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Abstract. This paper focus on the class of multivalued iterated contractions, mappings which are
contractive throughout the orbits. We show that the proof of Nadler’s theorem still holds for these

mappings whenever they satisfy a rather weak type of continuity, which gives us a new fixed point

theorem. We show several types of mappings that properly contain Suzuki (C)-type generalized con-
traction mappings and for which our fixed point results apply. We conclude the paper showing some

further examples of iterated contraction mappings which are, respectively, the mappings satisfying

condition (B) and an extension to the multivalued case of mean iterated contractions and we also
obtain fixed point results for these classes of mappings.
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1. Introduction

The Banach Contraction Principle is perhaps the most widely applied fixed points
theorem in nonlinear analysis. For this reason, there is a large amount of literature
dealing with extensions and generalizations of Banach’s theorem (see [12, Chapter 1]
and [19] for references). One of the key fact behind the proof of Banach Contraction
Principle result is the convergence of the Picard iterates. In the study of certain
iterative processes, Ortega-Rheinboldt [17] realized that this convergence also holds
when the contractiveness condition of the mapping is carried over its iterates.
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Definition 1.1. Let (X, d) be a metric space. A mapping T : X → X is said to be
an iterated contraction if there exists a constant k ∈ [0, 1) such that for all x ∈ X

d(Tx, T 2x) ≤ kd(x, Tx).

An iterated contraction need not be continuous nor need its fixed points be unique.
However, a continuous iterated contraction mapping always has a fixed point in a
complete metric space [17, Chapter 12].

In 1969, Nadler [16] extended the Banach Contraction Principle to multivalued
contractive mappings in complete metric spaces. Since then, some classical theorems
concerning the existence of fixed points for singlevalued mappings of contractive type
have been generalized to the multivalued case ([5, 8, 15]). Among these it should
highlight a result established by Kikkawa and Suzuki [11], where Nadler’s theorem is
generalized for a new type of contraction mappings.

Theorem 1.2. Let (X, d) be a complete metric space and let T : X → 2X be a closed
bounded valued mapping. Assume that there exists r ∈ [0, 1) such that

1

1 + r
d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rd(x, y),

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

This theorem is as well an extension of a remarkable result established by Suzuki
[21, Theorem 2.1] in the single valued context. It is worthwhile to mention that the
author in [21] not only generalizes Banach Contraction Principle for a new type of
contractions but also characterizes the completeness of the underlying metric space.
After that, some authors have considered wider classes of multivalued mappings of
contractive type which meet Kikkawa-Suzuki’s theorem ([3, 20]).

The purpose of this paper is to prove the existence of fixed point for several types
of multivalued mappings which satisfy some contractiveness conditions. First of all
we prove a fixed point theorem for mappings which are contractive throughout the
orbits and satisfy a type of continuity weaker than the one used in [11]. We show
that the proof of Nadler’s theorem still holds for these mappings which will be called
multivalued iterated contractions. We continue by studying several classes of multival-
ued mappings that properly contain Suzuki (C)-type generalized contractions proving
that all these classes of mappings are multivalued iterated contractions and satisfy
the weak continuity condition which is required in our fixed point theorem. We follow
an indirect way, proving that these mappings satisfy the, so called, condition (E) and
checking that condition (E) implies the required type of continuity. It is noteworthy
that the types of mappings that we consider, do no satisfy, in general the continuity
condition used in previous papers about this subject [3, 11, 20]. Finally, we introduce
two new examples of iterated contraction mappings which are, respectively, the map-
pings satisfying condition (B) introduced in [13] and an extension to the multivalued
case of mean iterated contractions [6, 7]. Again, we obtain fixed point results for
these classes of mappings.

2. Multivalued iterated contractions

Let (X, d) be a metric space. In this paper we consider the following family of sets:
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P(X) = {D ⊂ X : D is nonempty},
Pcl(X) = {D ⊂ X : D is nonempty and closed},
Pcl,b(X) = {D ⊂ X : D is nonempty, closed and bounded},
Pcp,cv(X) = {D ⊂ X : D is nonempty, compact and convex}.

On Pcl,b(X) one defines the Hausdorff distance H

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

where d(a,B) := inf{d(a, b) : b ∈ B} is the usual distance from the point a to the
subset B. It is said that x ∈ C is a fixed point of T if and only if x belongs to Tx.

The following class of multivalued mappings has been studied in [4].

Definition 2.1 ([4]). Let (X, d) be a metric space and C ∈ P(X). A mapping
T : C → P(X) is said to satisfy condition (Eµ) for some µ ≥ 1 if for each x, y ∈ X
and ux ∈ Tx there exists uy ∈ Ty such that

d(x, uy) ≤ µd(x, ux) + d(x, y).

We say that T satisfies condition (E) on X whenever T satisfies (Eµ) for some µ ≥ 1.

Definition 2.2. Let (X, d) be a metric space, C ∈ P(X) and T : C → Pcl(X). We
will denote by φT : X → R the mapping φT (x) = d(x, Tx). The graph of φT is called
strongly demiclosed at 0 if for every sequence {xn} in C convergent to x ∈ C such
that lim

n
φT (xn) = 0 one has that x ∈ Tx.

Inspired by the concept of iterated contraction for a single valued mapping in [17,
Chapter 12], we introduce the class of multivalued iterated contractions.

Definition 2.3. Let (X, d) be a metric space. We say that a mapping T : X → P(X)
is a multivalued iterated contraction, (MIC in short), provided that there exists k ∈
[0, 1) such that for every x ∈ X and u ∈ Tx there exists v ∈ Tu such that

d(u, v) ≤ kd(x, u).

Remark 2.4.
(1) Another natural extension of multivalued iterated contraction for a mapping

T : X → P(X) is the following: there exists k ∈ [0, 1) such that for any x ∈ X
and u ∈ Tx

d(u, Tu) ≤ kd(x, u).

It is easy to check that the above two classes of mappings are the same
(possibly for a different constant k).

(2) When T is closed bounded valued and there exists k ∈ [0, 1) such that

H(Tx, Ty) ≤ kd(x, Tx) for all x ∈ X , y ∈ Tx,
we obtain a subclass of multivalued iterated contraction mappings according
to Definition 2.3.

(3) Notice that a first attempt to generalize Definition 2.3 for multivalued map-
pings could be: there exists k ∈ [0, 1) such that

H(Tx, T 2x) ≤ kd(x, Tx) for all x ∈ X
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It is clear that this condition implies the one in Definition 2.3. However, the
class of MIC mappings is essentially wider.
Indeed, let T : [0, 1]→ Pcp,cv([0, 1]) be the mapping defined by

Tx =

{
[0, 1

2 ] if x ∈ [0, 1
2 )

[0, 1] if x ∈ [ 1
2 , 1]

Clearly T 2x = [0, 1], and if x ∈ [0, 1
2 ) then H(Tx, T 2x) = 1

2 and d(x, Tx) = 0.

Hence H(Tx, T 2x) > 0 = kd(x, Tx) for all k ∈ [0, 1).
On the other hand, taking x ∈ [0, 1], if u ∈ Tx it follows that v = u ∈ Tu an so
d(u, v) = 0 ≤ kd(x, u), Consequently T is a multivalued iterated contraction
for all k ∈ [0, 1).

The following theorem states a fixed point result for MIC mappings.

Theorem 2.5. Let (X, d) be a complete metric space and T : X → Pcl(X) be a MIC
mapping such that the graph of φT is strongly demiclosed at 0. Then, T has a fixed
point.

Proof. Following a similar argument to that in the proof of Nadler’s fixed point the-
orem, we can obtain a sequence {xn} of X such that xn ∈ Txn−1 and d(xn, xn+1) ≤
kd(xn−1, xn). Indeed, take x0 ∈ X and x1 ∈ Tx0. Since T is a MIC mapping, there
exists x2 ∈ Tx1 such that

d(x1, x2) ≤ kd(x0, x1).

By induction, for each n ≥ 1 we construct a sequence {xn} ∈ X such that xn+1 ∈ Txn
and

d(xn, xn+1) ≤ kd(xn−1, xn) ≤ k2d(xn−2, xn−1) ≤ . . . ≤ knd(x0, x1).

Since k < 1, {xn} is a Cauchy sequence. By completeness, {xn} converges to some
fixed point x ∈ X. So we have

φT (xn) = d(xn, T (xn)) ≤ d(xn, xn+1)→ 0

which implies that x ∈ Tx. �

Remark 2.6. In [5] Y. Feng and S. Liu generalized Nadler’s fixed point theorem
for a multivalued iterated contraction mapping under the assumption of the lower
semicontinuity of the mapping x 7→ d(x, Tx). A further extension is given in [8] for
a class of set valued mappings slightly more general than MIC, also under the lower
semicontinuity assumption.

It is easy to check that the graph of the mapping φT is strongly demiclosed at
0 if either the mapping x 7→ d(x, Tx) is lower semicontinuous or the mapping T
is upper semicontinuous. According to [1, Corollary 1.4.17], x 7→ d(x, Tx) is lower
semicontinuous if T is upper semicontinuous with compact values. However, the last
two conditions are different: indeed, the mapping T : [−1, 1]→ Pcp,cv([−1, 1]) defined
by



MULTIVALUED ITERATED CONTRACTIONS 155

Tx =

{
0 if x = 0
[−1, 1] if x 6= 0

is not upper semicontinuous at zero, but x 7→ d(x, Tx) is lower semicontinuous because
d(x, Tx) = 0.

We will show later (Example 2.18) that the assumption of φT being strongly demi-
closed at 0 is more general.

In the remainder of this section we shall consider several classes of multivalued
iterated contractions.

KARAPINAR - TAS’s SKC MAPPINGS

In 2010 Karapinar and Tas (see [10]) proposed the so called SKC mapping for a
single valued mapping. Inspired on multivalued mappings of Suzuki type considered
in the paper [11], the authors in [20] adapted the definition of SKC mappings to
the multivalued case. Next we introduce a class of SKC multivalued mappings more
general than those studied in [20].

Definition 2.7. Let (X, d) be a metric space. A mapping T : X → P(X) is said to
be a multivalued k-SKC if for some k ∈ [0, 1) and for each x, y ∈ X and ux ∈ Tx such
that

1

1 + k
d(x, ux) ≤ d(x, y),

there exists uy ∈ Ty such that

d(ux, uy) ≤ kN(x, y),

where

N(x, y) = max
{
d(x, y),

1

2

(
d(x, ux) + d(y, uy)

)
,

1

2

(
d(x, uy) + d(y, ux)

)}
.

Proposition 2.8. Let (X, d) be a metric space. Then every multivalued k-SKC map-
ping T : X → P(X) is a MIC mapping.

Proof. Let x ∈ X and ux ∈ Tx. Since 1
1+kd(x, ux) ≤ d(x, ux) there exists vx ∈ Tux

such that

d(ux, vx) ≤ kN(x, ux),

where

N(x, ux) = max
{
d(x, ux),

1

2

(
d(x, ux) + d(ux, vx)

)
,

1

2

(
d(x, vx) + d(ux, ux)

)}
.

This implies that

d(ux, vx) ≤ kd(x, ux).

Indeed, if N(x, ux) = d(x, ux), then we have done. If

N(x, ux) =
1

2

(
d(x, ux) + d(ux, vx)

)
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then

d(ux, vx) ≤ k

2

(
d(x, ux) + d(ux, vx)

)
,

implies

d(ux, vx) ≤ k

2− k
d(x, ux) ≤ kd(x, ux).

If

N(x, ux) =
1

2
d(x, vx),

then

d(ux, vx) ≤ k

2
d(x, vx) ≤ k

2

(
d(x, ux) + d(ux, vx)

)
,

which implies T is MIC mapping. �

KANNAN AND CHATTERJEA TYPE MAPPINGS

We introduce a class of MIC mapping, which is an extension to the multivalued
case of generalized contraction mappings defined in [14].

Definition 2.9. Let (X, d) be a metric space. A mapping T : X → P(X) is said
to be (C)-type contractive, if for some a, b, c ≥ 0 with a + 2b + 2c < 1, and for all
x, y ∈ X and ux ∈ Tx such that

1

2
d(x, ux) ≤ d(x, y),

there exists uy ∈ Ty such that

d(ux, uy) ≤ ad(x, y) + b
(
d(x, ux) + d(y, uy)

)
+ c
(
d(x, uy) + d(y, ux)

)
.

Remark 2.10. Obviously every multivalued (C)-type contractive mapping is a mul-
tivalued k-SKC mapping. Take k := a+ 2b+ 2c < 1, if x, y ∈ X, ux ∈ Tx and

1

1 + k
d(x, ux) ≤ d(x, y),

we have

1

2
d(x, ux) ≤ 1

1 + k
d(x, ux) ≤ d(x, y).

Thus there exists uy ∈ Ty such that

d(ux, uy) ≤ ad(x, y) + b
(
d(x, ux) + d(y, uy)

)
+ c
(
d(x, uy) + d(y, ux)

)
≤ aN(x, y) + 2bN(x, y) + 2cN(x, y)

= (a+ 2b+ 2c)N(x, y).

GENERALIZED α-CONTRACTIVE MAPPINGS

Inspired by the definition of a generalized α -nonexpansive mapping introduced in
[18], we present a new class of multivalued generalized contractions of Suzuki’s type.
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Definition 2.11. Let (X, d) be a metric space. For α ∈ [0, 1), a mapping T : X →
P(X) is said to be a multivalued generalized α- contraction (GαC in short), if there
exists k ∈ [0, 1) such that for all x, y ∈ X and ux ∈ T (x) verifying

1

1 + k
d(x, ux) ≤ d(x, y),

there exists uy ∈ T (y) such that

d(ux, uy) ≤ k(αd(x, uy) + αd(ux, y) + (1− 2α)d(x, y)).

Proposition 2.12. Let X be a metric space and T : X → P(X) be a GαC mapping.
Then T is a MIC.

Proof. Let x ∈ X and ux ∈ T (x). Because 1
1+kd(x, ux) ≤ d(x, ux), there exists

vx ∈ T (ux) such that

d(ux, vx) ≤ k(αd(x, vx) + αd(ux, ux) + (1− 2α)d(x, ux))

≤ k(αd(x, ux) + αd(ux, vx) + (1− 2α)d(x, ux)).

This implies that

d(ux, vx) ≤ kd(x, ux),

and so T is a MIC. �

Now we study some direct relationship between the above two classes of mappings
and condition (E).

Lemma 2.13. Let X be a metric space and T : X → P(X) be a multivalued k-SKC
mapping. Then T satisfies condition (E7).

Proof. Let x, y ∈ X and ux ∈ Tx. Since T is MIC, there exists vx ∈ Tux such that

d(ux, vx) ≤ kd(x, ux). (2.1)

We prove that either
1

1 + k
d(x, ux) ≤ d(x, y) (2.2)

or
1

1 + k
d(ux, vx) ≤ d(ux, y) (2.3)

holds. Suppose

1

1 + k
d(x, ux) > d(x, y) and

1

1 + k
d(ux, vx) > d(ux, y).

Then, using (3.1) we obtain the following contradiction:

d(x, ux) ≤ d(x, y) + d(y, ux) <
1

1 + k
d(x, ux) +

1

1 + k
d(ux, vx) ≤ d(x, ux).

Hence, if (2.2) holds, then there exists uy ∈ Ty such that d(ux, uy) ≤ kN(x, y), where

N(x, y) = max{d(x, y),
1

2
(d(x, ux) + d(y, uy)),

1

2
(d(x, uy) + d(y, ux))}.
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If N(x, y) = d(x, y), then we have

d(x, uy) ≤ d(x, ux) + d(ux, uy) ≤ d(x, ux) + kd(x, y) ≤ d(x, ux) + d(x, y).

For N(x, y) = 1
2 (d(x, ux) + d(y, uy)), one can observe

d(x, uy) ≤ d(x, ux) + d(ux, uy) ≤ d(x, ux) +
k

2

(
d(x, ux) + d(y, uy)

)
≤ 2 + k

2
d(x, ux) +

k

2

(
d(x, y) + d(x, uy)

)
.

Since k < 1, we have

d(x, uy) ≤ 3d(x, ux) + d(x, y).

If N(x, y) = 1
2

(
d(x, uy) + d(y, ux)

)
then

d(x, uy) ≤ d(x, ux) + d(ux, uy) ≤ d(x, ux) +
k

2

(
d(x, uy) + d(y, ux)

)
≤ d(x, ux) +

1

2

(
d(x, uy) + d(x, ux) + d(x, y)

)
.

Thus, we have

d(x, uy) ≤ 3d(x, ux) + d(x, y).

If (2.3) holds, then there exists uy ∈ Ty such that d(vx, uy) ≤ kN(ux, y), where

N(ux, y) = max{d(ux, y),
1

2

(
d(ux, vx) + d(y, uy)),

1

2

(
d(ux, uy) + d(y, vx)

)
}.

If N(ux, y) = d(ux, y), using (2.1) and since k < 1 we have

d(x, uy) ≤ d(x, ux) + d(ux, vx) + d(vx, uy)

≤ d(x, ux) + kd(x, ux) + k(d(ux, x) + d(x, y))

≤ 3d(x, ux) + d(x, y).

For the case

N(ux, y) =
1

2

(
d(ux, vx) + d(y, uy)

)
,

one can observe

d(x, uy) ≤ d(x, ux) + d(ux, vx) + d(vx, uy)

≤ (1 + k)d(x, ux) +
k

2

(
d(ux, vx) + d(y, uy)

)
≤ (1 + k)d(x, ux) +

k

2

(
kd(x, ux) + d(x, y) + d(x, uy)

)
≤ k2 + 2k + 2

2
d(x, ux) +

k

2

(
d(x, y) + d(x, uy)

)
.

This implies that

d(x, uy) ≤ 5d(x, ux) + d(x, y).

For the last case,

N(ux, y) =
1

2

(
d(ux, uy) + d(y, vx)

)
,
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one can obtain

d(x, uy) ≤ d(x, ux) + d(ux, vx) + d(vx, uy)

≤ d(x, ux) + kd(x, ux) +
k

2

(
d(ux, uy) + d(y, vx)

)
≤ (1 + k)d(x, ux) +

k

2

(
d(x, ux) + d(x, uy)

)
+
k

2

(
d(x, y) + d(x, ux) + d(vx, ux)

)
.

Thus we have

d(x, uy) ≤ 7d(x, ux) + d(x, y). �

Lemma 2.14. Let (X, d) be a metric space and T : X → P(X) be a GαC mapping.
Then T satisfies condition (E).

Proof. Let x, y ∈ X and ux ∈ T (x). Since T is MIC there exists vx ∈ T (ux) such that

d(ux, vx) ≤ kd(x, ux).

Note either
1

2
d(x, ux) ≤ d(x, y) or

1

2
d(ux, vx) ≤ d(ux, y)

holds. Indeed, otherwise we have the contradiction:

d(x, ux) ≤ d(x, y) + d(ux, y) <
1

2
d(x, ux) +

1

2
d(ux, vx) ≤ d(x, ux).

Consider the first case. Then there exists uy ∈ T (y) such that

d(ux, uy) ≤ k(αd(x, uy) + αd(y, ux) + (1− 2α)d(ux, y)),

so we have

d(x, uy) ≤ d(x, ux) + d(ux, uy)

≤ d(x, ux) + k(αd(x, uy) + αd(y, ux) + (1− 2α)d(x, y))

≤ d(x, ux) + kαd(x, uy) + kαd(y, x) + kαd(x, ux) + k(1− 2α)d(x, y)

≤ (1 + kα)d(x, ux) + k(1− α)d(x, y) + kαd(x, uy).

Since k < 1, this implies that

d(x, uy) ≤ 1 + α

1− α
d(x, ux) + d(x, y).

In other case, there exists uy ∈ Ty such that

d(vx, uy) ≤ αd(ux, uy) + αd(y, vx) + (1− 2α)d(ux, y).
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Since d(ux, vx) ≤ kd(x, ux) we have that

d(x, uy) ≤ d(x, ux) + d(ux, vx) + d(vx, uy)

≤ (1 + k)d(x, ux) + k(αd(ux, uy) + αd(y, vx) + (1− 2α)d(ux, y))

≤ (1 + (1 + α)k)d(x, ux) + kαd(x, uy)

+ kαd(y, ux) + kαd(ux, vx) + k(1− 2α)d(ux, y)

≤ (1 + (1 + α)k)d(x, ux) + kαd(x, uy)

+ k(1− α)d(x, ux) + k(1− α)d(x, y) + kαd(x, ux).

Since k < 1, this implies that

d(x, uy) ≤ 3 + α

1− α
d(x, ux) + d(x, y). �

Proposition 2.15. Let (X, d) be a metric space and T : X → Pcl(X) be a mapping
satisfying condition (E). Then, the graph of φT is strongly demiclosed at 0.

Proof. Assume {xn} is a sequence in X convergent to x ∈ X such that

lim
n
d(xn, Txn) = 0.

It is easily seen that for every n ∈ N we can find vn ∈ Txn such that d(xn, vn) → 0.
By condition (E) there exists un ∈ Tx such that

d(xn, un) ≤ µd(xn, vn) + d(xn, x)→ 0.

Thus d(xn, Tx)→ 0 and so, d(x, Tx) = 0. �

In the example below we find a mapping for which the converse of the above result
does not hold.

From Proposition 2.15, Theorem 2.5, Proposition 2.8 and Lemma 2.13 we easily
obtain:

Corollary 2.16. Let (X, d) be a complete metric space and T : X → Pcl(X) be a
k-SKC mapping. Then, T has a fixed point.

From Proposition 2.15, Theorem 2.5, Proposition 2.12 and Lemma 2.14 we obtain:

Corollary 2.17. Let (X, d) be a complete metric space and T : X → Pcl(X) be a
GαC mapping. Then, T has a fixed point.

The following example shows that the assumption of φT being strongly demiclosed
at 0 is more general than the lower semicontinuity of the function x → d(x, Tx).
Moreover, it shows that the existence of a fixed point for k-SKC mappings or GαC
mappings cannot be derived of this latter semicontinuity condition.

Example 2.18. Let T : [0, 3]→ Pcl([0, 3]) be defined as

Tx =

{
{3} if x = 0
[2, 3] if x ∈ (0, 3].

If we take (xn) in [0, 3] convergent to a point x such that lim
n
d(xn, Txn) = 0 then

x ∈ [2, 3]. Hence d(x, Tx) = 0 and φT is strongly demiclosed at 0. However, if we
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have a non-constant sequence xn → 0, then lim
n
d(xn, Txn) = 2, but d(0, T (0)) = 3.

Consequently, the mapping x 7→ d(x, Tx) fails to be lower semicontinuous. We claim
that T is a k-SKC mapping with k = 2

3 .
Indeed, we split in three cases: (a) Let x, y ∈ (0, 3]. Then Tx = Ty and for a given
ux ∈ [2, 3], choose uy = ux. We have

d(ux, uy) = 0 ≤ kN(x, y).

(b) Let x = 0 and y ∈ (0, 3], then ux = 3. By choosing uy = ux = 3, we have

d(ux, uy) = 0 ≤ kN(x, y).

(c) Let x ∈ (0, 3] and y = 0. Then, ux ∈ [2, 3], uy = 3 and we have

d(ux, uy) ≤ 1 ≤ 2

3
N(x, y),

since

N(x, y) = max{d(x, y),
1

2

(
d(x, ux) + d(y, uy)

)
,

1

2

(
d(x, uy) + d(y, ux)

)
}

≥ 1

2
d(y, uy) =

3

2
.

Furthermore, by a similar argument it is easy to check that T is a generalized α-
contractive mapping with k = 1

5α , where 1
5 < α ≤ 1

3 .
Indeed, in the nontrivial case corresponding to x ∈ (0, 3] and y = 0, we have ux ∈ [2, 3],
uy = 3. Since αd(x, uy) + αd(ux, y) + (1− 2α)d(x, y) ≥ 5α, we obtain

d(ux, uy) ≤ 1 ≤ 1

5α
(αd(x, uy) + αd(ux, y) + (1− 2α)d(x, y)).

A class of (single valued) iterated nonexpansive mappings (the so-called mappings
satisfying condition (B)) were defined in the framework of a Hilbert space in [13]. In
a recent paper [2], the authors have generalized Kirk’s fixed point theorem for such
class of mappings.

Definition 2.19. Let C be a subset of a Banach space (X, ‖ · ‖).
A mapping T : C → C is said to satisfy condition (B) if for all x, y ∈ C such that

1

2
‖x− T (x)‖ ≤ ‖x− y‖,

then,

‖T (x)− T (y)‖2 + ‖x− T (y)‖2 ≤ ‖T (x)− y‖2 + ‖x− y‖2.

Next we introduce a multivalued version of contractive mappings enjoying condi-
tion (B).

Definition 2.20. Let (X, d) be a metric space. A mapping T : X → P(X) is said to
satisfy k-condition (B) for some k ∈ [0, 1), if for each x, y ∈ X and ux ∈ Tx such that

1

1 + k
d(x, ux) ≤ d(x, y)
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there exists uy ∈ Ty such that

d(ux, uy)2 + d(x, uy)2 ≤ k2
(
d(y, ux)2 + d(x, y)2

)
.

Proposition 2.21. Let (X, d) be a metric space and let T : X → P(X) satisfy
k-condition (B). Then T is a MIC with constant k.

Proof. Let x ∈ X and u ∈ Tx. Because 1
1+kd(x, u) ≤ d(x, u) there exists v ∈ Tu such

that

d(u, v)2 + d(x, v)2 ≤ k2(d(u, u)2 + d(x, u)2).

So,

d(u, v)2 ≤ k2d(x, u)2 − d(x, v)2 ≤ k2d(x, u)2

implies that d(u, v) ≤ kd(x, u); that is, T is MIC. �

Theorem 2.22. Let (X, d) be a complete metric space.
Every mapping T : X → Pcl(X) satisfying k-condition (B) has a fixed point.

Proof. Since T is a MIC mapping, we appeal to the proof of Theorem 2.5 to get a
sequence {xn} in X convergent to a point x ∈ X such that xn+1 ∈ Txn and

d(xn+1, xn+2) ≤ kd(xn, xn+1).

We prove that either

(a)
1

1 + k
d(xn, xn+1) ≤ d(xn, x),

or

(b) (b)
1

1 + k
d(xn+1, xn+2) ≤ d(xn+1, x),

holds. Suppose that for some n ∈ N,

1

1 + k
d(xn, xn+1) > d(xn, x) and

1

1 + k
d(xn+1, xn+2) > d(xn+1, x).

Bearing in mind that T is a MIC mapping, we obtain the following contradiction,

d(xn, xn+1) ≤ d(xn, x) + d(xn+1, x)

<
1

1 + k
d(xn, xn+1) +

1

1 + k
d(xn+1, xn+2)

≤ 1

1 + k
d(xn, xn+1) +

k

1 + k
d(xn, xn+1)

= d(xn, xn+1).

Thus, we can split N = A ∪ B such that for n ∈ A we have that there exists zn ∈ Tx
such that

d(xn+1, zn)2 + d(xn, zn)2 ≤ k2
(
d(xn+1, x)2 + d(xn, x)2

)
and for n ∈ B there exists z̃n ∈ Tx such that

d(xn+2, z̃n)2 + d(xn+1, z̃n)2 ≤ k2
(
d(xn+2, x)2 + d(xn+1, x)2

)
.

The convergence of xn → x implies that for every ε > 0 there exists n0 such that
d(x, zn) < ε if n ∈ A ∩ [n0,+∞) and d(x, z̃n) < ε if n ∈ B ∩ [n0,+∞). Thus, x is a
cluster point of Tx which implies that x ∈ Tx. �
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3. Mean iterated contractions

In [6] and [7] the authors introduce a class of Lipschitzian mappings which are
defined involving the mapping and a finite number of its iterates. It is referred to
as the class of mean Lipschitzian mappings. The study of this class of mappings has
lead to interesting results in metric fixed point theory (see [6] and [7]). For instance,
it is shown that a mean contraction is in fact a contraction with respect to some
equivalent metric. Following this idea, we introduce the following class of set-valued
mappings.

Definition 3.1. Let (X, d) be a metric space.
We say that a mapping T : X → Pcl,b(X) is a mean multivalued iterated contraction,
(MMIC), if there exist α = (α1, α2) with α1 + α2 = 1, α1, α2 > 0 and k ∈ [0, 1) such
that for all x ∈ X, u ∈ Tx and v ∈ Tu we have

α1H(Tx, Tu) + α2H(Tu, Tv) ≤ kd(x, u).

In the single valued case, the Banach Contraction Principle is valid for mean con-
tractions as it is indicated in [7]. A generalization of this result can be found in the
proposition below.

Proposition 3.2. Let (X, d) be a metric space. Assume that T : C → Pcl,b(X) is a
MMIC. Then there exists a metric ρ ≥ d such that T is a MIC mapping with respect
to ρ.

Proof. Let α = (α1, α2) and let T : X → X be a MMIC with constant k < 1.
Define ρ by

ρ(x, u) = d(x, u) + α2H(Tx, Tu).

It is readily seen that ρ is a metric on X and we have

d(x, u) ≤ ρ(x, u) ≤
(
1 +

α2k

α1

)
d(x, u) =

α1 + α2k

α1
d(x, u).

Note that by adding α2H(Tx, Tu) the inequality in Definition 3.1 can be rewritten
in the form

H(Tx, Tu) + α2H(Tu, Tv) ≤ d(x, u) + α2H(Tx, Tu)− (1− k)d(x, u). (3.1)

From (3.1) we have for all v ∈ Tu,

H(Tx, Tu) + α2H(Tu, Tv) ≤ ρ(x, u)− (1− k)d(x, u) (3.2)

≤ ρ(x, u)− α1(1− k)

α1 + α2k
ρ(x, u)

=
k

α1 + α2k
ρ(x, u).

Consider a > 1 such that

k

[
1

α1 + α2k
+ (a− 1)

1

α1

]
< 1.
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Since a > 1 we can choose w ∈ Tu such that

d(u,w) ≤ ad(u, Tu) ≤ aH(Tx, Tu).

Choosing w = v in (3.2) we obtain

ρ(u,w) = d(u,w) + α2H(Tu, Tw) ≤ aH(Tx, Tu) + α2H(Tu, Tw)

= H(Tx, Tu) + α2H(Tu, Tw) + (a− 1)H(Tx, Tu)

≤ k

α1 + α2k
ρ(x, u) + (a− 1)

k

α1
ρ(x, u)

= k

[
1

α1 + α2k
+ (a− 1)

1

α1

]
ρ(x, u).

Therefore, T is ρ-MIC. �

Theorem 3.3. Let (X, d) be a complete metric space. Assume that T : C → Pcl,b(X)
is a MMIC such that the graph of the mapping φT is demiclosed. Then, T has a fixed
point.

Proof. Consider the metric ρ defined above for which T is MIC. According to the
proof of Theorem 2.5, we can find a sequence {xn} of X and a point x ∈ X such that
xn+1 ∈ Txn and lim

n
ρ(xn, x) = 0. By definition of the metric ρ, for each n ∈ N,

ρ(xn, x) = d(xn, x) + α2H(Txn, Tx).

Hence, lim
n
d(xn, x) = 0 and lim

n
H(Txn, Tx) = 0. Since d(xn+1, Tx) ≤ H(Txn, Tx),

it follows that x ∈ Tx. �

Remark 3.4. It is worth noting that in the two last classes of mappings above we
have obtained fixed point without using condition (E).
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