contrary that d(Txn, xn) > 0.

0 < d(Txn, xn) = d(T k+1xn, T
kxn) = d(T k(Txn), T kxn)

≤ φ(R(T k−1(Txn), T k−1xn)) = φ(R(T kxn, T
k−1xn))

< R(T kxn, T
k−1xn)

= max

{
d(T kxn, TT

kxn)d(T k−1xn, TT
k−1xn)

d(T kxn, T k−1xn)
, d(T kxn, T

k−1xn)

}
= max

{
d(T kxn, T

k+1xn)d(T k−1xn, T
kxn)

d(T kxn, T k−1xn)
, d(T kxn, T

k−1xn)

}
= d(T kxn, T

k−1xn). (2.4)

Notice that this is the only possible case, since, the case

R(T kxn, T
k−1xn) = d(T kxn, T

k+1xn)

brings a contradiction. Recursively, after k − 1 steps, we find that

0 < d(Txn, xn) = d(T k(Txn), T kxn) ≤ φ(R(T k−1(Txn), T k−1xn))

< R(T k−1(Txn), T k−1xn) = d(T k−1(Txn), T k−1xn)

≤ · · ·

≤ φ(d(Txn, xn)) < d(Txn, xn),

(2.5)

a contradiction. Hence, we deduce the validity of (2.3).
By taking x = xn and y = xn+1 in the inequality in (ii) together with (2.2), we derive
that

d(xn, xn+1) = d(Txn−1, Tn) ≤ φ(R(x, y))

= φ

(
max

{
d(xn−1, Txn−1)d(xn, Txn)

d(xn−1, xn)
, d(xn−1, xn)

})

= φ

(
max

{
d(xn−1, xn)d(xn, xn+1)

d(xn−1, xn)
, d(xn−1, xn)

})
< max {d(xn, xn+1), d(xn−1, xn)} .

(2.6)

Since the case

d(xn, xn+1) ≥ d(xn−1, xn)

yields a contradiction, we conclude that the inequality (2.6) turns into

d(xn, xn+1) ≤ φ(d(xn−1, xn)) < d(xn−1, xn). (2.7)

Thus, the sequence {d(xn, xn+1)} is decreasing and bounded below by 0. Accordingly,
the sequence {d(xn, xn+1)} is convergent to some L ≥ 0. We shall show that L = 0.
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Suppose, on the contrary, that L > 0. For this L = ε, there exists a positive integer
k0 ∈ N such that

L < d(xn, xn+1) < L+ δ(L), for all n ≥ k0. (2.8)

Employing (iii) together with (2.7), we conclude that d(xn, xn+1) < L, a contradic-
tion. Accordingly, we conclude that L = 0.

As a next step, we shall show that the recursive sequence {xn} is Cauchy. Fix an
ε > 0. Without loss of generality, we may assume that δ = δ(ε) < ε. On account of
the fact that {d(xn, xn+1)} converges to 0, there positive integer k ∈ N such that

d(xn, xn+1) ≤ 1

2
δ, for all n ≥ k. (2.9)

By using the method of the induction, we shall show that, for any n ∈ N,

d(xn, xn+k) ≤ ε+
1

2
δ. (2.10)

It is clear that the inequality (2.10) holds for n = 1. Now, we suppose that the
inequality (2.10) is satisfied for n. To show our assertion, we shall prove it for n+ 1.
Taking the triangle inequality into account, we have

d(xk, xn+k+1) ≤ d(xk, xk+1) + d(xk+1, xn+k+1) (2.11)

To conclude our claim, it is enough to indicate that

d(xk+1, xn+k+1) ≤ ε. (2.12)

Indeed, when we prove that R(xk, xn+k) ≤ ε + δ(ε), by (iii) together with (2.3), we
deduce (2.12), where

R(xk, xn+k) = max

{
d(xk, Txk)d(xn+k, Txn+k)

d(xk, xn+k)
, d(xk, xn+k)

}
. (2.13)

Regarding the induction assumptions (2.9) and (2.10), we derive that

R(xk, xn+k) < ε+ δ. (2.14)

On account of (iii), we get that d(xk+1, xn+k+1) < ε that completes the induction.
Moreover, (2.10) yields that the constructed sequence {xn} is Cauchy.

Regarding that X is complete, there exists a point z ∈ X such that xn → z as
n → ∞. Also Txn = xn+1 → z and T 2xn → z. By continuity of T 2, we have
T 2xn → T 2z. This implies T 2z = z.

As a final step, we assert that Tz = z. Suppose, on the contrary, that z 6= Tz. So,
we have

d(z, Tz) = d(T 2z, Tz) ≤ φ(R(z, Tz)) < R(z, Tz)

= max

{
d(z, Tz)d(Tz, T 2z)

d(z, Tz)
, d(z, Tz)

}
= d(z, Tz),

(2.15)

which is a contradiction. Consequently, z is a fixed point of T . It is easy to see that
the uniqueness of the fixed point follows from (ii).
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Example 2.3. Let d be the standard metric on X := R+
0 . Define a self-mapping T

on X by

T (x) = 1 if x ≤ 1, T (x) = 0 if x > 1.

It is easy to see that T fulfills the axioms of Theorem 2.1 and has a unique fixed point
x = 1. The mapping T fulfills the contractive condition (ii) with φ(t) = 1 for t > 1
and φ(t) = t

3 for t ≤ 1. Also, T fulfills the condition (iii) with δ(ε) = 1 for ε ≥ 1 and
δ(ε) = 1− ε for ε < 1. Notice also that

lim
x→1

R(x, 1) 6= 0

and T is discontinuous at the fixed point x = 1. Furthermore, φ(t) is not upper
semi-continuous at t = 1 and δ(ε) is not lower semi-continuous at ε =1. On the other
hand, T 2 is continuous, since T 2(x) = 1 for all x ∈ X.

Theorem 2.4. If a self-mapping T of a complete metric space (X, d) satisfies the
conditions;

(i) T 2 is continuous,
(ii) d(Tx, Ty) ≤ φ(Q(x, y)), where φ is a self-mapping on R+

0 such that φ(t) < t
for each t > 0;

(iii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < Q(x, y) < ε+ δ(ε) implies d(Tx, Ty) ≤ ε,
where

Q(x, y) = max

{
d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
, d(x, y)

}
then T has a unique fixed point, say z, and and Tnx→ z for each x ∈ X. Moreover,
T is discontinuous at z if and only if

lim
x→z

Q(x, z) 6= 0.

Proof. The proof is the mimic of the proof of Theorem 2.1. As in the proof of Theorem
2.1, we construct an recursive sequence {xn} in X by letting xn = Tnx0 = Txn−1,
for n ∈ N. Analogously, we derive that (2.2).

On account of (ii), we derive that

d(xn, xn+1) = d(Txn−1, Tn) ≤ φ(Q(x, y))

= φ

(
max

{
d(xn, Txn)

1 + d(xn−1, Txn−1)

1 + d(xn−1, xn)
, d(xn−1, xn)

})

= φ

(
max

{
d(xn, xn+1)

1 + d(xn−1, xn)

1 + d(xn−1, xn)
, d(xn−1, xn)

})
< max {d(xn, xn+1), d(xn−1, xn)} .

(2.16)

Note that the case

d(xn, xn+1) ≥ d(xn−1, xn)

bring a contradiction. Accordingly, we deduce that the inequality (2.16) turns into

d(xn, xn+1) ≤ φ(d(xn−1, xn)) < d(xn−1, xn). (2.17)
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Consequently, we observe that the sequence {d(xn, xn+1)} is decreasing and bounded
below by 0. Thus, the sequence {d(xn, xn+1)} is convergent to some L ≥ 0. We shall
show that L = 0. Suppose, on the contrary, that L > 0. For this L = ε, there exists
a positive integer k0 ∈ N such that

L < d(xn, xn+1) < L+ δ(L), for all n ≥ k0. (2.18)

Taking (iii) into account together with (2.17), we find that d(xn, xn+1) < L, a con-
tradiction. Hence, we derive that L = 0.

To show that the sequence {xn} is Cauchy, we shall use the induction again, as
in the proof of Theorem 2.1. First, we fix an ε > 0 and suppose that δ = δ(ε) < ε,
without loss of generality. Since {d(xn, xn+1)} converges to 0, there positive integer
k ∈ N such that

d(xn, xn+1) ≤ 1

2
δ, for all n ≥ k. (2.19)

Our goal is to get the inequality below

d(xn, xn+k) ≤ ε+
1

2
δ, for any n ∈ N, (2.20)

by using the induction steps. The inequality (2.20) trivially holds for n = 1. Now,
we assume that the inequality (2.20) is fulfilled for n, and show it holds for n+ 1. By
the triangle inequality, we observe that

d(xk, xn+k+1) ≤ d(xk, xk+1) + d(xk+1, xn+k+1) (2.21)

To conclude our claim, it is enough to indicate that

d(xk+1, xn+k+1) ≤ ε. (2.22)

Indeed, when we prove that Q(xk, xn+k) ≤ ε+ δ(ε), by (iii, we get (2.22), where

Q(xk, xn+k) = max

{
d(xn+k, Txn+k)

1 + d(xk, Txk)

1 + d(xk, xn+k)
, d(xk, xn+k)

}
. (2.23)

Regarding the induction assumptions (2.19) and (2.20), we derive that

R(xk, xn+k) < ε+ δ. (2.24)

On account of (iii), we get that d(xk+1, xn+k+1) < ε that completes the induction.
Moreover, (2.10) yields that the constructed sequence {xn} is Cauchy.
Regarding that X is complete, there exists a point z ∈ X such that xn → z as n→∞.
Also Txn = xn+1 → z and T 2xn → z. By continuity of T 2, we have T 2xn → T 2z.
This implies T 2z = z.
As a final step, we assert that Tz = z. Suppose, on the contrary, that z 6= Tz. So,
we have

d(z, Tz) = d(T 2z, Tz) ≤ φ(Q(z, Tz)) < Q(z, Tz)

= max

{
d(Tz, T 2z)

1 + d(z, Tz)

1 + d(z, Tz)
, d(z, Tz)

}
= d(z, Tz),

(2.25)

a contradiction. As a result, we derive that z is a fixed point of T . The uniqueness
of the fixed point follows from (ii).
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Example 2.5. Let d be the standard metric on X := [0, 2]. Define a self-mapping T
on X by

T (x) =
1

2
if x ≤ 1

2
, and T (x) =

x

8
if x >

1

2
.

It is easy to see that T fulfills the axioms of Theorem 2.4 and has a unique fixed point
x = 1

2 .

Corollary 2.6. If a self-mapping T of a complete metric space (X, d) satisfies the
conditions;

(i) T 2 is continuous,
(ii) d(Tx, Ty) < R(x, y),

(iii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < R(x, y) < ε+ δ(ε) implies d(Tx, Ty) ≤ ε,

where

R(x, y) = max

{
d(x, Tx)d(y, Ty)

d(x, y)
, d(x, y)

}
then T has a unique fixed point, say z, and and Tnx→ z for each x ∈ X. Moreover,
T is discontinuous at z if and only if

lim
x→z

R(x, z) 6= 0.

Corollary 2.7. If a self-mapping T of a complete metric space (X, d) satisfies the
conditions;

(i) T 2 is continuous,
(ii) d(Tx, Ty) < Q(x, y),

(iii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < R(x, y) < ε+ δ(ε) implies d(Tx, Ty) ≤ ε,

where

Q(x, y) = max

{
d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
, d(x, y)

}
then T has a unique fixed point, say z, and and Tnx→ z for each x ∈ X. Moreover,
T is discontinuous at z if and only if

lim
x→z

Q(x, z) 6= 0.

Corollary 2.8. If a self-mapping T of a complete metric space (X, d) satisfies the
conditions;

(i) T 2 is continuous,
(ii) d(Tx, Ty) ≤ φ(d(x, y)), where φ is a self-mapping on R+

0 such that φ(t) < t
for each t > 0;

(iii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < R(x, y) < ε+ δ(ε) implies d(Tx, Ty) ≤ ε,
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then T has a unique fixed point, say z, and and Tnx→ z for each x ∈ X. Moreover,
T is discontinuous at z if and only if

lim
x→z

d(x, z) 6= 0.

Corollary 2.9. If a self-mapping T of a complete metric space (X, d) satisfies the
conditions;

(i) T 2 is continuous,
(ii) d(Tx, Ty) ≤ φ(ri(x, y)) holds for i = 1 or i = 2 where φ is a self-mapping on

R+
0 such that φ(t) < t for each t > 0;

(iii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < ri(x, y) < ε+ δ(ε) implies d(Tx, Ty) ≤ ε, for i = 1 or i = 2

where

r1(x, y) =
d(y, Ty)d(x, Tx)

d(x, y)
and r2(x, y) = d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
.

Then T has a unique fixed point, say z, and and Tnx→ z for each x ∈ X. Moreover,
T is discontinuous at z if and only if

lim
x→z

ri(x, z) 6= 0, for i = 1 or i = 2.

Corollary 2.10. If a self-mapping T of a complete metric space (X, d) satisfies the
conditions;

(i) T 2 is continuous,
(ii) d(Tx, Ty) < ri(x, y) holds for i = 1 or i = 2 where φ is a self-mapping on R+

0

such that φ(t) < t for each t > 0;
(iii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < ri(x, y) < ε+ δ(ε) implies d(Tx, Ty) ≤ ε, for i = 1 or i = 2

where

r1(x, y) =
d(y, Ty)d(x, Tx)

d(x, y)
and r2(x, y) = d(y, Ty)

1 + d(x, Tx)

1 + d(x, y)
.

Then T has a unique fixed point, say z, and and Tnx→ z for each x ∈ X. Moreover,
T is discontinuous at z if and only if

lim
x→z

ri(x, z) 6= 0, for i = 1 or i = 2.

Remark 2.11. Note that the discussion in Remark 2.2 is also valid for Theorem 2.4
and the consequences of both Theorem 2.1 and Theorem 2.4.
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