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Abstract. In this paper, we modify the definition of some generalized proximal contractions and

enumerate a list of equivalent conditions for various versions of generalized proximal contractions of

non-self set-valued mappings on (ordered) metric spaces. By using the fixed point means, we establish
the existence of best proximity points for mappings involving such contractions which extend and

improve many existing related results, as well as, reveal that most of existing best proximity point

theorems on metric spaces are in fact equivalent and immediate consequences of well-known fixed
point theorems. Finally, some examples are given to support our results.
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1. Introduction

Let (X, d) be a metric space and A,B ⊂ X be nonempty. A set-valued mapping
T : A → 2B (or a single-valued mapping T : A → B) is called non-self if A 6⊂ B. In
this situation, T may have no fixed point since T (A) ∩ A may be empty. Thus, to
investigate the existence of best proximity points, that is, to establish a point x such
that d(x, Tx) = d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}, has received much atten-
tion in the last decades with a rapidly increasing number of related results on various
contractive or nonexpansive mappings. For instance, see [1, 18] and many others.
To survey the idea of the references, authors often follows the line of constructing
fixed point theorems to establish the existence of best proximity points since a best
proximity point is essentially a fixed point if the underlying mapping is a selfmapping.
However, in [2] the author showed that some best proximity point theorems can be
obtained from related fixed point theorems if the pair (A,B) has the P-property; in
[27] the authors observed that the most best proximity point results on a metric space
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endowed with a partial order (under the P-property) can be deduced from existing
fixed point theorems in the literature; in [25] the authors noticed that some existing
fixed point results and recently announced best proximity point results are equivalent.
In this paper, motivated by the above mentioned work, we will reveal the universality
of the method in [2, 27, 25]. To wit, without the P-property, we can convert the
existence of best proximity points for contractive mappings into the counterpart of
fixed points for other mappings and then the desired results can be deduced from the
corresponding fixed point theorems. In other words, most of existing best proximity
point theorems are in fact immediate consequences of well-known fixed point theorems
in the existing literature.

On the other hand, a number of authors generalize Banach’s [7] and Nadler’s
[30] result and introduce the new concepts of (set-valued) contractions of Banach
or Nadler type. Moreover, they study the problem concerning the existence of best
proximity points for so-called proximal contractions. The existing various versions of
generalized proximal contractions for non-self mappings seem to be based on the global
sense, that is, the contractive conditions are required to hold for all u1, u2, x1, x2 ∈ A
with d(u1, Tx1) = d(A,B) and d(u2, Tx2) = d(A,B). In this paper, we weaken
such conditions, i.e., we want contractive conditions to hold for partial points in A for
which satisfy the above equations. This is where the main novelty of the present work
lies, since such contraction condition is easier to satisfy and more convenient to be
applied than those in the above mentioned literature. The importance of the present
work also consists in establishing the existence of best proximity points for mappings
involving such contractions, which extend and improve many existing relative results
and our argumentation process is also simpler and clearer by using the fixed point
means. As well as, we enumerate a list of equivalent conditions for various versions of
such contractions for non-self set-valued mappings on (ordered) metric spaces, which
further reveal that most of existing best proximity point theorems on metric spaces
are equivalent indeed.

2. Preliminaries

For the metric space (X, d) and nonempty subsetsA,B ⊂ X, we adopt the following
notations:

d(x,B) = inf{d(x, b) : b ∈ B}, d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

A0 = {a ∈ A : d(a, b) = d(A,B) for some b ∈ B} and

B0 = {b ∈ B : d(a, b) = d(A,B) for some a ∈ A}.

Definition 2.1. LetX be a metric space. A subset C ⊂ X is said to be approximative
if the set-valued mapping

PC(x) = {y ∈ C : d(x, y) = d(x,C)},∀x ∈ X

has nonempty values.
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A set-valued mapping T : C → 2C is said to have approximative values on C if Tx
is approximative for each x ∈ C

Definition 2.2. Let T : A→ 2B be a set-valued mapping. An element x ∈ A is called
a generalized best proximity point of T if d(gx, Tx) = d(A,B), where, g : A → A is
an isometry, i.e., d(gx, gy) = d(x, y) for all x, y ∈ A. In particular, x is called a best
proximity point if g = I, where, I defined by Ix = x for x ∈ A is an identity.
x ∈ A is called a Picard iterated (generalized) best proximity point if x is a (gen-

eralized) best proximity point and, for any x0 ∈ A0, there exists an iterated sequence
{xn} ⊂ A such that d(gxn, Tx) = d(A,B)) and lim

n→∞
xn = x.

To harmonize relations between some contractions, we need the following functional
families:

• Φ consists of all nondecreasing functions φ from R+, the set of all nonnegative
reals, into itself and φ(t) = 0 iff t = 0;

• Φ̂ consists of all continuous functions φ ∈ Φ;

• Φ̃ consists of all functions φ ∈ Φ̂ with lim
t→∞

φ(t) =∞;

• Ψ consists of all lower semicontinuous functions ψ from R+ into itself and
ψ(t) = 0 iff t = 0;

• Ψ̂ consists of all functions ψ ∈ Ψ with lim inf
t→∞

ψ(t) > 0;

• Γ consists of all functions γ from R+ into itself such that γ(0) = 0 and
γ(tn)→ 0 implies tn → 0 for any positive sequence {tn} ⊂ R;

• Γ̂ consists of all functions γ̂ from R+ into [0, 1) such that γ̂(tn) → 1 implies
tn → 0 for any bounded positive sequence {tn} ⊂ R;

• Ω consists of all right continuous and nondecreasing functions ω from R+ into
itself such that ω(t) < t for t > 0;

• Ω̂ consists of all continuous and nondecreasing functions ω̂ from R+ into itself
such that ω̂(t) < t for t > 0.

By virtue of Lemma 1 in [24], we enumerate a series of contractions which are each
other equivalent.

Lemma 2.3. Let (X, d) be a metric space, T : X → 2X a set-valued mapping. Then
the following definitions of generalized contractions are equivalent:

(g1) T is called g1-contractive if there exist φ̂, φ ∈ Φ̂ such that, for any x, y ∈ X,

φ̂(H(Tx, Ty)) ≤ φ̂(M(x, y))− φ(M(x, y)), (1)

where, M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2

}
;

(g2) T is called g2-contractive if there exist φ̂ ∈ Φ̂ and φ ∈ Ψ̂ such that (1) holds
for any x, y ∈ X;

(g3) T is called g3-contractive if there exist φ̂ ∈ Φ̂ and φ ∈ Φ such that (1) holds
for any x, y ∈ X;

(g4) T is called g4-contractive if there exist φ̂ ∈ Φ̂ and φ ∈ Γ such that (1) holds
for any x, y ∈ X;
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(g5) T is called g5-contractive if there exist φ̂ ∈ Φ̃ and φ ∈ Ψ such that (1) holds
for any x, y ∈ X;

(g6) T is called g6-contractive if there exists ω ∈ Ω̂ such that for any x, y ∈ X,

H(Tx, Ty) ≤ ω(M(x, y));

(g7) T is called g7-contractive if there exist φ ∈ Φ̂ and ω ∈ Ω such that for any
x, y ∈ X,

φ(H(Tx, Ty)) ≤ ω(φ(M(x, y)));

(g8) T is called g8-contractive if there exists γ ∈ Γ̂ such that for any x, y ∈ X,

H(Tx, Ty) ≤ γ(M(x, y))M(x, y).

Proof. It follows directly from Lemma 1 in [24] applied to the set

D := {(M(x, y), H(Tx, Ty)) : x, y ∈ X}.

Recently, in order to establish the existence of best proximity points, the proximal
contractions are employed in the non-self mappings. For instance, in [14] authors
assumed that T satisfies the following contractive condition:

d(u1, u2) ≤ αd(x1, x2) + βd(x1, u1) + γd(x2, u2) + δ[d(x1, u2) + d(x2, u1)]

with α + β + γ + 2δ < 1, d(u1, Tx1) = d(A,B) and d(u2, Tx2) = d(A,B) for all
u1, u2, x1, x2 ∈ A. This is the globality requirement. We introduce the following
equivalent proximal contractions which relax the above ”globality”. To this end, we
define the set-valued mapping T ] : A0 → 2A0 as follows

T ](x) = {u ∈ A : d(gu, Tx) = d(A,B)}

for T and isometry g given as in Definition 2.2.

Definition 2.4. The set-valued mapping T : A → 2B is said to have proximal
approximative values if T ] has approximative values.

For the sake of convenience, let us define the set-valued mapping P : A0 → 2A0 by

P(x) = PT ]x(x) = {u ∈ T ]x : d(x, u) = d(x, T ]x)} for x ∈ A0.

Lemma 2.5. Let (X, d) be a metric space and T : A → 2B have proximal approxi-
mative values. Then, for all x ∈ A, P(x) is nonempty and P(x) ⊂ PP(x)(x) which
shows that P has approximative values.

Lemma 2.6. Let (X, d) be a metric space and T : A → 2B have proximal approxi-
mative values. Then the following definitions of generalized proximal contractions are
equivalent:
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(gp1) T is called gp1-contractive if there exist φ̂, φ ∈ Φ̂ such that, for any x, y ∈ A
and u ∈ P(x), one possesses at least an element v ∈ P(y) satisfying

φ̂(d(u, v)) ≤ φ̂(N(x, y, u, v))− φ(N(x, y, u, v)), (2)

where, N(x, y, u, v) = max
{
d(x, y), d(x, u), d(y, v), d(x,v)+d(y,u)2

}
.

(gp2) T is called gp2-contractive if (2) holds for φ̂ ∈ Φ̂ and φ ∈ Ψ̂ instead of

φ̂, φ ∈ Φ̂.

(gp3) T is called gp3-contractive if (2) holds for φ̂ ∈ Φ̂ and φ ∈ Φ instead of

φ̂, φ ∈ Φ̂.

(gp4) T is called gp4-contractive if (2) holds for φ̂ ∈ Φ̂ and φ ∈ Γ instead of φ̂, φ ∈ Φ̂.

(gp5) T is called gp5-contractive if (2) holds for φ̂ ∈ Φ̃ and φ ∈ Ψ instead of

φ̂, φ ∈ Φ̂.

(gp6) T is called gp6-contractive if there exists ω ∈ Ω̂ such that, for any x, y ∈ A
and u ∈ P(x), one possesses at least an element v ∈ P(y) satisfying

d(u, v) ≤ ω(N(x, y, u, v)).

(gp7) T is called gp7-contractive if there exist φ ∈ Φ̂ and ω ∈ Ω such that, for any
x, y ∈ A and u ∈ P(x), one possesses at least an element v ∈ P(y) satisfying

φ(d(u, v)) ≤ ω(φ(N(x, y, u, v))).

(gp8) T is called gp8-contractive if there exists γ ∈ Γ̂ such that, for any x, y ∈ A
and u ∈ P(x), one possesses at least an element v ∈ P(y) satisfying

H(Tx, Ty) ≤ γ(N(x, y, u, v))N(x, y, u, v).

Proof. It follows directly from Lemma 1 in [24] applied to the set

D := {(M(x, y, u, v), d(u, v)) : x, y ∈ A, u ∈ P(x), v ∈ P(y)}.

Remark 2.7. Under hypotheses of Lemma 2.3, if the inequality (2) holds for all
u, v ∈ A with d(gu, Ty) = d(A,B) and d(gv, Ty) = d(A,B), then T is called proximal
g1-contractive. Similarly, we can define the proximal gi-contraction for i = 2, 3, . . . , 8.
Clearly, each proximal gi-contraction implies gpi-contraction for i = 1, 2, . . . , 8 but
the converse is not true. Moreover, the proximal gi-contractions reduces the common
corresponding proximal contractions when g = I.

In addition, if T is a single-valued mapping and set pair (A,B) satisfies P-property,
namely, for any x1, x2 ∈ A and y1, y2 ∈ B, d(x1, y1) = d(A,B) = d(x2, y2) implies that
d(x1, x2) = d(y1, y2) (and it is called weak P-property if d(x1, x2) ≤ d(y1, y2)), then
each gi-contraction implies proximal gi-contraction for i = 1, 2, . . . , 8, as well as, each
proximal gi-contraction of S implies gi-contraction for i = 1, 2, . . . , 8 if T (A0) ⊂ B0,
where, S is the restriction on A0 of T .

It is clear that one can convert seeking the best proximity point of T into estab-
lishing the fixed point of T ], that is,

Lemma 2.8. An element x ∈ A is a generalized best proximity point of T if and only
if it is a fixed point of T ]. Moreover, a fixed point of P is the fixed point of T ].
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The set-valued mapping T ] possesses the following properties.

Lemma 2.9. Let (X, d) be a metric space, A0, B0 ⊂ X be nonempty subsets. Suppose
that g : A→ A is an isometry with A0 ⊂ g(A0) and T : A→ 2B satisfies T (A0) ⊂ B0.
We obtain

(a1) For each x ∈ A0, T ]x is nonempty. Moreover, T ] has closed values when A0

is closed.
(a2) T is gpi-contractive with N(x, y, u, v) = d(x, y) if and only if P is gi-

contractive with M(x, y) = d(x, y) for i = 1, 2, . . . , 8.
(a3) If T is proximal gi-contractive with N(x, y, u, v) = d(x, y) for i = 1, 2, . . . , 8,

then T ] is a single-valued mapping.

Proof. (a1). It is clear that Tx ⊂ B0 for any x ∈ A0. Hence, for any w ∈ Tx, there
exists u ∈ A such that d(u,w) = d(A,B) and this evidently implies u ∈ A0. Note
that d(u,w) ≥ d(u, Tx) by w ∈ Tx, we have d(A,B) ≥ d(u, Tx) which yields that
d(u, Tx) = d(A,B). By virtue of A0 ⊂ g(A0), there exists u ∈ A0 such that u = gu
and hence d(gu, Tx) = d(A,B). This shows that u ∈ T ]x, i.e., T ]x is nonempty.

To prove that T ]x is closed, it suffices to show the implication of u ∈ T ]x for the
limit point u of the sequence {un} with un ∈ T ]x. We observe that u ∈ A0 since
un ∈ A0 and A0 is closed. Moreover, by the continuity of g and the distance function,
we have

d(gu, Tx) = lim
n→∞

d(gun, Tx) = d(A,B).

Therefore, u ∈ T ]x.
(a2). By Lemma 2.3 and Lemma 2.4 it is sufficient to check that T is gp6-

contractive with N(x, y, u, v) = d(x, y) if and only if P is g6-contractive with

M(x, y) = d(x, y). If P is g6-contractive with M(x, y) = d(x, y), there exists ω ∈ Ω̂
such that H(Px,Py) ≤ ω(d(x, y)). For any u ∈ Px, there exists v ∈ Py such that
d(u, v) = d(u,Py) and hence

d(u, v) = d(u,Py) ≤ sup
u∗∈Px

d(u∗,Py) ≤ H(Px,Py) ≤ ω(d(x, y)).

This yields that T is gp6-contractive. For the proof of ”only if” it will be able to refer
to the following Lemma 3.1.

(a3). Let x ∈ X and u1, u2 ∈ T ]x, then d(gu1, Tx) = d(A,B) = d(gu2, Tx).
Without the lost of generality, suppose that T is a proximal g1-contraction with

N(x, y, u, v) = d(x, y). There exist φ̂, φ ∈ Φ̂ such that

φ̂(d(u1, u2)) ≤ φ̂(d(x, x))− φ(d(x, x)).

This implies u1 = u2 and hence T ] is single-valued.

Example 2.10. Let X = R2 be a metric space with the usual distance. Consider
subsets

A =

{
(x, y) : x− y = 1, x ∈

{
1

2

}
∪
[
0,

1

3

]
∪
[

2

3
, 1

]}
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and

B = {(x, y) : x− y = −1, −1 ≤ x ≤ 0}
and the set-valued mapping T : A→ 2B defined as

T (x, y) =

{
(−x,−y), (x, y) ∈ A and x 6= 1

2 ,
([− 2

3 ,−
1
3 ]× [ 13 ,

2
3 ]) ∩B, (x, y) = ( 1

2 ,−
1
2 ).

Then T has proximal approximative values and is a gp6-contraction but not a proximal
g6-contraction.
Proof. It is easy to see that A = A0, B = B0, T (A0) ⊂ B0 and d(A,B) =

√
2. Let

g = I. Next, for any (x, y) ∈ A, either (x, y) =
(
1
2 ,−

1
2

)
, we have

T ]
(

1

2
,−1

2

)
=

{(
1

3
,−2

3

)
,

(
1

2
,−1

2

)
,

(
2

3
,−1

3

)}
;

or (x, y) 6= ( 1
2 ,−

1
2 ), we have T ](x, y) = (1 − x,−x). It reduces that T has proximal

approximative values. In addition,

P

((
1

2
,−1

2

))
=

{(
1

2
,−1

2

)}
and P((x, y)) = (1− x,−x) with (x, y) 6= ( 1

2 ,−
1
2 ).

In order to check that T is a gp6-contraction, we put ω(t) = 2
3 t for t ≥ 0. To avoid

elementary computation, we omit the verification process.
To check that T is not a proximal g6-contraction, we take

(x1, x2) =

(
1

2
,−1

2

)
, (x2, y2) =

(
2

3
,−1

3

)
= (u1, v1)

and

(u2, v2) =

(
1

3
,−2

3

)
.

Then d((u1, v1), (u2, v2)) =
√
2
3 and N =

√
2
6 . Hence, d((u1, v1), (u2, v2)) > ω(N).

3. Results for contractive mappings

In the sequel, we always assume that (X, d) is a metric space and A0, B0 ⊂ X are
nonempty subsets unless otherwise specified. We first need the following auxiliary
results.

Lemma 3.1. Suppose that g : A → A is an isometry and T : A → 2B has proximal
approximative values.
Then P is a gi-contraction if T is gpi-contractive for i = 1, 2, . . . , 8.
Proof. Let x, y ∈ A0 be any given. For any ε > 0, the definition of supremum
guarantees that there exists u ∈ P(x) such that

d(u,Py) ≥ sup
u∗∈Px

d(u∗,Py)− ε. (3)
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In virtue of Lemma 2.4 it is sufficient to prove that P is g6-contractive under the

hypothesis that T is gp6-contractive. Thus there exists ω ∈ Ω̂ such that one possesses
an element v ∈ P(y) with

d(u, v) ≤ ω(N(x, y, u, v)). (4)

Therefore, by (3) and the monotonicity of ω we have

sup
u∗∈Px

d(u∗,Py) ≤ d(u,Py) + ε ≤ d(u, v) + ε ≤ ω(N(x, y, u, v)) + ε. (5)

Note that v ∈ T ]y and d(y, v) = d(y, T ]y), we have d(x, v) ≤ d(x, y) + d(y, T ]y).
Similarly, d(y, u) ≤ d(x, y) + d(x, T ]x). This yields that N(x, y, u, v) ≤M(x, y).
By means of this, together with (5) and letting ε→ 0, we have

sup
u∗∈Px

d(u∗,Py) ≤ ω(N(x, y, u, v)) ≤ ω(M(x, y)).

We can similarly infer
sup
v∗∈Py

d(v∗,Px) ≤ ω(M(x, y)).

Hence
H(Px,Py) ≤ ω(M(x, y)).

This yields that P is g6-contractive.
The following fixed point theorem for the proof is analogue to Lemma 3.1 of [23].

Lemma 3.2. Let X be complete and C ⊂ X be a closed subset. If the set-valued
mapping S : C → 2C is a g6-contraction and has approximative values on C, then S
has a Picard iterated fixed point x, namely, x is a fixed point of S and, for any x0 ∈ C,
there exists an iterated sequence {xn} with xn ∈ Sxn−1 such that lim

n→∞
xn = x.

Theorem 3.3. Let X be complete, A0 be closed and g be an isometry with A0 ⊂
g(A0). Let T : A→ 2B satisfy the following conditions:

(a) T (A0) =
⋃
x∈A0

Tx ⊂ B0.

(b) T is one of gpi-contractions for i = 1, 2, . . . , 8.
(c) Either A0 is compact or T has proximal approximative values.

Then T has a Picard iterated generalized best proximity point x ∈ A.
Proof. By means of Lemma 2.8, it suffices to prove the existence of fixed points of P.
By virtue of Lemma 2.4 it is sufficient to assume that T is gp6-contractive. Lemma
3.1 guarantees that P is a g6-contraction. Thus (c) and Lemma 3.2 show that P has
at least a Picard iterated fixed point x ∈ A0. This completes the proof.

Theorem 3.3 subsumes the main results in [25]. In the case that T is a single-valued
mapping and the pair (A,B) satisfies P-property, by Remark 2.7 the g8-contraction
of T implies its proximal g8-contraction and hence Theorem 3.3 generalizes the main
results in [5, 16, 29, 39].

Corollary 3.4. Let X be complete, A0 be closed and g be an isometry with A0 ⊂
g(A0). Let T : A→ 2B be proximal gi-contractive for i = 1, 2, . . . , 8 and the conditions
(a), (c) be valid. Then T has a Picard iterated generalized best proximity point x ∈ A.
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We remark that the ”P-property” is unnecessary in Corollary 3.4. Therefore, it
essentially extends and improves the main results of [3, 19, 36] in the sense that they
deal with the proximal contractions of the first kind. Moreover, it shows the above
mentioned results are equivalent.

Corollary 3.5. Let X be complete, A0 closed and g an isometry with A0 ⊂ g(A0).
Suppose that T : A → 2B has proximal approximative values such that T (A0) ⊂ B0

and one of the following conditions holds

(1) there exist non-negative numbers α, β, γ, δ with α+ β + γ + 2δ < 1 such that
u ∈ Px and v ∈ Py for any x, y ∈ A0 imply

d(u, v) ≤ αd(x, y) + βd(x, u) + γd(y, v) + δ[d(x, v) + d(y, u)].

(2) For any x, y, u, v ∈ A with d(u, Tx) = d(A,B) = d(y, Ty) one has

d(u, v) ≤ d(x, y)− φ(d(x, y))

for φ ∈ Φ̃.

(3) there exists a mapping γ ∈ Γ̂ such that, for all x, y ∈ A0 and u ∈ P(x), one
possesses v ∈ P(y) satisfying

ψ(d(u, v)) ≤ γ(d(x, y))ψ(d(x, y)),

where, ψ : [0,∞) → [0,∞) is an increasing continuous functions such that
t ≤ ψ(t) for each t ≥ 0 and ψ(0) = 0.

Then T has a Picard iterated generalized best proximity point x ∈ A.
Proof. Under the hypothesis (1) the result is immediate by Theorem 3.3 since T is
gp6-contractive with ω(t) = (α+ β + γ + 2δ)t.

The hypothesis (2) implies the gp3-contraction by taking φ̂(t) = t and φ ∈ Φ̃.
To prove (3), we observe that the inverse of ψ, ψ−1, exists and ψ−1(t) ≤ t for t ≥ 0.

Therefore, we have

d(u, v) ≤ ψ−1(γ(d(x, y))ψ(d(x, y))).

As an analogous of the proof of Lemma 3.1, we deduce that P satisfies

H(P(x),P(y)) ≤ ψ−1(γ(d(x, y))ψ(d(x, y))).

It is sufficient to check that P has a fixed point. Let x0 ∈ A0. If x0 ∈ P(x0), our
desire to achieve. Otherwise, by Lemma 2.6 there exists x1 ∈ P(x0) with x1 6= x0 such
that d(x0, x1) = d(x0,P(x0)). Continuing this process, we can define a sequence {xn}
in A0 by xn ∈ P(xn−1) such that, for all n ∈ N, either xn = xn−1 which completes
our proof, or xn 6= xn−1 and

d(xn, xn+1) = d(xn,P(xn)).

It is easy to see

d(xn, xn−1) ≤ H(P(xn−2),P(xn−1)) ≤ ψ−1(γ(d(xn−2, xn−1))ψ(d(xn−2, xn−1)))

for all n ∈ N. Now following the line of arguments in Theorem 3.1 of [6], we get that
{xn} is a Cauchy sequence. Since X is complete and A0 is closed, then there exists
x ∈ A0 such that lim

n→∞
xn = x.
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We finally verify that x is a fixed point of P. Note that

d(xn,P(x)) ≤ H(P(xn−1),P(x)) ≤ ψ−1(γ(d(xn−1, x))ψ(d(xn−1, x))) ≤ d(xn−1, x)

for all n ∈ N, we obtain that d(x,P(x)) = 0 by letting n→∞ on two sides of the above
inequality. By Lemma 2.6, there exists u ∈ P(x) such that d(x, u) = d(x,P(x)) = 0
which reduces x = u ∈ P(x). This proof is complete.

Remark 3.6. Corollary 3.5 extends and improves a lot of existing results. For
example, (1) is an improvement of the main results in [14] which include Theorem 3.1
and its corollaries in [8, 9, 14, 17, 37], as well as, Theorem 3.3 and its corollaries in
[10]; (2) generalizes Theorems 3.1 and 3.6 in [11], as well as, relaxes the hypothesis of
P-property in [18]; (3) is an extension and improvement of main results in [6].

Example 3.7. Let the space X, the subsets A,B and the set-valued mapping T be
given as Example 2.10. Then T has a Picard iterated generalized best proximity point(
1
2 ,−

1
2

)
∈ A by Theorem 3.3.

Example 3.8. Consider X = R with the usual metric,

A = {−10, 10} and B = {−2, 2}.
Then T : A→ 2B given by

T (−10) = {−2, 2} and T (10) = {−2}
has a Picard iterated best proximity point −10 ∈ A.

It is worth noting that the pair (A,B) in Example 3.8 does not have the (weak)
P-property.

4. Results for α-admissible mappings

The notion of the α-admissible has recently been applied to establish the existence
of fixed points and best proximity points. We refer to references [4, 28, 35]. For a
set-valued mapping T , we first modify the concept of α-admissible.

Definition 4.1. Let T : X → 2X and α, η : X ×X → [0,+∞) be two functions. T is
called α-admissible with respect to η on X if x, y ∈ X, α(x, y) ≥ η(x, y) implies that,
for any u ∈ Tx, there exists v ∈ PTy(y) such that α(u, v) ≥ η(u, v).

Let T : A → 2B and α : A × A → [0,∞). T is called α-proximal admissible with
respect to η on A if, for x1, x2 ∈ A and u1 ∈ T ]x1, there exists u2 ∈ P(x2) with
α(x1, x2) ≥ η(x1, x2) such that α(u1, u2) ≥ η(u1, u2).

Note that Definition 4.1 subsumes the α-proximal admissible notion given as [4,
28, 26] even if we take η(x, y) = 1, further, reduces to the α-admissible notion given
as [35] if T is a single-valued mapping. Also, according to [35], T is said to be an
η-subadmissible mapping if we take α(x, y) = 1.

Definition 4.2. The set-valued mapping T : X → 2X is called α-η-gi-contractive if
the hypothesis of (gi) for i = 1, 2, . . . , 8 is satisfied for any x, y ∈ X with α(x, y) ≥
η(x, y).
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The set-valued mapping T : A→ 2B is called α-η-gpi-contractive if the hypothesis
of (gpi) for i = 1, 2, . . . , 8 is satisfied for any x, y ∈ X with α(x, y) ≥ η(x, y).

We remark that α-η-gi-contractions (α-η-gpi-contractions) for i = 1, 2, . . . , 8 are
equivalent.

Lemma 4.3. Let the hypotheses of Lemma 3.1 hold. Then T is α-proximal admissible
with respect to η on A if and only if T ] is α-admissible with respect to η on A0.
Moreover, P is α-η- gi-contractive if T is α-η-gpi-contractive for i = 1, 2, . . . , 8.

We need the following fixed point theorem which is a generalization of [35].

Lemma 4.4. Let X be complete, the set-valued mapping S : X → 2X be α-admissible
with respect to η on X and one of α-η-gi-contractions for i = 1, 2, . . . , 8. Suppose that
S has approximative values and the following assertions hold:

(i) there exist x0 ∈ X and x1 ∈ PSx0
(x0) such that α(x0, x1) ≥ η(x0, x1);

(ii) for any sequence {xn} ⊂ X converging to x ∈ X and
α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N, we have α(xn, x) ≥ η((xn, x) for all
n ∈ N.

Then S has a fixed point x.
Further, there exists a sequence {xn}, defined by xn+1 ∈ Sxn for n ≥ 1, that converges
to the element x.
Proof. It is sufficient to assume that S is α-η-g6-contractive by virtue of the equiva-
lence of contractions. Let x0, x1 ∈ X be given in (i). Then α(x0, x1) ≥ η(x0, x1) and

d(x0, x1) = d(x0, Sx0). By the contractive condition, there exists ω ∈ Ω̂ such that
H(Sx0, Sx1) ≤ ω(M(x0, x1)). Note that S is α-admissible with respect to η on X, for
x1 ∈ Sx0, there exists x2 ∈ PSx1(x1) such that α(x1, x2) ≥ η(x1, x2). Applying the
contractive condition again, we have H(Sx1, Sx2) ≤ ω(M(x1, x2)). Continuing this
process, we can define a sequence {xn} in X by xn ∈ PSxn−1

(xn−1) satisfying, for all
n ∈ N,

H(Sxn, Sxn+1) ≤ ω(M(xn, xn+1)). (6)

α(xn, xn+1) ≥ η(xn, xn+1). (7)

d(xn, xn+1) = d(xn, Sxn). (8)

If xn+1 = xn for some n ∈ N, then x = xn is a fixed point of S and the result is
proved. Hence, we suppose that xn+1 6= xn, i.e, xn 6∈ Sxn for all n ∈ N. From (8)
and definition of H it follows that

d(xn, xn+1) ≤ H(Sxn−1, Sxn)

for all n ∈ N. By means of (6) we have

d(xn, xn+1) ≤ ω(M(xn−1, xn)) for all n ∈ N. (9)



202 SHIHUANG HONG, JIE ZHOU, JI CHEN, HAIYANG HOU AND LI WANG

On the other hand, by (8) we get

M(xn−1, xn)

= max

{
d(xn−1, xn), d(xn−1, Sxn−1), d(xn, Sxn),

d(xn−1, Sxn) + d(xn, Sxn−1)

2

}
= max {d(xn−1, xn), d(xn, xn+1)} .

By (9), this implies that

d(xn, xn+1) ≤ ω (max {d(xn−1, xn), d(xn, xn+1)})
for all n ∈ N. We claim that

d(xn−1, xn) ≥ d(xn, xn+1) for all n ∈ N. (10)

Suppose the contrary, then M(xn−1, xn) = d(xn, xn+1). By virtue of the properties
of ω, for all n ∈ N, we get

d(xn, xn+1) ≤ H(Sxn−1, Sxn) ≤ ω (d(xn, xn+1)) < d(xn, xn+1),

a contradiction. Hence (10) is valid. Moreover, in view of the monotonicity of ω one
has

d(xn−1, xn) ≤ ω(d(xn−2, xn−1)) < d(xn−2, xn−1)

for all n ∈ N. Repeating this procedure, we have

d(xn, xn+1) ≤ ω(d(xn−1, xn)) ≤ · · · ≤ ωn(d(x0, x1))

for all n ∈ N, where ωn denotes the n-time-repeated composition of ω with itself. We

observe that lim
n→∞

ωn(t) = 0 uniformly for t > 0 if and only if ω(t) < t for ω ∈ Ω̂ (see,

e.g., [38]) which implies that d(xn−1, xn) → 0 when n → ∞. Now, analogous to the
proof of lemma 3.1 in [23], we can verify that {xn} is a Cauchy sequence. Since X is
complete, there exists x ∈ X such that lim

n→∞
xn = x.

In what follows, we check that x is a fixed point of S. By means of (ii) and (7),
we have α(xn, x) ≥ η((xn, x) for all n ∈ N. From the contractive condition it follows
that H(Sxn, Sx) ≤ ω(M(xn, x)). In addition, evidently, d(xn+1, Sx) ≤ H(Sxn, Sx)
for n ∈ N. Consequently, one has

d(xn+1, Sx) ≤ ω(M(xn, x)).

Note that

M(xn, x) ≤ max
{
d(xn, x), d(xn, xn+1), d(x, Sx), d(xn,xn+1)+d(xn,x)+d(xn,x)+d(x,Sx)

2

}
.

By the continuity of the distance and ω, letting n go to infinity, we obtain

d(x, Sx) ≤ ω(d(x, Sx)).

This reduces that d(x, Sx) = 0. Finally, by virtue of the fact that S is approximative,
there exists u ∈ PSx(x) such that d(x, u) = 0, i.e., u = x and hence u is a fixed point
of S.

Theorem 4.5. Let X be complete, A0 be closed, T : A → 2B have proximal ap-
proximative values and g be isometry with A0 ⊂ g(A0). If T (A0) ⊂ B0, (ii) and the
following conditions hold
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(I) there exist x0 ∈ A0 and x1 ∈ P(x0) such that α(x0, x1) ≥ η(x0, x1);
(II) T is α-proximal admissible with respect to η on A;

(III) T is one of α-η-gpi-contractions for i = 1, 2, . . . , 8;

then T has a generalized best proximity point x ∈ A. Further, there exists the sequence
{xn}, defined by d(gxn+1, Txn) = d(A,B) for n ≥ 1, that converges to the element x.
Proof. In the light of Lemma 2.8, it suffices to verify that P has a fixed point. Lemma
4.3 guarantees that P satisfies the contractive condition of Lemma 4.4. Moreover,
(I) implies the validity of (i). Therefore, P meets all conditions of Lemma 4.4 which
guarantees that P has a fixed point in A0. This proof is complete.

Example 4.6. Let X = [0,+∞)× [0,∞) be endowed with the usual metric. Suppose
that A = {(1/2, x) : 0 ≤ x < +∞} and B = {(0, x) : 0 ≤ x < +∞}. Then T : A→ 2B

defined by

T

(
1

2
, a

)
=


{(

0, x2
)

: 0 ≤ x ≤ a
}
, a ∈ [0, 1]/{ 1n : n ∈ N},(

0, 1
a2

)
, a ∈ { 1n : n ∈ N},

{(0, x2) : 0 ≤ x ≤ a2}, a > 1,

has a best proximity point in A.
Proof. Define α : A×A→ [0,∞) as follows

α(x, y) =

{
1, x, y ∈

{(
1
2 , a
)

: 0 ≤ a ≤ 1
}
,

0, otherwise
and η(x, y) ≡ 1

2
.

Notice that d(A,B) = 1
2 , A0 = A,B0 = B and T (A0) ⊂ B0. Also,

T ]
(

1

2
, a

)
=


{(

1
2 , u
)

: 0 ≤ u ≤ a
2

}
, a ∈ [0, 1]/{ 1n : n ∈ N},(

1
2 ,

1
a2

)
, a ∈ { 1n : n ∈ N},{(

1
2 , u
)

: 0 ≤ u ≤ a2
}
, a ≥ 1,

P

(
1

2
, a

)
=


{(

1
2 ,

a
2

)}
, a ∈ [0, 1]/{ 1n : n ∈ N},(

1
2 ,

1
a2

)
, a ∈ { 1n : n ∈ N},{(

1
2 , a
)}
, a ≥ 1.

It is easy to check that T is α-proximal admissable with respect to η and (I) is valid
with x0 =

(
1
2 ,

3
4

)
and x1 =

(
1
2 ,

3
8

)
. Moreover, it is easy to see that T is an α-η-gp6-

contraction with ω(t) = t
2 for t ≥ 0. Now all conditions of Theorem 4.5 are satisfied

with g = I and hence T satisfies the result of Theorem 4.5.
It is worth noting that T given in Example 4.6 is not α-proximal admissible in the

sense of [4, 28, 26]. Consequently, Theorem 4.5 generalizes and improves the main
results in [4, 28, 26]. In addition, if η(x, y) = 1 (resp. α(x, y) = 1), then the condition
(ii) is changed into

(IV) for any sequence {xn} ⊂ X converging to x ∈ X and α(xn, xn+1) ≥ 1 (resp.
η(xn, xn+1) ≤ 1) for all n ∈ N, we have α(xn, x) ≥ 1 (resp. η(xn, x) ≤ 1) for
all n ∈ N.
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Corollary 4.7. If η(x, y) = 1 (resp. α(x, y) = 1), then, under Theorem 4.5 with
(IV) instead of (ii), we obtain the result of Theorem 4.5.

Corollary 4.7 extends and improves the main results in [22, 26] and implies the fol-
lowing results.

Corollary 4.8. Let X be complete, A0 be closed, T : A→ 2B have proximal approx-
imative values and g be isometry with A0 ⊂ g(A0). If T (A0) ⊂ B0, (I), (IV) and the
following conditions hold

(II’) T is α-proximal admissible;

(III’) there exists ω ∈ Ω̂ such that, for any x, y ∈ A and u ∈ P(x), one possesses at
least an element v ∈ P(y) such that

a(x, y)d(u, v) ≤ ω(N(x, y, u, v));

then the result of Theorem 4.5 holds.

We observe that Corollary 4.8 is an extension and improvement in the contractive
sense of main results in [3, 31]. In addition, it is interesting to deduce the following
especial corollaries.

Corollary 4.9. Let X be complete, A0 be closed, T : A→ 2B have proximal approx-
imative values and g be isometry with A0 ⊂ g(A0). If T (A0) ⊂ B0, (I), (II’), (IV)
and the following condition hold: for any x, y ∈ A and u ∈ P(x), one possesses at
least an element v ∈ P(y) such that

(a(x, y) + c)d(u,v) ≤ (1 + c)ω(N(x,y,u,v))

with ω ∈ Ω̂ and the constant c > 0, then there exists an element x ∈ A such that
d(gx, Tx) = d(A,B).
Proof. Let α(x, y) ≥ 1. Then our hypothesis implies that

(1 + c)d(u,v) ≤ (a(x, y) + c)d(u,v) ≤ (1 + c)ω(d(x,y)).

This yields that d(u, v) ≤ ω(N(x, y, u, v)) and hence T is α-1-gp6-contractive. Now
the conditions of Corollary 4.7 hold and hence T has a generalized best proximity
point.

Corollary 4.10. Let X be complete, A0 be closed, T : A → 2B have proximal
approximative values and g be isometry with A0 ⊂ g(A0). If T (A0) ⊂ B0, (I), (II’),
(IV) and the following condition hold: for any x, y ∈ A and u ∈ P(x), one possesses
at least an element v ∈ P(y) such that

(d(u, v) + c)a(x,y) ≤ ω(N(x, y, u, v)) + c

with ω ∈ Ω̂ and the constant c > 0, then T has a generalized best proximity point in
A0.

Lemma 4.11. Suppose that g : A → A is an isometry, α, η : X × X → [0,+∞),
T : A→ 2B satisfies T (A0) ⊂ B0 and
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(V) there exist ω ∈ Ω̂ and β ∈ [0,∞) such that for all x, y ∈ A and u ∈ P(x), one
possesses an element v ∈ P(y) such that

η(x, Tx) =: inf
u∈Tx

η(x, u) ≤ α(x, y) implies d(u, v) ≤ ω(d(x, y))+β[d(Tx, gy)−d(A,B)].

(11)

Then P satisfies the following conclusion

(iii) for any x, y ∈ A and α(x, y) ≥ η(x, Tx) implies

H(P(x),P(y)) ≤ ω(d(x, y)) + β[d(Tx, gy)− d(A,B)]

with β ≥ 0 and ω ∈ Ω̂

and vice versa if T−1 has approximative values on A0.
Proof. Let x, y ∈ A0 be any given. For any ε > 0, there exists u ∈ P(x) such that (3)

is valid. By means of (V) for ω ∈ Ω̂ and β ≥ 0, one possesses an element v ∈ P(y)
such that (11) holds. Therefore, by (3) and the nondecreasing of ω we have

ω

(
sup

u∗∈P(x)

d(u∗,P(y))

)
≤ ω(d(u,P(y)) + ε) ≤ ω(d(u, v) + ε). (12)

Note that the continuity of ω, we can put ω(d(u, v) + ε) = ω(d(u, v)) + o(ε), where
o(ε) stands for the infinitesimal of ε. substituting this for (12), we have

ω

(
sup

u∗∈P(x)

d(u∗,P(y))

)
≤ ω(d(x, y)) + o(ε)

≤ ω(d(x, y)) + β[d(Tx, gy)− d(A,B)] + o(ε).

Let ε→ 0, we have

ω

(
sup

u∗∈P(x)

d(u∗,P(y))

)
≤ ω(d(x, y)) + β[d(Tx, gy)− d(A,B)].

We can similarly infer

ω

(
sup

v∗∈P(y)

d(v∗,P(x))

)
≤ ω(d(x, y)) + β[d(Tx, gy)− d(A,B)].

Hence
φ̂(H(P(x),P(y))) ≤ ω(d(x, y)) + β[d(Tx, gy)− d(A,B)].

This yields that P satisfies (iii).
Conversely, if T ] has approximative values and is g1-contractive, then P has

approximative values and, for any u ∈ P(x), there exists v ∈ T ]y such that
d(u, v) = d(u,P(y)). On the other hand, one has

ω(d(u,P(y))) ≤ ω

(
sup

u∗∈P(x)

d(u∗,P(y))

)
≤ ω(d(x, y)) + β[d(Tx, gy)− d(A,B)].

Therefore,
ω(d(u, v)) ≤ ω(d(x, y)) + β[d(Tx, gy)− d(A,B)].

This implies that T meets (V).
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Lemma 4.12. Let X be complete, A0 be closed, g and T satisfy hypotheses of Lemma
4.11 with α, η : X ×X → [0,+∞) such that the following assertions hold:

(i’) there exist x0 ∈ A0 and x1 ∈ P(x0) such that α(x0, x1) ≥ η(x0, Tx0);
(ii’) for any sequence {xn} ⊂ A0 with xn ∈ P(xn−1), lim

n→∞
xn = x ∈ A0 and

α(xn, xn+1) ≥ η(xn, Txn) for all n ∈ N, we have α(xn, x) ≥ η((x, Tx) for all
n ∈ N;

(iv) if α(x, y) ≥ η(x, Tx) for x, y ∈ A0, then, for any u ∈ P(x), there exists
v ∈ P(y) such that α(u, v) ≥ η(u, Ty).

Then P has a fixed point x. Moreover, there exists a sequence {xn} which satisfies

d(gxn+1, Txn) = d(A,B) and lim
n→∞

xn = x.

Proof. Let x0, x1 ∈ A0 be given in (i’), i.e., x1 ∈ P(x0), α(x0, x1) ≥ η(x0, Tx0) and
d(x0, x1) = d(x0,P(x0)). By Lemma 4.11, P satisfies the contractive condition (iii)

and hence there exists ω ∈ Ω̂ such that

H(P(x0),P(x1)) ≤ ω(d(x0, x1)) + β[d(gx1, Tx0)− d(A,B)] = ω(d(x0, x1)).

By (iv), there exists x2 ∈ P(x1) such that α(x1, x2) ≥ η(x1, Tx1). Applying again
(iii), we have

H(P(x1),P(x2)) ≤ ω(d(x1, x2)) + β[d(Tx1, gx2)− d(A,B)] = ω(d(x1, x2)).

Proceeding this manner, we can construct a sequence {xn} in A0 with xn ∈ P(xn−1)
satisfying H(P(xn),P(xn+1)) ≤ ω(d(xn, xn+1)), α(xn, xn+1) ≥ η(xn, Txn) and
d(xn, xn+1) = d(xn, Txn). Note that A0 is complete, as an analogy of the proof
of Lemma 4.4, we have verified that there exists x ∈ A0 such that lim

n→∞
xn = x. In

view of α(xn, xn+1) ≥ η(xn, Txn) and (ii’) we have

α(xn, x) ≥ η(x, Tx), n = 1, 2, . . . . (13)

In order to check that x is a fixed point of P, By means of (13) and the contractive
condition (iii) it follows that

H(P(xn),P(x)) ≤ ω(d(xn, x))+β[d(gxn, Tx)−d(A,B)] ≤ ω(d(xn, x))+βd(xn+1, x).

In addition, evidently, d(xn+1,P(x)) ≤ H(P(xn),P(x)) for n ∈ N. Consequently,
one has

d(xn+1,P(x)) ≤ ω(d(xn, x)) + βd(xn+1, x).

By the continuity of the distance and ω, letting n go to infinity, we obtain

d(x,P(x)) = 0.

Finally, by virtue of the fact that P is approximative, there exists u ∈ P(x) such that
d(x, u) = 0, i.e., u = x and hence x is a fixed point of P.

Now Lemma 2.8 immediately infers the following result.

Theorem 4.13. Under the hypotheses of Lemma 4.12, T has a generalized best
proximity point x. Moreover, there exists a sequence {xn} which satisfies

d(gxn+1, Txn) = d(A,B) and lim
n→∞

xn = x.
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Corollary 4.14. Let X be complete, g : A→ A be an isometry with A0 ⊂ g(A0) and
A0 bounded closed. If T : A → 2B satisfies that, for all x, y ∈ A and u ∈ P(x), one
possesses an element v ∈ P(y) such that

1
1+a+β [d(x, Tx)−d(A,B)] ≤ d(x, y) implies d(u, v) ≤ αd(x, y)+β[d(Tx, gy)−d(A,B)]

with a ∈ (0, 1) and β ∈ (0,∞), then T has a generalized best proximity point x.
Moreover, for any element ξ ∈ A0, there exists a sequence {xn} that satisfies

x0 = ξ, d(gxn, Txn−1) = d(A,B)

for n = 1, 2, . . . and lim
n→∞

xn = x.

Proof. Note that g(A0) is bounded closed, too. For x, y ∈ X, define

η(x, y) =

{ 1
1+a+β [d(x, y)− d(A,B)], x ∈ A, y ∈ B,
d(x, y), otherwise,

α(x, y) =

{
max{d(x, gy) : x, y ∈ A0}, x, y ∈ A0,
d(x, gy), otherwise

and ω(t) = at with a ∈ (0, 1) and t ≥ 0. For x, y ∈ A0, it is easy to see that

α(x, y) ≥ d(x, gy) ≥ d(x, Tx)− d(Tx, gy) = d(x, Tx)− d(A,B) ≥ η(x, Tx)

for each x ∈ A0 and each y ∈ T ]x which can infer that α and η satisfy (i’) and
(iv). To check (ii’), taking the sequence {xn} and x given in (ii’), we have to check
η(x, Tx) ≤ α(xn, x). In fact, we have Tx ⊂ B0, which deduces that there exists
u ∈ A0 such that d(u, Tx) = d(A,B). Since A0 ⊂ g(A0), there exists z ∈ A0 such
that u = gz. We obtain

d(x, Tx)− d(A,B) ≤ d(x, u) + d(u, Tx)− d(A,B) = d(x, gz) ≤ α(xn, x).

This guarantees that η(x, Tx) ≤ α(xn, x). In addition, our assumptions guarantee
that T satisfies (V) for a given β ∈ (0,∞). Consequently, all conditions of Theorem
4.13 are satisfied. Thus, x is a best proximity point of T by Theorem 4.13. This
completes the proof.

Corollary 4.14 includes Theorem 3.1 of [20, 21].

Example 4.15. Let X = R with the usual metric and g = I. Suppose A = {0, 1, 4}
and B = {−1, 2, 3} ∪ [5,+∞). Then, A and B are nonempty and A is bounded
closed subsets of X, A0 = A and B0 = {−1, 2, 3, 5}. We note that, d(A,B) = 1. Let
T : A→ 2B be a set-valued mapping defined by

Tx =

{
[5,+∞), x = 0,
{−1, 2}, x = 1, 4.

Then T ](0) = P(0) = {4}, T ](1) = T ](4) = {0, 1} and P(1) = P(4) = {1}.
If (x, y) = (0, 1) and (u, v) = (4, 1), then, we have d(u, Tx) = d(v, Ty) = d(A,B).
Now, if α = 1

2 , β = 2, then

1

1 + α+ β
[d(x, Tx)− d(A,B)] =

2

7
× 4 > 1 = d(x, y),
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i.e., T satisfies the proximal contraction in Corollary 4.14. Thus, T has a best prox-
imity point x = 1.

It is interesting to note that the non-self set-valued mapping T is not a proximal
gi-contraction since T ] is not single-valued by Lemma 2.9(a3).

5. Applications

In this section, as an application of our results, we will discuss the existence of best
proximity points in a partially ordered complete metric space (X, d,≤). To wit, we
first recall the following notions:

Definition 5.1. For two subsets X1, X2 of X, we write X1 ≤ X2 if for each x ∈ X1

and each y ∈ X2 it follows that x ≤ y.
A multivalued mapping T : X → 2X is said to be nondecreasing (nonincreasing) if

x ≤ y implies that Tx ≤ Ty (Ty ≤ Tx) for all x, y ∈ X.
T is said to be monotone if T is nondecreasing or nonincreasing.

Definition 5.2. A mapping T : A → 2B is said to be proximally nondecreasing
(nonincreasing) if

x1 ≤ x2
d(y1, Tx1) = d(A,B)
d(y2, Tx2) = d(A,B)

⇒ y1 ≤ y2(y1 ≥ y2),

where x1, x2, y1, y2 ∈ A.
T is said to be proximally monotone if T is proximally nondecreasing or proximally

nonincreasing.

It is obvious that proximally monotone property deduces the monotone property
when A = B.

Lemma 5.3. Suppose that g : A → A is an surjective isometry and its inverse
nondecreasing, as well as, A0 ⊂ g(A0) and T : A → 2B satisfies T (A0) ⊂ B0.
If T is proximally nondecreasing (resp. nonincreasing), T ] is nondecreasing (resp.
nonincreasing). Vice versa if g is an identity.

The following theorem extends and improves the results in [12, 32, 33].

Theorem 5.4. Let (X, d,≤) be a partially ordered complete metric space. Let A,B ⊂
X be nonempty, A0 nonempty closed and g : A → A an isometry with A0 ⊂ g(A0).
Let T : A→ 2B with T (A0) ⊂ B0 have proximal approximative values and satisfy the
following conditions.

(o1) T is proximally nondecreasing.
(o2) One of the hypotheses (gpi) for i = 1, 2, . . . , 8 holds when x, y ∈ A with x ≤ y

instead of any x, y ∈ A.
(o3) There exist elements x0 ∈ A0 and x1 ∈ P(x0) such that x0 ≤ x1.
(o4) If {xn} is a nondecreasing sequence in A such that xn → x, then xn ≤ x.
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Then T has a generalized best proximity point x ∈ A. Further, the sequence {xn},
defined by d(gxn+1, Txn) = d(A,B) for n ≥ 1, converges to the element x.
Proof. Let functions α, η : A×A→ [0,+∞) be defined by, respectively,

α(x, y) =

{
1, x ≤ y,
0, otherwise

and η(x, y) ≡ 1.

Then we clearly obtain the following equivalences:
1. (I) in Theorem 4.5 and (o3);
2. (II) in Theorem 4.5 and (o1);
3. (III) in Theorem 4.5 and (o2);
4. (ii) in Lemma 4.4 and (o4).

Now Theorem 4.5 guarantees that the desired result holds which completes the proof.
Remark 5.5. As mentioned in Remark 2.7, if T is a single-valued mapping and set
pair (A,B) satisfies (weak) P-property, then each gi-contraction implies proximal gi-
contraction for i = 1, 2, . . . , 8. In this sense, Theorem 5.4 includes the main results in
[15, 27]. Moreover, some existence theorems, as follows, Theorem 18 in [27], Theorem
2.1 and Theorem 2.2 in [15] are equivalent in the sense that deal with the same class
of mappings.
Funding. This study was supported by National Natural Science Foundation of
China (71771068, 71471051).

References

[1] A. Abkar, M. Gabeleh, The existence of best proximity points for multivalued non-self-mappings,

Revista Real Acad. Ciencias Exactas, F́ısicas y Naturales. Serie A. Mat., 107(2013), 319-325.
[2] A. Abkar, M. Gabeleh, A note on some best proximity point theorems proved under P-property,

Abstr. Appl. Anal., 2013(2013), DOI: 10.1155/2013/189567.

[3] M. Alghamdi, N. Shahzad, F. Vetro, Best proximity points for some classes of proximal con-
tractions, Abstr. Appl. Anal., 2013(2013), Art. ID 713252, 10 pages.

[4] M.U. Ali, T. Kamaran, N. Shahzad, Best proximity point for α− ψ-proximal contractive mul-
timap, Abstr. Appl. Anal., 2014(2014), Art. ID 181598.

[5] A. Almeida, J. Harjani, K. Sadarangani, Existence and uniqueness of best proximity point for

contractions of Geraghty type, Revista Real Acad. Ciencias Exactas, F́ısicas y Naturales. Serie
A. Mat., 108(2014), 957-971.

[6] A. Amini-Harandi, Best proximity points for proximal generalized contractions in metric spaces,

Optim. Lett., 7(2013), 913-921.
[7] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations
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