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1. INTRODUCTION

Throughout this paper, we let X denote a real reflexive Banach Space with the
norm |||, and X* denote the dual space of X. We assume f : X — (—o00,+00] to be
proper, lower-semicontinuous and convex function and the domain of f be denoted as

domf ={x e X: f(z) < +o0}.

We let C' be a nonempty, closed and convex subset of X. The subdifferential of f at
x is the convex set defined by

Of (x) ={z" € X*: f(z) + (2", y —x) < f(y);Vy € X}. (1.1)

Definition 1.1. A mapping A : C — X* is said to be monotone if for each z,y € C,
the following inequality hold

(u—v,xz—y) > 0,Yu € Az, Vv € Ay. (1.2)

The class of monotone mappings includes the class of a-inverse strongly monotone
(a-ism) mappings and A : C' — X* is said to be a-ism [15], if there exists a positive
real number « such that

(u—v,x—y) > allu—v||*Yu € Az,Yv € Ay.
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The problem of finding a point z € C such that
(Az,y —z) > 0,Yy € C (1.3)

is called the variational inequality problem. The set of solution of the variational
inequality is denoted by VI(C,A). It is not difficult to check that when A is a
continuous monotone mapping then the solution set of VI(C, A) is closed and convex.
To see this, let

1
Alx)=1- -, €0,
xr

then A is a continuous monotone mapping which is closed and convex.

We remark here that monotone variational inequalities were originally introduced
in the work of [16], and have led to many researches on variational inequality problems
being studied, see for e.g, [15], [18], [19], [40], [36], [38], [39], [2], [37], [27], [7], [14]
and the references therein.

Let T': C'— C be a nonlinear self mapping. T is said to be nonexpansive mapping
if ||Tx —Ty|| < ||z —yl||,Vo,y € C, and T is said to quasi-nonexpansive mapping if
|Tx —pl|| < ||z —p||,Vz € C,p € F(T), where F(T) = {z € C: Tx = x} is the set of
fixed point of a mapping 7. A point p € C, is called an asymptotic fixed point of a
mapping T if C' contains a sequence z,, with x,, — p such that ||z, — Tx,|| = 0. The
set of asymptotic fixed point is denoted by F(T), (see [25]).

Definition 1.2. A mapping 7 : C' — C' is said to be Bregman firmly nonexpansive
(BFNE) (see for e.g.[29]) if

or equivalently,
Dy(Tz,Ty) + Dy(Ty,Tz) + Dy(Tz, ) + Dy(Ty,y) < Dy(Txz,y) + Dy(Ty, x).

Definition 1.3. A mapping T : C — C is said to be Bregman quasi-nonexpansive
(BQNE) (see [27]) if F(T) # 0 and

Dy(p,Tx) < Dy(p,x),Vz € C,Vp € F(T) (1.4)

Definition 1.4. A mapping 7' : C' — C is said to be Bregman relatively-nonexpansive
(BRNE) (see [27]) if F(T) # 0 and

Dy(p,Tz) < Dy(p,x),Vz € C,¥p € F(T) = F(T) (1.5)
Definition 1.5. A function f*: X* — (—o0, +00] defined by
fr(a”) = sup{(z,27) - f(z), v € X}
is called the conjugate function of f. We see from the conjugate inequality that
f(z) > (x,z*) — f*(a¥), Vo € X, 2" € X*,

(see [30]). A function is said to be cofinite if domf* = X*. A function f on X is
coercive (see [34]), if the sublevel set of f is bounded, equivalently

lim f(z) = +oo.

l|lzl|—oc
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It is said to be strongly coercive (see [30]), if

M = +o0.
llzl| oo ||z

For any z € intdom f and y € X, the right hand derivative of f at x in the direction
of y is defined by

Definition 1.6. A function f is said to be Gateaux differentiable at x if
i &+ ty) — f(z)

t—0+ t

exists for any y. In this case, f°(z,y) coincides with V f(x), the value of the gradient
Vf of f at . The function f is said to be Gateaux differentiable if it is Gateaux
differentiable for any x € intdom f. The function f is said to be Fréchet differentiable
at x if this limit is attained uniformly in ||y|| = 1. f is said to be uniformly Fréchet
differentiable on a subset C' of X if the limit is attained uniformly for x € C' and

|]|)y(|e|ﬁni1t'ion 1.7. A function f : X — (—o0,+0o¢] is said to be a Legendre function
(see [29]), if it satisfies the following two conditions:
(L1) intdomf # 0, f is Gateaux differentiable on intdomf and
domf = intdomf;
(L2) intdom f* # 0, f* is Gateaux differentiable on intdom f* and
domf* = intdomf*.
Remark 1.8. (cf. [6], [4], [23], [24]). Since X is reflexive, then we have that
@f Y=af
and since f is Legendre, then Jf is a bijection which satisfies
Vf= (V) ranVf = domV f* = intdomf*
and
ranV f* = domV f = intdom f.
f and f* are strictly convex on their intdomf. If the subdifferential of f is single

valued, it coincides with the gradient of f, that is 0f = V f.
Example of a Legendre function is

f(x) = %HwII”, (1<p < oo).

If X is smooth and strictly convex Banach spaces, then in this case the gradient V f
coincides with the generalised duality mapping of X, that is Vf = J,. If the space is
a Hilbert space, H then V f = I, where [ is the identity mapping in H. Throughout
this paper, we assumed that f is Legendre.

Definition 1.9. Let f: X — (—o0,+00] be a Gateaux differentiable function. The
modulus of total convexity of f at x € intdomf is the function

Vi(z,.) intdomf x [0, +00) — [0, +00)
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defined by
Vi(z,t) =inf{Ds(y,x) : y € domf,|ly — x| =t} . (1.6)

The function f is called totally convex at z if Vy(z,t) > 0 whenever t > 0. The
function f is called totally convex if it is totally convex at any point z € intdomf.
The function is said to be totally convex on bounded sets if V;(B,t) > 0 for any
nonempty bounded subset B of X and ¢ > 0, where the modulus of total convexity of
the function f on the set B is the function V; : intdom f x [0, +00) — [0, +00) defined
by

Vi(B,t) =inf{Vi(z,t) : x € BNdomf}. (1.7)
Let Vy : X x X* — [0, 4+00) associated with f (see [10],[3],[12]) be defined by
Vi(z, ") = f(z) — (x,2") + f*(2"), Vo € X, 2" € X™. (1.8)
We see that V;(,) > 0 and the relation
Vi(a.a*) = Dy (@, V1" a), (1.9)

holds. Moreover, by the subdifferential inequality, we obtain (see [17])

Vi(z,2™) + ",V (a") —z) < Vi(z, 2" +y"),Ve e X, 2%, y" € X" (1.10)
Definition 1.10. Let f: X — (—o00,+00] be a Gateaux differentiable function. The
function Dy : domf x intdomf — [0, +00) defined by

Dy(y,x) = f(y) — f(x) = (Vf(2),y —2), (L.11)

is called the Bregman distance with respect to f (see [8],[12]). It is easy to see that
Bregman distance function D does not satisfy the symmetric and triangle inequality
associated with the properties of a classical distance function, but has some interesting
properties like

Dy(y,x) = Ds(y,2) + Ds(z,2) + (Vf(2) = V[(2),y - 2).

Let Pé sintdomf — C be a mapping such that Pg(x) € C satisfying

Dy(PL(z),x) = inf {Dy(y,z) : y € C}, (1.12)

which is the Bregman Projection (see[8]) of « € intdom f onto a nonempty closed and
convex set C' C domf.

We remark here that, if X is a smooth and strictly convex Banach spaces and
f(x) = ||=|*, Vz € X, then we have that f(z) = 2Jz, Vo € X, where J is the
normalized duality mapping. Clearly, we obtain that

Dy(y,z) = f(y) — f(2) = (Vf(z),y — z)
= lyll* = llz)* = 2 (y, Ja) + 2 ||”

2 2
= lzl|” =2 (y, Jz) + ||yl
= ¢(y,x),Vz,y € X,
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which is the Lyapunov function introduced by [3] and has extensively been studied
by various authors (see for e.g. [31], [35], [3]). We clearly see that P'Cf (x) reduces to
the generalized projection given as

e(x) = argmingeco(y, ).
In addition, if X coincides with H, in Hilbert space then J = I and
Dy(y,z) = f(y) — f(x) = (Vf(2),y — x)
= llall* = lyll* = 2 (e, ) + 2ly)”
= [l=]* + lyll* = 2 (z,y)
=|lz -yl Vo,y € X.

Hence the Bregman Projection Pcf(x) reduces to metric projection of H onto C,
PC (l‘)

The distance functionD; introduced by Bregman [8] instead of norm have been
studied and used by many authors over the past seven years as it opened a growing
area of research (see e.g. [27], [25], [22], [5], [39]) and the references therein.

Recently, in 2016, [13] introduced an algorithm for finding fixed points of Bregman
quasi-nonexpansive mappings and zeros of maximal monotone operators by using
products of resolvents. The authors proved a strong convergence theorem for finding
a common fixed point of infinitely countable family of Bregman quasi-nonexpansive
mappings and a common zero of finitely many maximal monotone mappings in re-
flexive Banach spaces. In [32], the authors proved a new strong convergence theorem
for finite family of quasi-Bregman nonexpansive mappings and system of equilibrium
problem in real Banach space. In [1], the authors proved a strong convergence theorem
for the common fixed point of finite family of quasi-Bregman nonexpansive mappings.
Inspired and motivated by the works of [13], [32], [1], and the researches ongoing in
this direction, we consider an iterative scheme which converges strongly to a common
fixed point of a finite family of Bregman quasi-nonexpansive mappings and the com-
mon solution to a system of variational inequality problem for continuous monotone
mappings in reflexive Banach spaces.

2. PRELIMINARIES

In the sequel, we shall make use of the following lemmas.
Lemma 2.1. ([9]) The function f is totally convex on bounded sets if and only if for
any two sequences {x,} and {y,} in X such that the first one is bounded, then

T D (g, @) = 0= g — zall = 0.

Lemma 2.2. ([29]) Let C' be a nonempty, closed and convex subsets of intdomf and
T:C — C be a quasi-Bregman nonexpansive mapping with respect to f. Then F(T)
is closed and convex.

Lemma 2.3. ([11]) Let C be a nonempty, closed and convex subsets of X. Let
f:X = (—o00,+00] be a Gdteauz differentiable and totally conver function and let
r € X, then
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(i) z = PL(x) if and only if (Vf(z) — Vf(z),y — 2) < 0,%y € C,

(i) Dy(y, P(x)) + Dy (PL(x), %) < Dy (y,x),Vy € C.
Lemma 2.4. ([34]) Let X be a reflexive Banach space and let f : X — R be a
continuous conver function which is strongly coercive. Then the following assertions
are equivalent:

(i) f is bounded on bounded subsets and uniformly smooth on bounded subsets of X .

(i) f* is Fréchet differentiable and f* is uniformly norm-to-norm continuous on
bounded subsets of X*.

(iii) domf* = X*, f* is strongly coercive and uniformly convex on bounded subsets
of X*.
Lemma 2.5. ([21]) Let X be a Banach space, let r > 0 be a constant and f: X — R
be a continuous and convex function which is uniformly convex on bounded subsets of

X. Then
f (Z akfﬂk) < > anznf(ar) — aiagpr(|lzi — i),
k=1 k=1

Vi, j € NUO, xp € By, a € (0,1) and k € N U0 with Zak =1, where p, is the
k=1
gauge of uniform convezity of f.

Lemma 2.6. ([26]) If f : X — (—o00,+00] is uniformly Fréchet differentiable and
bounded on bounded subsets of X, then V f is uniformly continuous on bounded subsets
of X from the strong topology of X to the strong topology of X*.

Lemma 2.7. ([20]) Let f : X — (—o00,4+o0] be a Gdteauz differentiable on intdom f
such that V f* is bounded on bounded subsets of intdomf*. Let xo € X and {x,} is
a sequence in X. If Dy(xq,x,) is bounded, then the sequence x, is also bounded.
Lemma 2.8. ([23]) Let f : X — (—00,+00] be a proper, lower semi-continuous and
convez function, then f* : X* — (—o0,+00] is a proper, weak* lower semi-continuous
and convex function. Thus, for all z € X, we have

N n
Dy (Z,Vf* (ZtZVf(IZ)>> < Ztin(Z’xi)'
i=1 1=1

Lemma 2.9. ([33]) Let {a,},—; be a sequence of nonnegative real numbers satisfying
the following relation:

ny1 < (1 - an)an + an5n7 n = no,

where {ay, }oo | is a sequence in (0,1), {0,} is a sequence in R satisfying the following
conditions:

o0
lim o, =0, Z a, = oo and lim supd, < 0.
Then lim a, = 0.
n— oo
Lemma 2.10. ([19]) Let {ca, },~, be a sequence of real numbers such that there exists
a nondecreasing subsequence {n;} of {n} that is an, < an,,, Vi € N. Then there
exists a nondecreasing subsequence {my} C N such that mj; — oo and the following



A STRONG CONVERGENCE THEOREM 173

properties are satisfied for all (sufficiently large number) k € N: am, < Gm,,, and
ar < amy, - In fact, mp = max {j <k:a; < a1}

Lemma 2.11. ([28]) Let f : X — (—o0,+0o0] be a coercive Legendre function and
C' a nonempty closed and convexr subset of X. Let the mapping A : C — X* be a
continuous monotone mapping. Forr > 0 and x € X, define the mapping G, : X — C
as follows:

Grx = {ZGC:(Az,y—z>+i(Vf(z)—Vf(x),y—z) >0, VyéC}

for all x € X. Then the following hold:
(1) G, is single valued;
(2) F(G,) =VI(C,A);
(3) Dy(p, Gy) + Dy(Gor, 3) < Dy(p,), ¥ € F(G,);
(4) VI(C, A) is closed and convex.

3. MAIN RESULTS

Let C be a nonempty, closed and convex subset of X. Let the mappings
A1, Ay, Ag s C — X* be d continuous monotone mappings. For r,, C (0,00),n €
N and = € X, define the mapping G, : X — C as follows:

Giyp,x = {z eC:(Aiz,y—2)+ %(Vf(z) —Vf(x),y—=2) >0, Vy € C’}

for all z € X, for all ¢ = 1,2,--- ,d. Then in what follows, we shall state and prove
the following theorem:

Theorem 3.1. Let C be a nonempty, closed and convex subset of intdomf, let
f X — R be a strongly coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of a real reflexive Banach

space X. Let Ay, Ag,-+- ,Ag: C — X* be d continuous monotone mappings and let
71,15, T, : C — C be m left Bregman quasi-nonezpansive mappings such that

F(T;) = F(T;). Assume that
F =) Fiz(T;) N0, V(C, Aj) # 0.
i=1

For any fixed u,zy € C, let {x,,} be a sequence of C generated by the following
algorithm:

Uiq,n :Gi,rnynai = 1a27"' 7da (31)
Tns1 = PLV (@nVf () + (1= an) VS (uin)) ;0 >0,
where {ay,} C (0,1),{Bn} C [c,d] C (0,1) satisfying the following conditions:
(i) lim «a, =0;
n—oo
(ii) Z Qy, = 00.
n=1

Then, {z,} converges strongly to a point of F.



174 ENYINNAYA EKUMA-OKEREKE AND ABIODUN TINUOYE OLADIPO

Proof. Now by Lemma 2.2 and Lemma 2.11, we obtain that f is closed and convex.
Let p € F. From Lemma 2.4 and since f is bounded and uniformly smooth on
bounded subsets of X, so f* is uniformly convex on bounded subsets of X*. Then
using Lemma 2.5, the properties of D; and T;, for each ¢ = 1,2,--- ,m and from
(3.1), (1.8), (1.9), we obtain that

Di(p,yn) = Dy(p, VI (BuV f(2n) + (1 = Bn)V f(Tizn)))
=Vi(p, BnV fan) + (1 = Bn)V f(Tizn))
< f(p) =P, BV f(zn) + (1 = B,)V f(Tizn))
+ [*(BaV f(zn) + (1 = Bn)V f(Tizn))
< Buf(p)+ (1= Ba)f(p) — Bulps Vf(%))
+ (L= Bo) (0, V(Tiwp)) + Buf* (Vf(2n))
+ (L= Bu) " (Vf(Tiwn)) = Bl = Bu)pr(|IV f(20) = Vf(Tizn)|])
= BaVi(p, V(zn)) + (1 = Bu)Vi(p, VI (Tizy))
= Bn(L = B)pr(IV f(20) — V f(Tizn)|])
= BnDyf(p,xn) + (1 — Bn)Ds(p, Tizn)
= Bn(L = Bu)pr(IV f(20) — V f(Tizn)|])
< Dy(p,zn) = Bl = Bu)pyr ([[V f(20) — VF(Tizn)|])
< Dy(p,zn) (3.2)

Again, from Lemma 2.11 and (3.2), we obtain

Dy(p,tin) = Ds(p, Gisr yn) < Dy (ps yn)
< Dy(p,an) = Bu(1 = Bn)pr(IIV f (2n) = VI (Tian)|)
< Dy(p, xn). (3.3)
Setting hy, = Vf*(a,Vf(u)+ (1 —an)Vf(un)), we obtain from Lemma 2.3,
Lemma 2.8, (3.1) and (3.3) that
Df(p,@n+1) = Dy(p, Plhy)
< Dy(p, hn)
= Dy(p, VI (@ V f(u) + (1 = an) V[ (uin)))
< anDy(p,u) + (1 — an)Dy(p, uin)
< anDy(p,u) + (1 — an)Dy(p, 2n)
= Bn(1 = Bn)pr (V£ (zn) = Vf (Tizn)|])
< anDy(p,u) + (1 — an) Dy (p, zn). (34)
Thus by induction, we obtain that

Df(p7 anrl) < maX{Df(p, u)v Df(p7 .’EQ)},VTL > 07

which implies that {Df(p,z,)} and hence {Dy(p, T;z,)} are bounded. Thus we get
from Lemmas 2.6,2.7 that {,}, {yn},{tin} and {h,} are all bounded.
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Furthermore, from (3.1) Lemma 2.3, (1.9) and (1.10), we obtain

Dy (p,&n+1) = Dy(p, Pohn)
< Dy(p,h )
=Di(p, VI (anVf(u) + (1 = an)Vf(uin)))
= Vf( yan Vf(u) + (1 — an)vf(uz n))
< Vi(p, 0V f(u ) (1 =)V f(uin) —an(Vf(u) = VF(p)))
+ an(Vf(u) =V f(p), hn —p)
= Vi(

p,anVf(p) + (1 — an)Vf(uin)) + an(Vf(u) = VI(p), hn —p)
= Dy(p, VI (nVf(p) + (1 — an)V f(uin)))

+ an(Vf(u) = VI(p), hn —p)

< anDy(p,p) + (1 — an)Ds(p,tin) + an(Vf(u) = VFI(p), hn —p)

< (1= an)Dy(p, tin) + an(Vf(u) = VI(p), hn — p)

< (I =an)Dg(p,an) = (1 = an)Bu(l = Bn)pr(I[V f(2n) = Vf(Tizn)|])

+ an(Vf(u) = VI(p), hn = p) (3.5)

< (L= an)Dy(p,an) + an(Vf(u) = VF(p), hn —p).
We now consider two cases.
Case I. Suppose that there exists ng € N such that {Dy(p,x,)} is monotone non-
increasing for all n > ng. Then we get that {D¢(p, z,)} is convergent and

Dg(p,an) = Dy(p,2ns1) = 0,
so that from (3.5), we obtain for
M = sup{fn(1 = Bn)p(IV f (2n) = Vf(Tizn)|]) = Dy (p, n)}
that
P = Bu)pr(|IV f(wn) = VI (Tizn)l]) < Dy(p,on) = D (p, @ns1) + anM,  (3.7)
where
M = sup{Bn(1 = Bn)pr([[Vf(2n) = VI (Tizn)l]) — Dy (p,an)} < 00

since D¢(p, x,,) is bounded and p} is nondecreasing.
Hence by this and since {$,} C [¢,d] C (0,1), we get as n — oo

Vf(zn) — Vf(Tixz,) — 0. (3.8)

Since f is strongly coercive and uniformly convex on bounded subsets of X, f* is
uniformly Fréchet differentiable on bounded subsets of X* and by Lemma 2.4, we get
that V f* is uniformly continuous. So we obtain as n — oo that

Tn — Tixpy —0,i=1,2,--- ,m. (3.9)
Moreover, from Lemma 2.8 and condition (), we obtain that
D150y ) = D1t V1@V £ (1) + (1 = )V (5,)
< anDy(tp,u) + (1 — ) D (Wi, win) = 0, (3.10)
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as n — 0o, and by Lemma 2.1, we obtain as n — oo that
Uip — hp = 0,Vi=1,2,--- ,d. (3.11)
Furthermore, we obtain as n — oo
IV (@n) = VIya)ll = 1 = B)lIVS(zn) = Vf(Tizn)|] = 0.
Hence, we get as n — oo that
Ty — Yn — 0. (3.12)
Also, from Lemma 2.11, we have
Dy (yn, win) = Df(Yns Gir,Yn)
< Ds(p, Gir,yn) — Dy(0s yn)
< Dy(p,yn) = Dp(p,yn) = 0.

as n — oo.
Thus we have from Lemma 2.1 as n — oo that

Yn —Uin = 0,Vi=1,2,--- . d. (3.13)
Also, from Lemma 2.3, we have
Df(ympéhn) < Df(ynvhn)
Dy (yn, VI (anV f(u) + (1 — )V f(uin))
anDy(yn,u) + (1 = an)Dy(yn, win)
O‘an(ymu) + (1 - an)Df(ymyn) — 0.

as n — 0o.
So that from Lemma 2.1, we have as n — 0o

Yn — hp — 0. (3.14)
Hence from 3.12 and 3.14, we obtain as n — co

Tp — by — 0. (3.15)
Similarly, from 3.12 and 3.13, we obtain as n — oo

Ty — Uiy — 0. (3.16)

Since f is strongly coercive and uniformly convex on bounded subsets of X, f* is
uniformly Fréchet differentiable on bounded subsets of X* and by Lemma 2.4 we get
that V f* is uniformly continuous and from 3.16, we obtain as n — oo

Vi(@n) = Vf(uin) —0,. (3.17)

Now since X is reflexive and {h,} is bounded, there exists a subsequence {h,,} of
{hn} such that h,, = h € C, and

limsup(V f(u) = Vf(p), hn — p) = limsup(V f(v) — Vf(p), hn, — p).

n—oo 1—00

Hence, we obtain from 3.15 and 3.16, that z,, — h. Using 3.9 and the fact that

—

F(T;) = F(T;), we obtain that h € N[, F(T;).
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Now, we show that h € VI(C, A;) for each i = 1,2,--- ,d. Recalling by definition, we
have that

T'n

<Aiui,nay - Ui,n> + < Y — ui,n> > O7Vy € Ca

and hence
vf(ui,’ﬂj) - vf(w’ﬂJ)

T'n;

(Aithin;, Y — Uin;) + ( Y = Uin,) >0,y € C, (3.18)

Letting v; = ty + (1 — t)h for all t € (0,1] and y € C. Consequently, we obtain that
vy € C. From (3.18), it then follows that

(A, v = Ui, ) > (Aive, Vg — Ui ;)

- <Aiui,nj7vt - uzn]> - <

Vf(uz,nj) - Vf(xnj) vy — U >

Tn;

= (Avr — A, V¢ — Uim;) — < UCER) f@ ])aUt - Uzn1> )

Tn;

Using (3.17) and the fact that A; for each i = 1,2,--- | d is monotone, implies that
0 < lim (Ajve, v¢ — Ui n,) = (Ao, ve — h).
]*)OO -
Hence we get (Aju,y —v) > 0, Vy € Cyi = 1,2,--- ,d. Letting t — 0, and the
continuity of A; for each ¢ = 1,2,--- ,d implies that (A;h,y — h) > 0, Vy € C,i =

1,2,--- ,d. This shows that
d

he [VI(C, A)
i=1
and hence -
he () Fiz(T) NN, VI(C, Ai) = F .
i=1
Thus by Lemma 2.3, we have

limsup(V f(u) = Vf(p), hn — p) = limsup(V f(u) = Vf(p), hn, — P),

n— oo 71— 00
— V() = VF(p)h—p) 0. (3.19)
It therefore follows from (3.6), (3.18) and Lemma 2.9, that D¢(p,x,) — 0 as n — oo.

Consequently, from Lemma 2.1, we obtain that x — p = Pf (u).
Case II. Suppose that there exists a subsequence {n;} of {n} such that

D¢(p,xn,) < Df(p,xn,.,),Vi € N. (3.20)

Then by Lemma 2.10, there exists a nondecreasing sequence {my} C N such that
my, — 00, and D¢(p, 2, ) < Df(p,m,,,) and Dy(p,xx) < Df(p,Tm,,,), Yk € N.
Then from (3.9) and the fact that a,,, — 0, we obtain as n — oo that

ps(IVf(@m,) = V[ (Tizm,)I|) — 0. (3:21)
Thus we get from the same method of proof in Casel that

Ty, — Ti%my, = 0, Ty, — Yme = 0, Tiny, — By = 0, Tiny, — Uimy, — 0, (3.22)
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n — oo and also we obtain
limsup(V f(u) = V. (p), hm, —p) < 0. (3.23)
k—o0

Now from (3.5) we obtain that

Df(p7 xmk+1) < (1 - amk)Df(pv xmk) + <Vf(u) - vf(p)7hmk _p>
amkDf(p’ xmk) < Df(p7 xmk) - Df(p’ xmk+1) + Qo <Vf(u) - vf(p),hmk _p>'

Since, D¢ (p, Zm, ) < Dg(p, Tm,,, ), we have

Uy Dy (p; Tm,,) < am (Vf(w) = Vf(P), himy, — p)- (3.24)
Using (3.23), then (3.24) implies as n — oo
Dy(p, Tpm,,) — 0. (3.25)
Consequently,as n — 0o
Dy(p, @mysy) = 0. (3.26)

But D, (p,zx) < D, (p, Tm,,) for all k € N. Thus we obtain that D(p,zx) — 0 as
n — oco. Hence, by Lemma 2.1, we have x, — p as k — oo. Therefore, from the above
two cases, we conclude that the sequence {z,,} converges strongly to p = Pg (u) and
that completes the proof of our theorem.
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