A STRONG CONVERGENCE THEOREM FOR FINITE FAMILIES OF BREGMAN QUASI-NONEXPANSIVE AND MONOTONE MAPPINGS IN BANACH SPACES

ENYINNAYA EKUMA-OKEREKE* AND ABIODUN TINUOYE OLADIPO**
*Department of Mathematics/Computer Science, Federal University of Petroleum Resources, Effurun, P.M.B 1221, Nigeria
E-mail: ekuma.okereke@fupre.edu.ng
** Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology, Ogbomoso, P.M.B 4000, Nigeria

Abstract

We introduce a new iterative scheme and prove a strong convergence theorem for it. This iterative scheme finds a common point in the set of fixed points of a finite family of Bregman quasi-nonexpansive mappings and the common solution set of the variational inequality problem for continuous monotone mappings. Key Words and Phrases: Bregman quasi-nonexpansive mappings, strong convergence, continuous monotone mappings, fixed point. 2010 Mathematics Subject Classification: 47H09, 47H10, 47J25, 47H05, 4705.

1. Introduction

Throughout this paper, we let X denote a real reflexive Banach Space with the norm $\|$.$\| , and X^{*}$ denote the dual space of X. We assume $f: X \rightarrow(-\infty,+\infty]$ to be proper, lower-semicontinuous and convex function and the domain of f be denoted as

$$
\operatorname{dom} f=\{x \in X: f(x)<+\infty\} .
$$

We let C be a nonempty, closed and convex subset of X. The subdifferential of f at x is the convex set defined by

$$
\begin{equation*}
\partial f(x)=\left\{x^{*} \in X^{*}: f(x)+\left\langle x^{*}, y-x\right\rangle \leq f(y) ; \forall y \in X\right\} \tag{1.1}
\end{equation*}
$$

Definition 1.1. A mapping $A: C \rightarrow X^{*}$ is said to be monotone if for each $x, y \in C$, the following inequality hold

$$
\begin{equation*}
\langle u-v, x-y\rangle \geq 0, \forall u \in A x, \forall v \in A y \tag{1.2}
\end{equation*}
$$

The class of monotone mappings includes the class of α-inverse strongly monotone (α-ism) mappings and $A: C \rightarrow X^{*}$ is said to be α-ism [15], if there exists a positive real number α such that

$$
\langle u-v, x-y\rangle \geq \alpha\|u-v\|^{2}, \forall u \in A x, \forall v \in A y
$$

The problem of finding a point $z \in C$ such that

$$
\begin{equation*}
\langle A z, y-z\rangle \geq 0, \forall y \in C \tag{1.3}
\end{equation*}
$$

is called the variational inequality problem. The set of solution of the variational inequality is denoted by $V I(C, A)$. It is not difficult to check that when A is a continuous monotone mapping then the solution set of $V I(C, A)$ is closed and convex. To see this, let

$$
A(x)=1-\frac{1}{x}, x \in C
$$

then A is a continuous monotone mapping which is closed and convex.
We remark here that monotone variational inequalities were originally introduced in the work of [16], and have led to many researches on variational inequality problems being studied, see for e.g, [15], [18], [19], [40], [36], [38], [39], [2], [37], [27], [7], [14] and the references therein.

Let $T: C \rightarrow C$ be a nonlinear self mapping. T is said to be nonexpansive mapping if $\|T x-T y\| \leq\|x-y\|, \forall x, y \in C$, and T is said to quasi-nonexpansive mapping if $\|T x-p\| \leq\|x-p\|, \forall x \in C, p \in F(T)$, where $F(T)=\{x \in C: T x=x\}$ is the set of fixed point of a mapping T. A point $p \in C$, is called an asymptotic fixed point of a mapping T if C contains a sequence x_{n} with $x_{n} \rightharpoonup p$ such that $\left\|x_{n}-T x_{n}\right\|=0$. The set of asymptotic fixed point is denoted by $\widehat{F}(T)$, (see [25]).
Definition 1.2. A mapping $T: C \rightarrow C$ is said to be Bregman firmly nonexpansive (BFNE) (see for e.g.[29]) if

$$
\langle\nabla f(T x)-\nabla f(T y), T x-T y\rangle \leq\langle\nabla f(x)-\nabla f(y), T x-T y\rangle, \forall x, y \in C
$$

or equivalently,

$$
D_{f}(T x, T y)+D_{f}(T y, T x)+D_{f}(T x, x)+D_{f}(T y, y) \leq D_{f}(T x, y)+D_{f}(T y, x)
$$

Definition 1.3. A mapping $T: C \rightarrow C$ is said to be Bregman quasi-nonexpansive (BQNE) (see [27]) if $F(T) \neq \emptyset$ and

$$
\begin{equation*}
D_{f}(p, T x) \leq D_{f}(p, x), \forall x \in C, \forall p \in F(T) \tag{1.4}
\end{equation*}
$$

Definition 1.4. A mapping $T: C \rightarrow C$ is said to be Bregman relatively-nonexpansive (BRNE) (see [27]) if $F(T) \neq \emptyset$ and

$$
\begin{equation*}
D_{f}(p, T x) \leq D_{f}(p, x), \forall x \in C, \forall p \in F(T)=\widehat{F}(T) \tag{1.5}
\end{equation*}
$$

Definition 1.5. A function $f^{*}: X^{*} \rightarrow(-\infty,+\infty]$ defined by

$$
f^{*}\left(x^{*}\right)=\sup \left\{\left\langle x, x^{*}\right\rangle-f(x), x \in X\right\}
$$

is called the conjugate function of f. We see from the conjugate inequality that

$$
f(x) \geq\left\langle x, x^{*}\right\rangle-f^{*}\left(x^{*}\right), \forall x \in X, x^{*} \in X^{*}
$$

(see [30]). A function is said to be cofinite if $\operatorname{dom} f^{*}=X^{*}$. A function f on X is coercive (see [34]), if the sublevel set of f is bounded, equivalently

$$
\lim _{\|x\| \rightarrow \infty} f(x)=+\infty
$$

It is said to be strongly coercive (see [30]), if

$$
\lim _{\|x\| \rightarrow \infty} \frac{f(x)}{\|x\|}=+\infty
$$

For any $x \in \operatorname{intdom} f$ and $y \in X$, the right hand derivative of f at x in the direction of y is defined by

$$
f^{0}(x, y)=\lim _{t \rightarrow 0^{+}} \frac{f(x+t y)-f(x)}{t}
$$

Definition 1.6. A function f is said to be Gâteaux differentiable at x if

$$
\lim _{t \rightarrow 0^{+}} \frac{f(x+t y)-f(x)}{t}
$$

exists for any y. In this case, $f^{0}(x, y)$ coincides with $\nabla f(x)$, the value of the gradient ∇f of f at x. The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable for any $x \in \operatorname{intdom} f$. The function f is said to be Fréchet differentiable at x if this limit is attained uniformly in $\|y\|=1 . f$ is said to be uniformly Fréchet differentiable on a subset C of X if the limit is attained uniformly for $x \in C$ and $\|y\|=1$.
Definition 1.7. A function $f: X \rightarrow(-\infty,+\infty]$ is said to be a Legendre function (see [29]), if it satisfies the following two conditions:
(L1) intdomf $\neq \emptyset, f$ is Gâteaux differentiable on intdomf and

$$
\operatorname{domf}=\operatorname{int} \operatorname{domf}
$$

(L2) intdom $f^{*} \neq \emptyset, f^{*}$ is Gâteaux differentiable on intdom f^{*} and

$$
\operatorname{dom} f^{*}=i n t \operatorname{dom} f^{*}
$$

Remark 1.8. (cf. [6], [4], [23], [24]). Since X is reflexive, then we have that

$$
\left(\partial f^{-1}\right)=\partial f^{*}
$$

and since f is Legendre, then ∂f is a bijection which satisfies

$$
\nabla f=\left(\nabla f^{*}\right)^{-1}, \operatorname{ran} \nabla f=\operatorname{dom} \nabla f^{*}=i n t \operatorname{dom} f^{*}
$$

and

$$
\operatorname{ran} \nabla f^{*}=\operatorname{dom} \nabla f=\operatorname{int} \operatorname{dom} f
$$

f and f^{*} are strictly convex on their intdomf. If the subdifferential of f is single valued, it coincides with the gradient of f, that is $\partial f=\nabla f$.

Example of a Legendre function is

$$
f(x)=\frac{1}{p}\|x\|^{p},(1<p<\infty)
$$

If X is smooth and strictly convex Banach spaces, then in this case the gradient ∇f coincides with the generalised duality mapping of X, that is $\nabla f=J_{p}$. If the space is a Hilbert space, H then $\nabla f=I$, where I is the identity mapping in H. Throughout this paper, we assumed that f is Legendre.
Definition 1.9. Let $f: X \rightarrow(-\infty,+\infty]$ be a Gâteaux differentiable function. The modulus of total convexity of f at $x \in \operatorname{int} \operatorname{lom} f$ is the function

$$
V_{f}(x, .): \operatorname{intdom} f \times[0,+\infty) \rightarrow[0,+\infty)
$$

defined by

$$
\begin{equation*}
V_{f}(x, t)=\inf \left\{D_{f}(y, x): y \in \operatorname{dom} f,\|y-x\|=t\right\} \tag{1.6}
\end{equation*}
$$

The function f is called totally convex at x if $V_{f}(x, t)>0$ whenever $t>0$. The function f is called totally convex if it is totally convex at any point $x \in \operatorname{intdom} f$. The function is said to be totally convex on bounded sets if $V_{f}(B, t)>0$ for any nonempty bounded subset B of X and $t>0$, where the modulus of total convexity of the function f on the set B is the function $V_{f}: \operatorname{int} \operatorname{dom} f \times[0,+\infty) \rightarrow[0,+\infty)$ defined by

$$
\begin{equation*}
V_{f}(B, t)=\inf \left\{V_{f}(x, t): x \in B \cap \operatorname{dom} f\right\} \tag{1.7}
\end{equation*}
$$

Let $V_{f}: X \times X^{*} \rightarrow[0,+\infty)$ associated with f (see [10],[3],[12]) be defined by

$$
\begin{equation*}
V_{f}\left(x, x^{*}\right)=f(x)-\left\langle x, x^{*}\right\rangle+f^{*}\left(x^{*}\right), \forall x \in X, x^{*} \in X^{*} \tag{1.8}
\end{equation*}
$$

We see that $V_{f}() \geq$,0 and the relation

$$
\begin{equation*}
V_{f}\left(x, x^{*}\right)=D_{f}\left(x, \nabla f^{*}\left(x^{*}\right)\right), \tag{1.9}
\end{equation*}
$$

holds. Moreover, by the subdifferential inequality, we obtain (see [17])

$$
\begin{equation*}
V_{f}\left(x, x^{*}\right)+\left\langle y^{*}, \nabla f^{*}\left(x^{*}\right)-x\right\rangle \leq V_{f}\left(x, x^{*}+y^{*}\right), \forall x \in X, x^{*}, y^{*} \in X^{*} \tag{1.10}
\end{equation*}
$$

Definition 1.10. Let $f: X \rightarrow(-\infty,+\infty]$ be a Gâteaux differentiable function. The function $D_{f}: \operatorname{domf} \times \operatorname{intdom} f \rightarrow[0,+\infty)$ defined by

$$
\begin{equation*}
D_{f}(y, x)=f(y)-f(x)-\langle\nabla f(x), y-x\rangle, \tag{1.11}
\end{equation*}
$$

is called the Bregman distance with respect to f (see [8],[12]). It is easy to see that Bregman distance function D_{f} does not satisfy the symmetric and triangle inequality associated with the properties of a classical distance function, but has some interesting properties like

$$
D_{f}(y, x)=D_{f}(y, z)+D_{f}(z, x)+\langle\nabla f(z)-\nabla f(x), y-z\rangle
$$

Let $P_{C}^{f}: \operatorname{intdom} f \rightarrow C$ be a mapping such that $P_{C}^{f}(x) \in C$ satisfying

$$
\begin{equation*}
D_{f}\left(P_{C}^{f}(x), x\right)=\inf \left\{D_{f}(y, x): y \in C\right\} \tag{1.12}
\end{equation*}
$$

which is the Bregman Projection (see[8]) of $x \in \operatorname{intdomf}$ onto a nonempty closed and convex set $C \subset \operatorname{dom} f$.

We remark here that, if X is a smooth and strictly convex Banach spaces and $f(x)=\|x\|^{2}, \forall x \in X$, then we have that $f(x)=2 J x, \forall x \in X$, where J is the normalized duality mapping. Clearly, we obtain that

$$
\begin{aligned}
D_{f}(y, x) & =f(y)-f(x)-\langle\nabla f(x), y-x\rangle \\
& =\|y\|^{2}-\|x\|^{2}-2\langle y, J x\rangle+2\|x\|^{2} \\
& =\|x\|^{2}-2\langle y, J x\rangle+\|y\|^{2} \\
& =\phi(y, x), \forall x, y \in X
\end{aligned}
$$

which is the Lyapunov function introduced by [3] and has extensively been studied by various authors (see for e.g. [31], [35], [3]). We clearly see that $P_{C}^{f}(x)$ reduces to the generalized projection given as

$$
\Pi_{C}(x)=\operatorname{argmin}_{y \in C} \phi(y, x)
$$

In addition, if X coincides with H, in Hilbert space then $J=I$ and

$$
\begin{aligned}
D_{f}(y, x) & =f(y)-f(x)-\langle\nabla f(x), y-x\rangle \\
& =\|x\|^{2}-\|y\|^{2}-2\langle x, y\rangle+2\|y\|^{2} \\
& =\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle \\
& =\|x-y\|^{2}, \forall x, y \in X .
\end{aligned}
$$

Hence the Bregman Projection $P_{C}^{f}(x)$ reduces to metric projection of H onto C, $P_{C}(x)$.

The distance function D_{f} introduced by Bregman [8] instead of norm have been studied and used by many authors over the past seven years as it opened a growing area of research (see e.g. [27], [25], [22], [5], [39]) and the references therein.

Recently, in 2016, [13] introduced an algorithm for finding fixed points of Bregman quasi-nonexpansive mappings and zeros of maximal monotone operators by using products of resolvents. The authors proved a strong convergence theorem for finding a common fixed point of infinitely countable family of Bregman quasi-nonexpansive mappings and a common zero of finitely many maximal monotone mappings in reflexive Banach spaces. In [32], the authors proved a new strong convergence theorem for finite family of quasi-Bregman nonexpansive mappings and system of equilibrium problem in real Banach space. In [1], the authors proved a strong convergence theorem for the common fixed point of finite family of quasi-Bregman nonexpansive mappings. Inspired and motivated by the works of [13], [32], [1], and the researches ongoing in this direction, we consider an iterative scheme which converges strongly to a common fixed point of a finite family of Bregman quasi-nonexpansive mappings and the common solution to a system of variational inequality problem for continuous monotone mappings in reflexive Banach spaces.

2. Preliminaries

In the sequel, we shall make use of the following lemmas.
Lemma 2.1. ([9]) The function f is totally convex on bounded sets if and only if for any two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that the first one is bounded, then

$$
\lim _{n \rightarrow \infty} D_{f}\left(y_{n}, x_{n}\right)=0 \Rightarrow\left\|y_{n}-x_{n}\right\|=0
$$

Lemma 2.2. ([29]) Let C be a nonempty, closed and convex subsets of intdomf and $T: C \rightarrow C$ be a quasi-Bregman nonexpansive mapping with respect to f. Then $F(T)$ is closed and convex.
Lemma 2.3. ([11]) Let C be a nonempty, closed and convex subsets of X. Let $f: X \rightarrow(-\infty,+\infty]$ be a Gâteaux differentiable and totally convex function and let $x \in X$, then
(i) $z=P_{C}^{f}(x)$ if and only if $\langle\nabla f(x)-\nabla f(z), y-z\rangle \leq 0, \forall y \in C$,
(ii) $D_{f}\left(y, P_{C}^{f}(x)\right)+D_{f}\left(P_{C}^{f}(x), x\right) \leq D_{f}(y, x), \forall y \in C$.

Lemma 2.4. ([34]) Let X be a reflexive Banach space and let $f: X \rightarrow R$ be a continuous convex function which is strongly coercive. Then the following assertions are equivalent:
(i) f is bounded on bounded subsets and uniformly smooth on bounded subsets of X.
(ii) f^{*} is Fréchet differentiable and f^{*} is uniformly norm-to-norm continuous on bounded subsets of X^{*}.
(iii) $\operatorname{dom} f^{*}=X^{*}, f^{*}$ is strongly coercive and uniformly convex on bounded subsets of X^{*}.
Lemma 2.5. ([21]) Let X be a Banach space, let $r>0$ be a constant and $f: X \rightarrow R$ be a continuous and convex function which is uniformly convex on bounded subsets of X. Then

$$
f\left(\sum_{k=1}^{\infty} \alpha_{k} x_{k}\right) \leq \sum_{k=1}^{\infty} \alpha_{k} x_{k} f\left(x_{k}\right)-\alpha_{i} \alpha_{j} \rho_{r}\left(\left\|x_{i}-x_{j}\right\|\right)
$$

$\forall i, j \in N \cup 0, x_{k} \in B_{r}, \alpha_{k} \in(0,1)$ and $k \in N \cup 0$ with $\sum_{k=1}^{\infty} \alpha_{k}=1$, where ρ_{r} is the gauge of uniform convexity of f.
Lemma 2.6. ([26]) If $f: X \rightarrow(-\infty,+\infty]$ is uniformly Fréchet differentiable and bounded on bounded subsets of X, then ∇f is uniformly continuous on bounded subsets of X from the strong topology of X to the strong topology of X^{*}.
Lemma 2.7. ([20]) Let $f: X \rightarrow(-\infty,+\infty]$ be a Gâteaux differentiable on intdomf such that ∇f^{*} is bounded on bounded subsets of intdomf*. Let $x_{0} \in X$ and $\left\{x_{n}\right\}$ is a sequence in X. If $D_{f}\left(x_{0}, x_{n}\right)$ is bounded, then the sequence x_{n} is also bounded.
Lemma 2.8. ([23]) Let $f: X \rightarrow(-\infty,+\infty]$ be a proper, lower semi-continuous and convex function, then $f^{*}: X^{*} \rightarrow(-\infty,+\infty]$ is a proper, weak* lower semi-continuous and convex function. Thus, for all $z \in X$, we have

$$
D_{f}\left(z, \nabla f^{*}\left(\sum_{i=1}^{N} t_{i} \nabla f\left(x_{i}\right)\right)\right) \leq \sum_{i=1}^{n} t_{i} D_{f}\left(z, x_{i}\right)
$$

Lemma 2.9. ([33]) Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonnegative real numbers satisfying the following relation:

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \delta_{n}, \quad n \geq n_{0}
$$

where $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is a sequence in $(0,1),\left\{\delta_{n}\right\}$ is a sequence in R satisfying the following conditions:

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \text { and } \lim _{n \rightarrow \infty} \sup \delta_{n} \leq 0
$$

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.10. ([19]) Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers such that there exists a nondecreasing subsequence $\left\{n_{i}\right\}$ of $\{n\}$ that is $a_{n_{i}}<a_{n_{i+1}} \forall i \in N$. Then there exists a nondecreasing subsequence $\left\{m_{k}\right\} \subset N$ such that $m_{k} \rightarrow \infty$ and the following
properties are satisfied for all (sufficiently large number) $k \in N: a_{m_{k}} \leq a_{m_{k+1}}$ and $a_{k} \leq a_{m_{k+1}}$. In fact, $m_{k}=\max \left\{j \leq k: a_{j} \leq a_{j+1}\right\}$.
Lemma 2.11. ([28]) Let $f: X \rightarrow(-\infty,+\infty]$ be a coercive Legendre function and C a nonempty closed and convex subset of X. Let the mapping $A: C \rightarrow X^{*}$ be a continuous monotone mapping. For $r>0$ and $x \in X$, define the mapping $G_{r}: X \rightarrow C$ as follows:

$$
G_{r} x=\left\{z \in C:\langle A z, y-z\rangle+\frac{1}{r}\langle\nabla f(z)-\nabla f(x), y-z\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in X$. Then the following hold:
(1) G_{r} is single valued;
(2) $F\left(G_{r}\right)=V I(C, A)$;
(3) $D_{f}\left(p, G_{r} x\right)+D_{f}\left(G_{r} x, x\right) \leq D_{f}(p, x), \forall p \in F\left(G_{r}\right)$;
(4) $V I(C, A)$ is closed and convex.

3. Main Results

Let C be a nonempty, closed and convex subset of X. Let the mappings $A_{1}, A_{2}, \cdots, A_{d}: C \rightarrow X^{*}$ be d continuous monotone mappings. For $r_{n} \subset(0, \infty), n \in$ N and $x \in X$, define the mapping $G_{r}: X \rightarrow C$ as follows:

$$
G_{i, r_{n}} x=\left\{z \in C:\left\langle A_{i} z, y-z\right\rangle+\frac{1}{r_{n}}\langle\nabla f(z)-\nabla f(x), y-z\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in X$, for all $i=1,2, \cdots, d$. Then in what follows, we shall state and prove the following theorem:
Theorem 3.1. Let C be a nonempty, closed and convex subset of intdomf, let $f: X \rightarrow R$ be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of a real reflexive Banach space X. Let $A_{1}, A_{2}, \cdots, A_{d}: C \rightarrow X^{*}$ be d continuous monotone mappings and let $T_{1}, T_{2}, \cdots, T_{m}: C \rightarrow C$ be m left Bregman quasi-nonexpansive mappings such that $\widehat{F\left(T_{i}\right)}=F\left(T_{i}\right)$. Assume that

$$
\digamma=\bigcap_{i=1}^{m} F i x\left(T_{i}\right) \cap \cap \cap_{i=1}^{d} V\left(C, A_{j}\right) \neq \emptyset .
$$

For any fixed $u, x_{0} \in C$, let $\left\{x_{n}\right\}$ be a sequence of C generated by the following algorithm:

$$
\left\{\begin{array}{l}
y_{n}=\nabla f^{*}\left(\beta_{n} \nabla f\left(x_{n}\right)+\left(1-\beta_{n}\right) \nabla f\left(T_{i} x_{n}\right)\right) \tag{3.1}\\
u_{i, n}=G_{i, r_{n}} y_{n}, i=1,2, \cdots, d \\
x_{n+1}=P_{C}^{f} \nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)\right), n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[c, d] \subset(0,1)$ satisfying the following conditions:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(ii) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$.

Then, $\left\{x_{n}\right\}$ converges strongly to a point of \digamma.

Proof. Now by Lemma 2.2 and Lemma 2.11, we obtain that \digamma is closed and convex. Let $p \in \digamma$. From Lemma 2.4 and since f is bounded and uniformly smooth on bounded subsets of X, so f^{*} is uniformly convex on bounded subsets of X^{*}. Then using Lemma 2.5, the properties of D_{f} and T_{i}, for each $i=1,2, \cdots, m$ and from (3.1), (1.8), (1.9), we obtain that

$$
\begin{align*}
D_{f}\left(p, y_{n}\right) & =D_{f}\left(p, \nabla f^{*}\left(\beta_{n} \nabla f\left(x_{n}\right)+\left(1-\beta_{n}\right) \nabla f\left(T_{i} x_{n}\right)\right)\right) \\
& =V_{f}\left(p, \beta_{n} \nabla f\left(x_{n}\right)+\left(1-\beta_{n}\right) \nabla f\left(T_{i} x_{n}\right)\right) \\
& \leq f(p)-\left\langle p, \beta_{n} \nabla f\left(x_{n}\right)+\left(1-\beta_{n}\right) \nabla f\left(T_{i} x_{n}\right)\right\rangle \\
& +f^{*}\left(\beta_{n} \nabla f\left(x_{n}\right)+\left(1-\beta_{n}\right) \nabla f\left(T_{i} x_{n}\right)\right) \\
& \leq \beta_{n} f(p)+\left(1-\beta_{n}\right) f(p)-\beta_{n}\left\langle p, \nabla f\left(x_{n}\right)\right\rangle \\
& +\left(1-\beta_{n}\right)\left\langle p, \nabla f\left(T_{i} x_{n}\right)\right\rangle+\beta_{n} f^{*}\left(\nabla f\left(x_{n}\right)\right) \\
& +\left(1-\beta_{n}\right) f^{*}\left(\nabla f\left(T_{i} x_{n}\right)\right)-\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right) \\
& =\beta_{n} V_{f}\left(p, \nabla f\left(x_{n}\right)\right)+\left(1-\beta_{n}\right) V_{f}\left(p, \nabla f\left(T_{i} x_{n}\right)\right) \\
& -\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right) \\
& =\beta_{n} D_{f}\left(p, x_{n}\right)+\left(1-\beta_{n}\right) D_{f}\left(p, T_{i} x_{n}\right) \\
& -\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right) \\
& \leq D_{f}\left(p, x_{n}\right)-\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right) \\
& \leq D_{f}\left(p, x_{n}\right) \tag{3.2}
\end{align*}
$$

Again, from Lemma 2.11 and (3.2), we obtain

$$
\begin{align*}
D_{f}\left(p, u_{i, n}\right) & =D_{f}\left(p, G_{i, r_{n}} y_{n}\right) \leq D_{f}\left(p, y_{n}\right) \\
& \leq D_{f}\left(p, x_{n}\right)-\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right) \\
& \leq D_{f}\left(p, x_{n}\right) \tag{3.3}
\end{align*}
$$

Setting $h_{n}=\nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)\right)$, we obtain from Lemma 2.3, Lemma 2.8, (3.1) and (3.3) that

$$
\begin{align*}
D_{f}\left(p, x_{n+1}\right) & =D_{f}\left(p, P_{C}^{f} h_{n}\right) \\
& \leq D_{f}\left(p, h_{n}\right) \\
& =D_{f}\left(p, \nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)\right)\right) \\
& \leq \alpha_{n} D_{f}(p, u)+\left(1-\alpha_{n}\right) D_{f}\left(p, u_{i, n}\right) \\
& \leq \alpha_{n} D_{f}(p, u)+\left(1-\alpha_{n}\right) D_{f}\left(p, x_{n}\right) \\
& -\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right) \\
& \leq \alpha_{n} D_{f}(p, u)+\left(1-\alpha_{n}\right) D_{f}\left(p, x_{n}\right) \tag{3.4}
\end{align*}
$$

Thus by induction, we obtain that

$$
D_{f}\left(p, x_{n+1}\right) \leq \max \left\{D_{f}(p, u), D_{f}\left(p, x_{0}\right)\right\}, \forall n \geq 0
$$

which implies that $\left\{D_{f}\left(p, x_{n}\right)\right\}$ and hence $\left\{D_{f}\left(p, T_{i} x_{n}\right)\right\}$ are bounded. Thus we get from Lemmas 2.6, 2.7 that $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{i, n}\right\}$ and $\left\{h_{n}\right\}$ are all bounded.

Furthermore, from (3.1), Lemma 2.3, (1.9) and (1.10), we obtain

$$
\begin{align*}
D_{f}\left(p, x_{n+1}\right) & =D_{f}\left(p, P_{C}^{f} h_{n}\right) \\
& \leq D_{f}\left(p, h_{n}\right) \\
& =D_{f}\left(p, \nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)\right)\right) \\
& =V_{f}\left(p, \alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)\right) \\
& \leq V_{f}\left(p, \alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)-\alpha_{n}(\nabla f(u)-\nabla f(p))\right) \\
& +\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), h_{n}-p\right\rangle \\
& =V_{f}\left(p, \alpha_{n} \nabla f(p)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), h_{n}-p\right\rangle \\
& =D_{f}\left(p, \nabla f^{*}\left(\alpha_{n} \nabla f(p)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)\right)\right) \\
& +\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), h_{n}-p\right\rangle \\
& \leq \alpha_{n} D_{f}(p, p)+\left(1-\alpha_{n}\right) D_{f}\left(p, u_{i, n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), h_{n}-p\right\rangle \\
& \leq\left(1-\alpha_{n}\right) D_{f}\left(p, u_{i, n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), h_{n}-p\right\rangle \\
& \leq\left(1-\alpha_{n}\right) D_{f}\left(p, x_{n}\right)-\left(1-\alpha_{n}\right) \beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right) \\
& +\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), h_{n}-p\right\rangle \tag{3.5}\\
& \leq\left(1-\alpha_{n}\right) D_{f}\left(p, x_{n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), h_{n}-p\right\rangle . \tag{3.6}
\end{align*}
$$

We now consider two cases.
Case I. Suppose that there exists $n_{0} \in N$ such that $\left\{D_{f}\left(p, x_{n}\right)\right\}$ is monotone nonincreasing for all $n \geq n_{0}$. Then we get that $\left\{D_{f}\left(p, x_{n}\right)\right\}$ is convergent and

$$
D_{f}\left(p, x_{n}\right)-D_{f}\left(p, x_{n+1}\right) \rightarrow 0,
$$

so that from (3.5), we obtain for

$$
M=\sup \left\{\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right)-D_{f}\left(p, x_{n}\right)\right\}
$$

that

$$
\begin{equation*}
\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right) \leq D_{f}\left(p, x_{n}\right)-D_{f}\left(p, x_{n+1}\right)+\alpha_{n} M, \tag{3.7}
\end{equation*}
$$

where

$$
M=\sup \left\{\beta_{n}\left(1-\beta_{n}\right) \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\|\right)-D_{f}\left(p, x_{n}\right)\right\}<\infty
$$

since $D_{f}\left(p, x_{n}\right)$ is bounded and ρ_{s}^{*} is nondecreasing.
Hence by this and since $\left\{\beta_{n}\right\} \subset[c, d] \subset(0,1)$, we get as $n \rightarrow \infty$

$$
\begin{equation*}
\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right) \rightarrow 0 . \tag{3.8}
\end{equation*}
$$

Since f is strongly coercive and uniformly convex on bounded subsets of X, f^{*} is uniformly Fréchet differentiable on bounded subsets of X^{*} and by Lemma 2.4, we get that ∇f^{*} is uniformly continuous. So we obtain as $n \rightarrow \infty$ that

$$
\begin{equation*}
x_{n}-T_{i} x_{n} \rightarrow 0, i=1,2, \cdots, m \tag{3.9}
\end{equation*}
$$

Moreover, from Lemma 2.8 and condition (i), we obtain that

$$
\begin{align*}
D_{f}\left(u_{i, n}, h_{n}\right) & =D_{f}\left(u_{i, n}, \nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)\right)\right) \\
& \leq \alpha_{n} D_{f}\left(u_{i, n}, u\right)+\left(1-\alpha_{n}\right) D_{f}\left(u_{i, n}, u_{i, n}\right) \rightarrow 0, \tag{3.10}
\end{align*}
$$

as $n \rightarrow \infty$, and by Lemma 2.1, we obtain as $n \rightarrow \infty$ that

$$
\begin{equation*}
u_{i, n}-h_{n} \rightarrow 0, \forall i=1,2, \cdots, d \tag{3.11}
\end{equation*}
$$

Furthermore, we obtain as $n \rightarrow \infty$

$$
\left\|\nabla f\left(x_{n}\right)-\nabla f\left(y_{n}\right)\right\|=\left(1-\beta_{n}\right)\left\|\nabla f\left(x_{n}\right)-\nabla f\left(T_{i} x_{n}\right)\right\| \rightarrow 0
$$

Hence, we get as $n \rightarrow \infty$ that

$$
\begin{equation*}
x_{n}-y_{n} \rightarrow 0 \tag{3.12}
\end{equation*}
$$

Also, from Lemma 2.11, we have

$$
\begin{aligned}
D_{f}\left(y_{n}, u_{i, n}\right) & =D_{f}\left(y_{n}, G_{i, r_{n}} y_{n}\right) \\
& \leq D_{f}\left(p, G_{i, r_{n}} y_{n}\right)-D_{f}\left(p, y_{n}\right) \\
& \leq D_{f}\left(p, y_{n}\right)-D_{f}\left(p, y_{n}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
Thus we have from Lemma 2.1 as $n \rightarrow \infty$ that

$$
\begin{equation*}
y_{n}-u_{i, n} \rightarrow 0, \forall i=1,2, \cdots, d \tag{3.13}
\end{equation*}
$$

Also, from Lemma 2.3, we have

$$
\begin{aligned}
D_{f}\left(y_{n}, P_{C}^{f} h_{n}\right) & \leq D_{f}\left(y_{n}, h_{n}\right) \\
& D_{f}\left(y_{n}, \nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(u_{i, n}\right)\right)\right. \\
& \alpha_{n} D_{f}\left(y_{n}, u\right)+\left(1-\alpha_{n}\right) D_{f}\left(y_{n}, u_{i, n}\right) \\
& \alpha_{n} D_{f}\left(y_{n}, u\right)+\left(1-\alpha_{n}\right) D_{f}\left(y_{n}, y_{n}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.
So that from Lemma 2.1, we have as $n \rightarrow \infty$

$$
\begin{equation*}
y_{n}-h_{n} \rightarrow 0 \tag{3.14}
\end{equation*}
$$

Hence from 3.12 and 3.14 , we obtain as $n \rightarrow \infty$

$$
\begin{equation*}
x_{n}-h_{n} \rightarrow 0 \tag{3.15}
\end{equation*}
$$

Similarly, from 3.12 and 3.13 , we obtain as $n \rightarrow \infty$

$$
\begin{equation*}
x_{n}-u_{i, n} \rightarrow 0 \tag{3.16}
\end{equation*}
$$

Since f is strongly coercive and uniformly convex on bounded subsets of X, f^{*} is uniformly Fréchet differentiable on bounded subsets of X^{*} and by Lemma 2.4 we get that ∇f^{*} is uniformly continuous and from 3.16, we obtain as $n \rightarrow \infty$

$$
\begin{equation*}
\nabla f\left(x_{n}\right)-\nabla f\left(u_{i, n}\right) \rightarrow 0, \tag{3.17}
\end{equation*}
$$

Now since X is reflexive and $\left\{h_{n}\right\}$ is bounded, there exists a subsequence $\left\{h_{n_{i}}\right\}$ of $\left\{h_{n}\right\}$ such that $h_{n_{i}} \rightharpoonup h \in C$, and

$$
\limsup _{n \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), h_{n}-p\right\rangle=\limsup _{i \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), h_{n_{i}}-p\right\rangle
$$

Hence, we obtain from 3.15 and 3.16 , that $x_{n_{i}} \rightharpoonup h$. Using 3.9 and the fact that $\widehat{F\left(T_{i}\right)}=F\left(T_{i}\right)$, we obtain that $h \in \cap_{i=1}^{m} F\left(T_{i}\right)$.

Now, we show that $h \in \operatorname{VI}\left(C, A_{i}\right)$ for each $i=1,2, \cdots, d$. Recalling by definition, we have that

$$
\left\langle A_{i} u_{i, n}, y-u_{i, n}\right\rangle+\left\langle\frac{\nabla f\left(u_{i, n}\right)-\nabla f\left(x_{n}\right)}{r_{n}}, y-u_{i, n}\right\rangle \geq 0, \forall y \in C
$$

and hence

$$
\begin{equation*}
\left\langle A_{i} u_{i, n_{j}}, y-u_{i, n_{j}}\right\rangle+\left\langle\frac{\nabla f\left(u_{i, n_{j}}\right)-\nabla f\left(x_{n_{j}}\right)}{r_{n_{j}}}, y-u_{i, n_{j}}\right\rangle \geq 0, \forall y \in C, \tag{3.18}
\end{equation*}
$$

Letting $v_{t}=t y+(1-t) h$ for all $t \in(0,1]$ and $y \in C$. Consequently, we obtain that $v_{t} \in C$. From (3.18), it then follows that

$$
\begin{aligned}
\left\langle A_{i} v_{t}, v_{t}-u_{i, n_{j}}\right\rangle & \geq\left\langle A_{i} v_{t}, v_{t}-u_{i, n_{j}}\right\rangle \\
& -\left\langle A_{i} u_{i, n_{j}}, v_{t}-u_{i, n_{j}}\right\rangle-\left\langle\frac{\nabla f\left(u_{i, n_{j}}\right)-\nabla f\left(x_{n_{j}}\right)}{r_{n_{j}}}, v_{t}-u_{i, n_{j}}\right\rangle \\
& =\left\langle A_{i} v_{t}-A_{i} u_{i, n_{j}}, v_{t}-u_{i, n_{j}}\right\rangle-\left\langle\frac{\nabla f\left(u_{i, n_{j}}\right)-\nabla f\left(x_{n_{j}}\right)}{r_{n_{j}}}, v_{t}-u_{i, n_{j}}\right\rangle .
\end{aligned}
$$

Using (3.17) and the fact that A_{i} for each $i=1,2, \cdots, d$ is monotone, implies that

$$
0 \leq \lim _{j \rightarrow \infty}\left\langle A_{i} v_{t}, v_{t}-u_{i, n_{j}}\right\rangle=\left\langle A_{i} v_{t}, v_{t}-h\right\rangle
$$

Hence we get $\left\langle A_{i} v_{t}, y-v\right\rangle \geq 0, \forall y \in C, i=1,2, \cdots, d$. Letting $t \rightarrow 0$, and the continuity of A_{i} for each $i=1,2, \cdots, d$ implies that $\left\langle A_{i} h, y-h\right\rangle \geq 0, \forall y \in C, i=$ $1,2, \cdots, d$. This shows that

$$
h \in \bigcap_{i=1}^{d} V I\left(C, A_{i}\right)
$$

and hence

$$
h \in \bigcap_{i=1}^{m} F i x\left(T_{i}\right) \cap \cap_{i=1}^{d} V I\left(C, A_{i}\right)=\digamma .
$$

Thus by Lemma 2.3, we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), h_{n}-p\right\rangle & =\limsup _{i \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), h_{n_{i}}-p\right\rangle \\
& =\nabla f(u)-\nabla f(p), h-p\rangle \leq 0 \tag{3.19}
\end{align*}
$$

It therefore follows from (3.6), (3.18) and Lemma 2.9, that $D_{f}\left(p, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Consequently, from Lemma 2.1, we obtain that $x \rightarrow p=P_{F}^{f}(u)$.
Case II. Suppose that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that

$$
\begin{equation*}
D_{f}\left(p, x_{n_{i}}\right)<D_{f}\left(p, x_{n_{i+1}}\right), \forall i \in N \tag{3.20}
\end{equation*}
$$

Then by Lemma 2.10, there exists a nondecreasing sequence $\left\{m_{k}\right\} \subset N$ such that $m_{k} \rightarrow \infty$, and $D_{f}\left(p, x_{m_{k}}\right) \leq D_{f}\left(p, x_{m_{k+1}}\right)$ and $D_{f}\left(p, x_{k}\right) \leq D_{f}\left(p, x_{m_{k+1}}\right), \forall k \in N$. Then from (3.9) and the fact that $\alpha_{m_{k}} \rightarrow 0$, we obtain as $n \rightarrow \infty$ that

$$
\begin{equation*}
\rho_{s}^{*}\left(\left\|\nabla f\left(x_{m_{k}}\right)-\nabla f\left(T_{i} x_{m_{k}}\right)\right\|\right) \rightarrow 0 \tag{3.21}
\end{equation*}
$$

Thus we get from the same method of proof in CaseI that

$$
\begin{equation*}
x_{m_{k}}-T_{i} x_{m_{k}} \rightarrow 0, x_{m_{k}}-y_{m_{k}} \rightarrow 0, x_{m_{k}}-h_{m_{k}} \rightarrow 0, x_{m_{k}}-u_{i, m_{k}} \rightarrow 0 \tag{3.22}
\end{equation*}
$$

as $n \rightarrow \infty$ and also we obtain

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), h_{m_{k}}-p\right\rangle \leq 0 \tag{3.23}
\end{equation*}
$$

Now from (3.5) we obtain that

$$
\begin{aligned}
D_{f}\left(p, x_{m_{k+1}}\right) & \leq\left(1-\alpha_{m_{k}}\right) D_{f}\left(p, x_{m_{k}}\right)+\alpha_{m_{k}}\left\langle\nabla f(u)-\nabla f(p), h_{m_{k}}-p\right\rangle \\
\alpha_{m_{k}} D_{f}\left(p, x_{m_{k}}\right) & \leq D_{f}\left(p, x_{m_{k}}\right)-D_{f}\left(p, x_{m_{k+1}}\right)+\alpha_{m_{k}}\left\langle\nabla f(u)-\nabla f(p), h_{m_{k}}-p\right\rangle .
\end{aligned}
$$

Since, $D_{f}\left(p, x_{m_{k}}\right) \leq D_{f}\left(p, x_{m_{k+1}}\right)$, we have

$$
\begin{equation*}
\alpha_{m_{k}} D_{f}\left(p, x_{m_{k}}\right) \leq \alpha_{m_{k}}\left\langle\nabla f(u)-\nabla f(p), h_{m_{k}}-p\right\rangle . \tag{3.24}
\end{equation*}
$$

Using (3.23), then (3.24) implies as $n \rightarrow \infty$

$$
\begin{equation*}
D_{f}\left(p, x_{m_{k}}\right) \rightarrow 0 \tag{3.25}
\end{equation*}
$$

Consequently, as $n \rightarrow \infty$

$$
\begin{equation*}
D_{f}\left(p, x_{m_{k+1}}\right) \rightarrow 0 \tag{3.26}
\end{equation*}
$$

But $D_{f}\left(p, x_{k}\right) \leq D_{f}\left(p, x_{m_{k+1}}\right)$ for all $k \in N$. Thus we obtain that $D_{f}\left(p, x_{k}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence, by Lemma 2.1, we have $x_{k} \rightarrow p$ as $k \rightarrow \infty$. Therefore, from the above two cases, we conclude that the sequence $\left\{x_{n}\right\}$ converges strongly to $p=P_{\digamma}^{f}(u)$ and that completes the proof of our theorem.

Acknowledgement. The authors are grateful to the referees for their careful reading and suggestions.

References

[1] M.A. Alghamdi, N. Shahzad, H. Zegeye, Strong convergence theorems for quasi-Bregman nonexpansive mappings in reflexive Banach spaces, J. Applied Math., 2014(2014), Art. ID 8580686.
[2] M.A. Alghamdi, N. Shahzad, H. Zegeye, Fixed points of Bregman relatively nonexpansive mappings and solutions of variational inequality problems, J. Nonlinear Sci. Appl., 9 (2016), 25412552.
[3] Y.I. Alber, Metric and generalized projection operators in Banach spaces, properties and application, Lecture Notes in Pure and Appli. Math., (1996), 15-50.
[4] H.H. Bauschke, J.M. Borwein, P.L. Combettes, Essential smoothness essential strict convexity and legendre functions in Banach spaces, Commun. Contemporary Math., 3(2001), 615-647.
[5] H.H. Bauschke, J.M. Borwein, P.L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control and Optimization, 42(2)(2003), 596-636.
[6] J.F. Bonnas, A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000.
[7] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 148(2011), 218-335.
[8] L.M. Bregman, The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Computational Mathematics and Mathematical Physics, 7(1967), 200-217.
[9] D. Butnariu, A.N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic, Dordrecht, 2000.
[10] D. Butnariu, S. Reich, A.J. Zaslavski, There are many totally convex functions, J. Convex Anal., 13(2006), 623-632.
[11] D. Butnariu, E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006(2006), 1-39.
[12] Y. Censor, A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 34(1981), 321-353.
[13] G.Z. Eskandani, M. Raeisi, A new algorithm for finding fixed points of Bregman quasinonexpansive mappings and zeros of maximal monotone operators by using products of resolvents, Results. Math., 71(2017).
[14] A. Gibali, S. Reich, R. Zalas, Outer approximation method for solving variational inequalities in Hilbert space, Optimization, 66(2017), 417-437.
[15] H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inversestrongly monotone mappings, Nonlinear Anal., 61(2005), 341-350.
[16] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
[17] F. Kohsaka, W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal., 5(2005), 505-523.
[18] G.M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekonomika I Matematicheskie Metody, 12(1976), 747-756.
[19] P.E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set Valued Analysis, 16(7-8)(2008), 899-912.
[20] V. Martin-Marquez, S. Reich, S. Sabach, Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Math. Anal. Appl., 400(2013), 597-614.
[21] E. Naraghirad, J.C. Yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 141(2013), https://doi.org/10.1186/1687-1812-2013-141.
[22] A.T. Oladipo, E. Ekuma-Okereke, An iterative algorithm for a common fixed point of Bregman relatively nonexpansive mappings, axXiv: 1707.08379 [Math FA].
[23] R.P. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer, Berlin, 1993.
[24] D. Reem, S. Reich, Solutions to inexact resolvent inclusion problems with applications to nonlinear analysis and optimization, Rend. Circ. Mat. Palermo, 67(2018), 337-371.
[25] S. Reich, A weak convergence theorem for the alternating method with Bregman distances, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, NewYork (1996), 313-318.
[26] S. Reich, S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 73(2009), no. 3, 471-485.
[27] S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numerical Functional Analysis and Optimization, 31(2010), 22-44.
[28] S. Reich, S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., 73(2010), 122-135.
[29] S. Reich, S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, Fixed Point Algorithms for Inverse Problems in Science and Engineering, 49(2011), 301-316.
[30] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[31] N. Shahzad, A. Udomene, Fixed point solutions of variational inequalities for asymptotically nonexpansive mappings in Banach spaces, Nonlinear Anal. TMA, 64(2006), 558-567.
[32] G.C. Ugwunnadi, B. Ali, Convergence results for a common solution of a finite family of equilibrium problems and quasi-nonexpansive mappings in Banach space, J. Operators, 2016 (2016), Art. ID 580686.
[33] H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Australian Math. Soc., 65(2002), no. 1, 109-113.
[34] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, 2002.
[35] H. Zegeye, N. Shahzad, Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Anal. Theory, Methods Appl., 70(2009), 2707-2716.
[36] H. Zegeye, N. Shahzad, A hybrid approximation method for equilibrium, variational inequality and fixed point problems, Nonlinear Anal. Hybrid Syst., 4(2010), 619-630.
[37] H. Zegeye, N. Shahzad, Approximation of common solution of variational inequality problems for two monotone mappings in Banach spaces, Optim. Lett., 5(2011), 691-704.
[38] H. Zegeye, N. Shahzad, Convergence theorems for a common point of solutions of equilibrium and fixed point of relatively nonexpansive multivalued mapping problems, Abstr. Appl. Anal., 2012(2012), Art. ID 859598.
[39] H. Zegeye, N. Shahzad, A. Alotaibi, Convergence results for a common solution of a finite family of variational inequality problems for monotone mappings with Bregman distance, Fixed Point Theory Appl., 343 (2013). https://doi.org/10.1186/1687-1812-2013-343.
[40] H. Zegeye, N. Shahzad, Y. Yao, Minimum-norm solution of variational inequality and fixed point problem in Banach spaces, Optimization, 64(2015), no. 2, 453-471.

Received: October 26, 2017; Accepted: October 11, 2018.

