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Abstract. In this paper, we establish a general existence theorem of maximal elements of condensing

mappings in the product X := H X of noncompact l.c.-spaces. As an application, we prove that
ael

a family of Lr,-majorized Q4-condensing mappings To : X — 2Xe admit a common maximal

element under the mild condition that each {x | To(z) # 0} is compactly open.

Key Words and Phrases: [.c.-space, Qo-condensing mapping, maximal element, L£y-majorized.

2010 Mathematics Subject Classification: 47H04, 52A99, 54H25.

1. INTRODUCTION AND PRELIMINARY

In the last fifty years, the classical Arrow-Debreu result on the existence of Wal-
rasian equilibria has been generalized in many directions. The equilibrium existence
theory for various models have been extensively studied by many authors, and max-
imal element existence theorems are frequently used as the main tool for proving
the existence of equilibria, e.g. see [8, 12] and references therein. For a set-valued
mapping 7 : X — 2Y, we say that a point € X is a mazimal element of T, if
T(z) = (. The purpose of this paper is to apply two central theorems [14] below to
obtain more general maximal element existence theorems for condensing mappings.

Theorem A. Let (Xo,Un, Ba)acr be a family of l.c.-spaces with precompact polytopes,
X = H Xo, and Ty : X — 2% be Q,-condensing. Then there exists nonempty
ael
compact H-conver subset K := H K, of X such that T, (K) C K,.
ael
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Theorem B. Let (X, Uy, Ba)acr be a family of l.c.-spaces with precompact polytopes,
X = H X.. For each a € 1, let T, : X — 2% be Q-condensing such that
acl

(1) for each x € X, Ty (x) is a nonempty H-convex subset of X,
(2) for each xo € Xo, T (x4) contains a compactly open subset O, of X such
that U O, = X ( where O, may be empty for some xy).
Ta€Xa

Then T = H T, has a fized point.
acl

Theorem A generalizes Mehta’s Theorem [9] and Kim'’s result [7] to the general
setting of l.c.-spaces. Whereas Theorem B is a variant result from Tarafdar’s fixed
point theorem [11].

We digest and list some definitions and notations as follows. Throughout this
paper, all topological spaces are assumed to be Hausdorff. For a nonempty set X, we
denote the set of all subsets of X by 2%, and the set of all nonempty finite subsets of
X by (X). In addition, for any subset C of a topological space X, the closure of C is
denoted by clxC.

An H-space is a topological space X, together with a family {I'p} of some
nonempty contractible subsets of a topological space X indexed by D € (X) such
that I'n C I'p whenever D C D’. The notion of H-space was introduced in 1988
by Bardaro and Ceppitelli [1]. Since then, there have appeared numerous applica-
tions and generalizations in the literature [3, 4, 10, 11, 12, 13]. Given an H-space
(X,{I'p}), a nonempty subset C' of X is said to be H-convex if I'p C C for all
D € (C). For a nonempty subset C' of X, we define the H-convex hull of C as
H-coC := ﬂ{K | Kis H-convex in X and C C K}. Moreover, for any D € (X),
H-coD is called a polytope. We say that X is an H-space with precompact poly-
topes, if any polytope of X is precompact. For example, a locally convex topological
vector space X is an H-space with precompact polytopes, by setting I'p = coD for
all D € (X).

An H-space (X,{I'p}) is called an l.c.-space (see [5]), if X is an uniform space
whose topology is induced by its uniformity &, and there is a base B consisting of
symmetric entourages in U such that for each V' € B, the set V(E) := {y € X |
(z,y) € V for some z € E} is H-convex whenever E is H-convex. We shall use the
notation (X,U, B) to stand for an [.c.-space. For details of uniform spaces, we refer
to [6].

In an [.c.-space (X,U, B), we define the measure of precompactness of a subset
Ain X by

Q(A) :={V e B| ACclxV(K) for some precompact set K of X}.

Let (Xo, Uy, Ba)aer be a family of I.c.-spaces with precompact polytopes, where I is

a finite or infinite index set, and let X = H X, be the product H-space. For any
acl
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nonempty subset Eg of Xz and arbitrarily fixed o € I, we define

H EsQ@FE, =¢z€X|2= Yo,%a), Yo € H Eg and z, € E,

B#a,Bel BHa,Bel
For each a € I, let 7, be the projection of X onto X, and @), be a measure of precom-
pactness in X,,. We say that a set-valued mapping T,, : X — 2%« is Q,-condensing
if Qa(ma(C)) € Qu(Ts(C)) for every C satisfying 7, (C) is a nonprecompact subset
of X,. It is easy to check that T, : X — 2%« is Q,-condensing whenever X, is
compact. Also, in case I = {1}, the projection m, is the identity on X. Thus, the
above definition reduces to the usual Q-condensing mapping T : X — 2% see for
example [7, 9].

2. MAIN RESULTS

Let (X, I'S, )aecr be a family of H-spaces, where [ is a finite or infinite index set.

Tarafder [10] has shown that the product space X = H X, with product topology

a€cl
is also an H-space, together with the family {T'p | D € (X)}, which is defined by

rp =[] 1z o)
ael

Further, the product of H-convex sets is also H-convex. We begin with establishing
some fundamental lemmas, which will be used to prove our main theorem.

Lemma 2.1. The projection of an H-convex set in the product H-space X = H Xa

a€el
is H-convex.

Proof. Let K be an H-convex subset of X and K, = 7, (K) be the projection of K
onto X,. For any finite subset D, of K, we have a correspondent finite subset D of
K such that D, = m,(D). Since I'p C K, it follows that

I's. =7ma(lp) C oK) = K.
Thus, K, is H-convex. O

Lemma 2.2. Let (Xq, Uy, Ba)acr be a family of l.c.-spaces,
X =[] Xa» andtt = [] ta
acl acl
be the product uniformity on X. Then there is a base B such that (X,U,B) forms an

l.c.-space.

Proof. 1t suffices to show that the product uniformity I/ has a base B consisting
of symmetric entourages such that V(E) is H-convex for each V' € B and for each
H-convex set E. First, we define

S ={{(z,y) e X x X | (X0, Ya) € Va} |a €I, V, € B,}.
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It is easy to check that S is a subbase of U. Next, we let B be the base generated by
S; that is,
B:={V|V=n/_,VineN;VieSj=12..,n}

Since each V7 is of the form V7 = {(z,y) € X X X | (a,,Ya,) € Va,} for some o € I
and Vi, € B,;, we obtain

VIE)= ][] X5® Va,(ma,(E)).
BEI,BF#c;
Notice that for each V, € By, Va(mo(E)) is H-convex by Lemma 2.1. It follows that
each VI(E) is H-convex. Therefore,

V(E) = 11 X5 @ [ Ve, (7, (E))
Bel\{a1,az,...,an} Jj=1
is H-convex. This yields that (X,U, B) forms an [.c.-space. O
Let X be a topological space, Y an H-space, T : X — 2V a set-valued mapping,
and 6 : X — Y be a single-valued map.

(1) T is said to be of class Ly, if
(a) for each z € X, 0(z) ¢ H-coT(x),
(b) for each y € Y, T~(y) is compactly open in X.

(2) A set-valued mapping T}, : X — 2V is an Lg-majorant of T at z, if there
exists an open neighborhood N, of x in X such that
(a) for each z € N, T(z) C Ty(2) and 0(z) ¢ H-coT,(z),
(b) for each y € Y, T, !(y) is compactly open in X.

(3) T is said to be Lg-majorized, if for each x € X with T'(z) # 0, there exists
an Ly-majorant of T at x.

In case 6 : X — X is the identity map on X, with Y = X, all notations above
are simplified to be of class L, L-majorant, and L-majorized, respectively.

In [2], Ding et al. have shown the following lemma in the setting of locally convex
topological vector spaces. Following the proof of Lemma 1 in [2], we have an extension
in H-spaces as follows.

Lemma 2.3. Let X be a regular topological space, Y an H-space, 8 : X — Y a
single-valued map, and T : X — 2Y be an Lg-majorized mapping. If every open
subset of X containing the set {x € X | T(x) # 0} is paracompact, then there exists
a set-valued mapping S : X — 2Y of class Lo such that T'(x) C S(z) for all z € X.

Proof. Let R ={x € X | T(x) # 0}. Since T is Ly-majorized, for each z € R, there
exist an open neighborhood N, of z in X and a set-valued mapping T, : X — 2V
such that

(a) for each z € N, T(z) C T, (2) and 6(z) ¢ H-coT,(z),
(b) for each y € Y, T, !(y) is compactly open in X.
Since X is regular, for each = € R, there exists an open neighborhood G, of z in X

such that clxG, C N,. Let G = U G;. Then G is an open subset of X containing
TER
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R so that G is paracompact by assumption. Hence the open cover {G,} of G has a
locally finite subcover {G’}. For each z € R, we define S, : G — 2 by

[ Tu(z), ifzeGndx@,
Sw(z)_{ Y, itz G\ cxG.

We claim that for each y € Y, S;1(y) = {z € G | y € Sz(2)} is compactly open in
X. Indeed,

S (y) ={z € GNelx G, |y € Su(2)} U{z € G\ clx G, | y € Su(2)}
={zeGncxG, |yeT,(2)}U{zeG\cxG, |y Y}
= (GNexG,NT;  (y) U(G\ clxGL)
= (GNT; (1) U(G\ dxGL).
It follows that for each nonempty compact subset K of X,
S y)NK = (GNT,  (y) NK) U((G\ clxG,) N K)

is open in K; i.e., S;1(y) is compactly open in X for all y € Y.

Next, we define S : X — 2¥ by

ﬂ Se(z) ,if z €@,
S(Z) = TER
i if z€ X\ G.
We now prove that S is a set-valued mapping of class Ly. Indeed, if z € X \ G, then
S(z) = 0 so that 6(z) ¢ H-coS(z). If z € G, then z € G Nclx G, for some z € R so
that S;(z) = T,(z) and hence S(z) C T,(z). Since 8(z) ¢ H-coT,(z), it follows that
0(z) ¢ H-coS(z). Thus, 0(z) ¢ H-coS(z) for all z € X.

On the other hand, for any y € Y with S~1(y) # (), we let K be any compact subset
of X, and fix any u € S~!(y) N K. Note that

ST'y)={zeX |yeSk)}={z€G|yecS(z)}

Since {GJ} is a locally finite subcover, there exists an open neighborhood M, of u in
G such that

{xreR| M,NG, #@}:{xgu),xéu),... 2 1.

> n(u)

Note that for each x € R, with x ¢ {xgu), zgu), Y }, we have

n(u)
M, NcxGy,=M,NG, =0,
and hence S;(z) =Y for all z € M,,. Thus we have

S(z) = ﬂ Se(z) = ﬂ ngu) (2)

TER
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for all z € M,,. It follows that

S‘l(y)Z{zeX|y€5(z)}={zeX|y€ ﬂSx(Z)}

TER
D{zeMu|ye ﬂ Sx(z)}

TER
=<qzeM, |ye ﬂ Sm(‘u)(z)
i=1
n(u)
=M,N ﬂ (Swgm)_l(y)
i=1 )
Since each (Sw(u,))’l(y) is a compactly open set in X, the set

n(u)
M =M, | () (S,) ') | NK
i=1

is an open neighborhood of u in K such that M/ C S~!(y) N K. This shows that for
each y € Y, S~1(y) is compactly open in X. Therefore, S : X — 2¥ is a set-valued
mapping of class Ly.

It remains to show that T'(w) C S(w) for all w € X. For any w € X with T'(w) # (),
we have w € G. Let x € R. If w € G\ clxGY, then S;(w) =Y D T(w), and if
w € GNclxGl, we have w € clxG, C clxG, C N, so that T(w) C Ty(w) = Sy (w).
It follows that T'(w) C S, (w) for all 2 € R, and hence T(w) C m Sz(z) = S(w).

z€EB
O

We are ready to establish our main result.

Theorem 2.4. Let (Xq,Un, Ba)acr be a family of l.c.-spaces with precompact poly-
topes, and X := H Xo. If for each a € I, T, : X — 2% is an L, -majorized
acl
Qo -condensing mapping, then there exists T € X such that T(Z) := H T.(Z) = 0.
acl
Proof. Suppose the contrary, i.e., for any a € I, T, (x) # 0 for all z € X. Since for
eacha € I, T, : X — 2%« is Q,-condensing, by Theorem A, there exists a nonempty
compact H-convex subset K := H K, of X such that T,,(K) C K,. Then the set

ael
{r € K | T,(z) # 0} = K is compact. Note that a compact space is normal, so

X is regular. By Lemma 2.3, there exists S, : K — 2K« of class £, such that
To(x) C Sa(z) for each € K. Define S¥ : K — 2%« by

S¥(z) := H-coS,(x) for all x € X.
Then, by Theorem B, there exists € K such that T, € S%(Z) = H-c0S,(Z), which
leads to a contradiction, since S, is of class L. This completes the proof. O
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As an immediate result, we have the following consequence.

Corollary 2.5. If (X,U, B) is an l.c.-space with precompact polytopes, and T : X —
2X is an L-majorized Q-condensing mapping, then there exists a maximal element of
T.

Theorem 2.4 implies that one of T,’s has a maximal element. Furthermore, the
following theorem provides a sufficient condition of existence of common maximal
elements.

Theorem 2.6. Let (X, Uy, Bo)acr be a family of l.c.-spaces with precompact poly-
topes, X := HXa; and T, : X — 2%Xa pe L., -majorized Qq-condensing. If for

ael
each a € I, the set {x € X | To(x) # 0} is compactly open in X, then there exists

T € X such that T, (Z) =0 for all « € I; that is, T is a common mazimal element of
{To |ae€l}.
Proof. Since each T, : X — 2%« is a Q,-condensing mapping, by Theorem A,

there exists a nonempty compact H-convex subset K := H K, of X such that

a€el
T.(K) C K,. For each z € K, we let I(z) :={a €1 | T,(x) # 0}, and define

Ti(x)= ] KsoTulx)
Bel,f#a
for each o € I(z). Thus, we can define a set-valued mapping 7 : K — 2X by
T (z) ,if I(z) # 0,
1] ,if I(z) =0,
Then for each z € K with I(z) # 0, T'(z) # 0.
Let « € K be such that T'(x) # 0. Then T/ (z) # 0 for all « € I(z). Since each T,

is L -majorized, for a fixed o € I(z), there exist an open neighborhood N, of x in
K and a set-valued mapping S, : K — 25« such that
(a) for each z € N, To(2) C So(2) and zq ¢ H-coSq (%),
(b) for each y, € Ko, S5 (ya) is (compactly) open in K.
Since {z € X | To(z) # 0} is compactly open in X, the set {z € K | T, (2) # 0} is
open in K. Thus, we may assume N, C {z € K | T,(2) # 0}, so that T,(z) # 0 for
all z € N,. Next, we define S, : K — 2K by

Se(z) =[] Kp®Sal(2) forall z € K.
BEI,BF#a
We claim that S, is an L-majorant of T' at z. Indeed, for all z € N, T,(z) # 0,
which implies « € I(z). By (a), we obtain
T(z) = () Thz) CT)(2) C Su(2) and z ¢ H-coS, ().

Bel(z)

On the other hand, for each y € K, we have
S W) ={z €K |yeSu(2)} ={2 € K | ya € Sa(2)} = 55" (va).



132

LIANG-JU CHU AND CHIEN-HAO HUANG

It follows that S;!(y) is (compactly) open in K.

Co
we

[1]
2]
(3]
[4]
[5]
:
(8]
(9]
(10]
(11]
(12]
(13]

(14]

Therefore, S, is an L-majorant of T at . This shows that T is £-majorized. By
rollary 2.5, there exists a point Z € K such that T(Z) = (). By the definition of T,
have I(Z) = () and hence T, (Z) = 0 for all @ € I. This completes the proof. O
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