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Abstract. The fractional integration of a function f(t) by a function φ and some of its properties

is presented in [23], [30] and [21]. As an application for this fractional integration we present some
existence results for at least one continuous solution for a nonlinear quadratic functional integral

equation of fractional (arbitrary) order. Also, some examples and remarks are illustrated. Finally,

we prove the existence of maximal and minimal solutions for that equations.
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1. Introduction and preliminaries

Let R be the set of real numbers whereas I = [a, b], L1 = L1[a, b] be the space of
Lebesgue integrable functions on I with the stander norm

||f(t)|| =
∫ b

a

|f(t)|dt.

The main results of this paper will be based on the following fixed-point theorem
and definition.

Theorem 1.1. (Schauder Fixed Point Theorem) [10]. Let Q be a nonempty,
convex, compact subset of a Banach space X, and T : Q → Q be a continuous map.
Then T has at least one fixed point in Q.

Lemma 1.2. Assume that F is the superposition operator generated by the function
f : [a, b]×R→ R. Then F transform the space C[a, b] into itself and is continuous if
and only if the function f is continuous on the set [a, b]×R.
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Let L1
φ = L1

φ[a, b] be the space of all real functions defined on [a, b] such that

φ′(t)f(t) ∈ L1 and ∫ b

a

|φ′(t)f(t)|dt ≤ ∞

where φ is increasing function and absolutely continuous on [a, b] and we introduce
the norm

||f(t)||L1
φ

=

∫ b

a

|φ′(t)f(t)|dt.

Definition 1.3. The φ− fractional integral of order α ≥ 0 of the function f(t) ∈ L1
φ

is defined as

Iαφ f(t) =

∫ t

a

(φ(t)− φ(s))α−1

Γ(α)
φ′(s)f(s)ds.

Iαφ may be known as the fractional integral of the function f(t) with respect to φ(t).

For more properties of this integral operator see [23], [30] and [21].
Quadratic integral equations occur more frequently in different research areas for

examples, in the theory of radiative transfer, kinetic theory of gases, in the theory of
neutron transport and in the traffic theory [11].
The existence theorems for several classes of solutions of quadratic integral equations
are studied in (see e.g. [1]-[7], [9] and [12]-[20]).

However, in most of the above literature, the main results are realized with the
help of the technique associated with the measure of noncompactness [4]- [7]. Instead
of using the technique of measure of noncompactness, Schauder fixed point theorem
is applied to study the existence of continuous solutions [18] and [29].

Here, we prove the existence of at least one continuous solution for the quadratic
functional integral equation of fractional order

x(t) = a(t) + g(t, x(t))

∫ t

0

(φ(t)− φ(s))α−1

Γ(α)
f(s, x(ψ(s)))φ′(s)ds, t ∈ I, α > 0 (1.1)

and the existence of maximal and minimal solutions for (1.1) will be proved.
This result extends the results obtained by El-Sayed et al. [18]. For ψ(t) = φ(t) = t, J.
Banas and B. Rzepka [7] proved the existence of a nondecreasing continuous solution
of (1.1) by using the technique of measure of noncompactness.

2. Main theorem

Let I = [0, 1]. Equation (1.1) will be investigated under the assumptions:

(i) a : I → R is continuous and k1 = sup
t∈I
|a(t)|.

(ii) g : I×R→ R is continuous and bounded. We put k2 = sup
(t,x)∈I×R

|g(t, x)| <∞.

(iii) There exist two constants li, i = 1, 2 respectively satisfying

|g(t, x)− g(s, y)| ≤ l1|t− s|+ l2|x− y|

for all t, s ∈ I and x, y ∈ R.
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(iv) f : I ×R→ R satisfies Carathèodory condition (i.e. is measurable in t for all
x : I → R and continuous in x for all t ∈ I ).
Moreover, there exist a function m ∈ L1 and a non-negative constant b such
that
|f(t, x)| ≤ m(t) + b|x|(∀(t, x) ∈ I × R) and k3 = sup

t∈I
Iβm(t) for any β ≤ α.

(v) ψ : I → I is continuous .
(vi) φ : I → I is a nondecreasing function having a continuous derivative.

Theorem 2.1. Let assumptions (i)-(vi) be satisfied. If k2b < Γ(1 + α), then the
quadratic functional integral equation (1.1) has at least one solution in the space
C(I).

Proof. Let C = C(I) be the Banach space of all real functions defined and continuous
on interval I with the standard supremum norm.
Fix a number r > 0 and consider the ball Sr in the space C(I) defined as

Sr = {x ∈ C(I) : |x(t)| ≤ r for t ∈ I}.

Let T be the operator defined on Sr by the formula

(Tx)(t) = a(t) + g(t, x(t))

∫ t

0

(φ(t)− φ(s))α−1

Γ(α)
f(s, x(ψ(s)))φ′(s)ds, x ∈ Sr, t ∈ I.

Then, in view of our assumptions, for x ∈ Sr and t ∈ I we get

|Tx(t)| ≤ |a(t)|+ |g(t, x(t))|
∫ t

0

(φ(t)− φ(s))α−1

Γ(α)
|f(s, x(ψ(s)))|φ′(s)ds

≤ k1 + k2I
α−β
φ Iβφm(t) + k2b

∫ t

0

(φ(t)− φ(s))α−1

Γ(α)
|x(ψ(s))|φ′(s)ds

≤ k1+ k2k3

∫ t

0

(φ(t)− φ(s))α−β−1

Γ(α− β)
φ′(s)ds+ k2br

∫ t

0

(φ(t)− φ(s))α−1

Γ(α)
φ′(s)ds

≤ k1 +
k2k3

Γ(α− β + 1)
+

k2br

Γ(1 + α)
.

Hence, in view of the condition k2b < Γ(1 + α), we have that T transforms the ball
Sr into itself for

r = (k1 +
k2k3

Γ(α− β + 1)
)(1− k2b

Γ(1 + α)
)−1.

Now, for t1andt2 ∈ I (without loss of generality assume that t1 < t2 ), we have

|(Tx)(t2)− (Tx)(t1)| = |a(t2)− a(t1)

+ g(t2, x(t2))Iαφ f(t2, x(ψ(t2)))− g(t1, x(t1))Iαφ f(t1, x(ψ(t1)))

+ g(t1, x(t1))Iαφ f(t2, x(ψ(t2)))− g(t1, x(t1))Iαφ f(t2, x(ψ(t2)))|
≤ |a(t2)− a(t1)|+ |g(t2, x(t2))− g(t1, x(t1))|Iαφ |f(t2, x(ψ(t2)))|
+ |g(t1, x(t1))||Iαφ f(t2, x(ψ(t2)))− Iαφ f(t1, x(ψ(t1)))|,
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but

|Iαφ f(t2, x(ψ(t2)))− Iαφ f(t1, x(ψ(t1)))| =
∣∣∣∣∫ t1

0

(φ(t2)− φ(s))α−1

Γ(α)
f(s, x(ψ(s)))φ′(s)ds

+

∫ t2

t1

(φ(t2)− φ(s))α−1

Γ(α)
f(s, x(ψ(s)))φ′(s)ds

−
∫ t1

0

(φ(t1)− φ(s))α−1

Γ(α)
f(s, x(ψ(s)))φ′(s)ds

∣∣∣∣
≤
∣∣∣∣∫ t1

0

(φ(t1)− φ(s))α−1

Γ(α)
f(s, x(ψ(s)))φ′(s)ds

+

∫ t2

t1

(φ(t2)− φ(s))α−1

Γ(α)
f(s, x(ψ(s)))φ′(s)ds

−
∫ t1

0

(φ(t1)− φ(s))α−1

Γ(α)
f(s, x(ψ(s)))φ′(s)ds

∣∣∣∣
≤
∫ t2

t1

(φ(t2)− φ(s))α−1

Γ(α)
|f(s, x(ψ(s)))φ′(s)|ds.

Then

|Iαφ f(t2, x(ψ(t2)))− Iαφ f(t1, x(ψ(t1)))| ≤ Iαt1,φ|f(t2, x(ψ(t2)))|
≤ Iαt1,φm(t2) + bIαt1,φ|x(ψ(t2))|

≤ Iα−βt1,φ
Iβt1,φm(t2) + bIαt1,φ|x(ψ(t2))|

≤ k3
(φ(t2)− φ(t1))α−β

Γ(α− β + 1)
+ br

(φ(t2)− φ(t1))α

Γ(α+ 1)
.

Then we get

|(Tx)(t2)− (Tx)(t1)| ≤ |a(t2)− a(t1)|+ [l1|t2 − t1|
+ l2|x(t2)− x(t1)|]Iαφ |f(t2, x(ψ(t2)))|

+ |g(t1, x(t1))|
(
k3

(φ(t2)− φ(t1))α−β

Γ(α− β + 1)
+ br

(φ(t2)− φ(t1))α

Γ(α+ 1)

)
i.e.,

|(Tx)(t2)− (Tx)(t1)| ≤ |a(t2)− a(t1)|+ [l1|t2 − t1|
+l2|x(t2)− x(t1)|]Iαφ (m(t2) + b|x(ψ(t2))|)

+k2k3
(φ(t2)− φ(t1))α−β

Γ(α− β + 1)
+ k2br

(φ(t2)− φ(t1))α

Γ(α+ 1)

≤ |a(t2)− a(t1)|+ k3
Γ(α− β + 1)

[l1|t2 − t1|+ l2|x(t2)− x(t1)|]

+
br

Γ(α+ 1)
[l1|t2 − t1|+ l2|x(t2)− x(t1)|] +

k2k3
Γ(α− β + 1)

(φ(t2)− φ(t1))α−β

+
k2br

Γ(α+ 1)
(φ(t2)− φ(t1))α → 0ast2 → t1.
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This means that the functions from TSr are equi-continuous on I. Then by the Arzela-
Ascoli Theorem [10] the closure of TSr is compact .
It is clear that the set Sr is nonempty, bounded, closed and convex.
Assumptions (ii) and (iv) imply that T : Sr → C(I) is a continuous operator in x.
Since all conditions of the Schauder fixed-point theorem hold, then T has a fixed point
in Sr.

3. Examples and remarks

In this section, we present some examples of classical integral equations which are
particular cases of equation (1.1) and consequently the existence of their solutions
can be established by using Theorem 2.1.

Example 3.1. The equation (1.1) includes the fractional-order quadratic integral
equation [7]

x(t) = a(t) + g(t, x(t))

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds.

To obtain this equation it sufficient to put ψ(t) = φ(t) = t in (1.1).

Example 3.2. Let the assumptions of Theorem 2.1 be satisfied (with φ(t) = tm,
m > 0 and ψ(t) = t), then the fractional-order quadratic integral equation

x(t) = a(t) + g(t, x(t))

∫ t

0

(tm − sm)α−1

Γ(α)
f(s, x(s))msm−1ds

has at least one solution x ∈ C

which is the same result proved in [22]

Example 3.3. Let the assumptions of Theorem 2.1 be satisfied (with g(t, x) = 1,
φ(t) = tm, m > 0 and ψ(t) = t), then the fractional-order integral equation [21]

x(t) = a(t) +

∫ t

0

(tm − sm)α−1

Γ(α)
f(s, x(s))msm−1ds

has at least one solution x ∈ C.

Example 3.4. Let the assumptions of Theorem 2.1 be satisfied (with g(t, x) = 1 and
ψ(t) = t), then the fractional-order integral equation [21]

x(t) = a(t) +

∫ t

0

(φ(t)− φ(s))α−1

Γ(α)
f(s, x(s))φ′(s)ds

has at least one solution x ∈ C.

Example 3.5. Let the assumptions of Theorem 2.1 be satisfied (with g(t, x) = 1,
φ(t) = t), then the fractional-order integral equation

x(t) = a(t) +

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(ψ(s)))ds (3.1)

has at least one solution x ∈ C.
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Letting b = 0 in assumption (iv) and ψ(t) = t in Eqn. (3.1), we obtain the same
result as was proved in [13].
For the initial value problem for the nonlinear fractional-order differential equation

RD
αx(t) = f(t, x(ψ(t))), t ∈ I and x(0) = 0, α ∈ (0, 1) (3.2)

(where RD
α is the Riemann-Liouville fractional order derivative).

As a consequence of Theorem 2.1 (with a(t) = 0, φ(t) = t and g(t, x(t)) = 1), the
Cauchy type problem (3.2) is equivalent to the integral equation

x(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(ψ(s)))ds, t ∈ I

has at least one solution x ∈ C.
Now letting α, β → 1, we obtain

Example 3.6. Let the assumptions of Theorem 2.1 be satisfied (with g(t, x) = 1,
a(t) = x0 and letting α, β → 1), then the integral equation

x(t) = x0 +

∫ t

0

f(s, x(ψ(s)))ds.

has at least one solution x ∈ C which is equivalent to the initial value problem

dx(t)

dt
= f(t, x(ψ(t))), x(0) = x0, (3.3)

Letting b = 0 in assumption (v) and ψ(t) = t in 3.3 we obtain Carathéodory Theorem
(proved in [10]).

Example 3.7. Consider the following quadratic functional integral equation

x(t) = t/6 + [
√
t2 + 5 + t(| log(x(t) + 3)|+ 1)]

×
∫ t

0

(φ(t)− φ(s))1/2

Γ(5/2)
[1 +

1

3 + s
x(sin(s2 + 4s))]ds, t ∈ [0, 1]. (3.4)

Taking

a(t) = t/6,

g(t, x) =
√
t2 + 5 + t(| log(x(t) + 3)|+ 1),

f(t, x) = t+
1

3 + t
x

then easily we can deduce that:
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• |f(t, x)| ≤ 1 + 1/2|x| and

|g(t, z)− g(s, y)| = |
√
t2 + 5 + t(| log(z(t) + 3)|+ 1)−

√
s2 + 5

− s(| log(y(s) + 3)|+ 1)|

≤ |
√
t2 + 5−

√
s2 + 5|+ t|(| log(z(t) + 3)|+ 1)

− (| log(y(s) + 3)|+ 1)|
+ |t(| log(y(s) + 3)|+ 1)− s(| log(y(s) + 3)|+ 1)|

≤ 2

5
|t− s|+ 1

10
|z − y|+ |t− s|+ 3|t− s|

≤ 11

5
|t− s|+ 1

10
|z − y|

• k1 = 1/6, k2 = 8, β = 1, k3 = 1, b = 1/2 and ψ(t) = sin(t2 + 4t),m(t) = 1.

4. Maximal and minimal solutions

Definition 4.1. [24] Let q(t) be a solution x(t) of (1.1) Then q(t) is said to be
a maximal solution of (1.1) if every solution of (1.1) on I satisfies the inequality
x(t) ≤ q(t), t ∈ I. A minimal solution s(t) can be defined in a similar way by
reversing the above inequality i.e. x(t) ≥ s(t), t ∈ I.

We need the following lemma to prove the existence of maximal and minimal solutions
of (1.1).

Lemma 4.2. Let g(t, x), f(t, x) satisfy the assumptions in Theorem 2.1 and let
x(t), y(t) be continuous functions on I satisfying

x(t) ≤ a(t) + g(t, x(t))Iαφ f(t, x(ψ(t)))

y(t) ≥ a(t) + g(t, y(t))Iαφ f(t, y(ψ(t)))

where one of them is strict.
Suppose f(t, x) is nondecreasing function in x. Then

x(t) < y(t), t ∈ I. (4.1)

Proof. Let the conclusion (4.1) be false; then there exists t1 such that

x(t1) = y(t1), t1 > 0

and
x(t) < y(t), 0 < t < t1.

From the monotonicity of the function f in x, we get

x(t1) ≤ a(t1) + g(t1, x(t1))Iαφ f(t1, x(ψ(t1)))

= a(t1) + g(t1, x(t1))

∫ t1

0

(φ(t1)− φ(s))α−1

Γ(α)
f(s, x(ψ(s)))φ′(s)ds

< a(t1) + g(t1, y(t1))

∫ t1

0

(φ(t1)− φ(s))α−1

Γ(α)
f(s, y(ψ(s)))φ′(s)ds

< y(t1).



188 H.H.G. HASHEM AND A.M.A. EL-SAYED

This contradicts the fact that x(t1) = y(t1);then

x(t) < y(t), t ∈ I. �

As particular cases of Lemma 4.2 we remark the following:

• For φ(t) = tm,m > 0, all the assumptions of Lemma 4.2 are satisfied and

x(t) ≤ a(t) + g(t, x(t))Iαmf(t, x(ψ(t)))

y(t) ≥ a(t) + g(t, y(t))Iαmf(t, y(ψ(t)))

where one of them is strict. Then

x(t) < y(t), t ∈ I.

• For φ(t) = t, all the assumptions of Lemma 4.2 are satisfied and

x(t) ≤ a(t) + g(t, x(t))Iαf(t, x(ψ(t)))

y(t) ≥ a(t) + g(t, y(t))Iαf(t, y(ψ(t)))

where one of them is strict. Then

x(t) < y(t) for t ∈ I.

Theorem 4.3. Let the assumptions of Theorem 2.1 be satisfied. Furthermore, if
f(t, x) is nondecreasing functions in x, then there exist maximal and minimal solutions
of (1.1).

Proof. Firstly, we shall prove the existence of maximal solution of (1.1). Let ε > 0 be
given. Now consider the fractional-order quadratic functional integral equation

xε(t) = a(t) + gε(t, xε(t))I
α
φ fε(t, xε(ψ(t))), (4.2)

where

fε(t, xε(ψ(t))) = f(t, xε(ψ(t))) + ε

and

gε(t, xε(t)) = g(t, xε(t)) + ε.

Clearly the functions fε(t, xε) and gε(t, xε) satisfy assumptions (ii), (iv) and

|gε(t, xε)| ≤M + ε = M ′.

|fε(t, xε)| ≤ m(t) + ε+ b|x| = m′(t) + b|x|.
Therefore, equation (4.2) has a continuous solution xε(t) according to Theorem 2.1.
Let ε1 and ε2 be such that 0 < ε2 < ε1 < ε. Then

xε1(t) = a(t) + gε1(t, xε1(t))Iαφ fε1(t, xε1(ψ(t))),

xε1(t) = a(t) + (g(t, xε1(t)) + ε1)Iαφ (f(t, xε1(ψ(t))) + ε1),

> a(t) + (g(t, xε1(t)) + ε2)Iαφ (f(t, xε1(ψ(t))) + ε2), (4.3)

xε2(t) = a(t) + (g(t, xε2(t)) + ε2)Iαφ (f(t, xε2(ψ(t))) + ε2). (4.4)

Applying Lemma 4.2, then (4.3) and (4.4) imply that

xε2(t) < xε1(t)fort ∈ I.
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As shown before in the proof of Theorem 2.1, the family of functions xε(t) defined by
(4.2) is uniformly bounded and of equi-continuous functions. Hence by the Arzela-
Ascoli Theorem, there exists a decreasing sequence εn such that εn → 0 as n → ∞,
and lim

n→∞
xεn(t) exists uniformly in I.We denote this limit by q(t). From the continuity

of the functions fεn and gεn in the second argument, we get

q(t) = lim
n→∞

xεn(t) = a(t) + g(t, q(t))Iαφ f(t, q(ψ(t)))

which proves that q(t) is a solution of (1.1).
Finally, we shall show that q(t) is maximal solution of (1.1). To do this, let x(t) be
any solution of (1). Then

xε(t) = a(t) + gε(t, xε(t))I
α
φ fε(t, xε(ψ(t)))

> a(t) + g(t, xε(t))I
α
φ f(t, xε(ψ(t)))

and
x(t) = a(t) + g(t, x(t))Iαφ f(t, x(ψ(t))).

Applying Lemma 4.2, we get

xε(t) > x(t)fort ∈ I.
From the uniqueness of the maximal solution (see [24], [27]), it is clear that xε(t)
tends to q(t) uniformly in t ∈ Iasε→ 0.
In a similar way we can prove that there exists a minimal solution of (1.1). �
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