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1. Introduction

Let E be a uniformly convex and uniformly smooth real Banach space with dual
space E∗. Let C be a nonempty closed and convex subset of E such that JC is closed
and convex where J : E → E∗ is the normalized duality map on E. Let ϕ be a map
from JC to R, f be a bifunction from JC × JC to R and A be a nonlinear map from
C to E∗. The generalized mixed equilibrium problem is to find an element v ∈ C such
that

f(Jv, Jy) + ϕ(Jy)− ϕ(Jv) + 〈Av, y − v〉 ≥ 0 ∀ y ∈ C. (1.1)
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The set of solutions of the generalized mixed equilibrium problem is given by:

GMEP (f,A, ϕ) = {v ∈ C : f(Jv, Jy) + ϕ(Jy)− ϕ(Jv) + 〈Av, y − v〉 ≥ 0 ∀ y ∈ C}.

It is well known that the class of generalized mixed equilibrium problems contain, as
special cases, numerous important classes of nonlinear problems such as variational
inequality problems, optimization problems, equilibrium problems, and so on (see
e.g., Browder et al. [5], Ezeora [11], Onjai-Uea and Kumam [23] and the references
contained in them).

A map T : C → E is called L-Lipschitz if ||Tx − Ty||E ≤ L||x − y||E ∀ x, y in C,
where L ≥ 0. If L = 1, then the map T is called a nonexpansive map. We denote the
fixed point set of T by F (T ). Also, T : C × C → C is called bivariate nonxpansive
(see e.g., Suanoon et al., [28]) if

||T (x, y)− T (u, v)|| ≤ 1

2
(||x− u||+ ||y − v||), ∀ x, y, u, v ∈ C.

For several years, many authors have studied the problem of obtaining a common
element in the set of solutions of equilibrium problems and the set of fixed points of
nonexpansive maps from E to E in the setting of real Banach spaces. In 2008, Peng
and Yao [24] studied the problem of obtaining a common element in the set of solutions
of a generalized mixed equilibrium problem and a set of fixed points of a nonexpansive
map in a real Hilbert space, H. To extend this result to classes of nonlinear maps more
general than the class of nonexpansive maps, the concept of generalized nonexpansive
maps and relatively nonexpansive maps have been introduced and studied by several
authors (see e.g., Aoyama et al. [4], Chidume et al. [8], Matsushita et al. ([18]-[19]),
Qin et al. ([26],[25]) and the references contained in them). Recently, Klin-earn et al.
[14] studied a new and interesting monotone hybrid iterative method for generalized
nonexpansive maps in a uniformly convex and uniformly smooth real Banach space.

Let E be a real normed space with dual space E∗. A map A from E to E∗ is called
monotone if 〈Ax − Ay, x − y〉 ≥ 0 ∀ x, y ∈ E. Consider, for example, the following:
Let h : E → R be a convex functional. The subdifferential of h, ∂h : E → 2E

∗
, is

given for each x ∈ E by ∂h(x) = {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ h(y) − h(x) ∀ y ∈ E}.
It is easy to see that ∂h is a monotone map on E and that 0 ∈ ∂h(x) if and only if
x minimizes h. Setting ∂h = A, it follows that solving the inclusion 0 ∈ Ax, in this
case, is searching for a minimizer of h.

A map A from E to E is called accretive if 〈Ax− Ay, j(x− y)〉 ≥ 0 ∀ x, y ∈ E and
for some j(x− y) ∈ J(x− y). Numerous authors have studied extensively the class of
accretive operators. For solving the equation Ax = 0, where A : E → E is an accretive
operator, Browder introduced a map T : E → E given by T := I −A, where I is the
identity map on E and called it pseudocontractive. It is clear that solutions of Ax = 0,
in this case, correspond to fixed points of T . Consequently, approximating zeros of
accretive operators has been done by approximating fixed points of pseudocontractive
maps. This fixed point technique obviously is not applicable in the case where A :
E → E∗ is a monotone map.
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Motivated by the need to develop a fixed point technique for the equation Ax = 0
when A is monotone, analogous to the fixed point theory for Ax = 0 when A is
accretive, a new notion of fixed points for maps from E to E∗ called J-fixed points
has recently been introduced and studied (see e.g., Zegeye [32], Liu [16], Chidume and
Idu [7], Chidume et al. [9] and the references contained in them). This notion turns
out to be very useful and applicable. For example, Chidume and Idu [7] introduced
the concept of J-pseudocontractive maps and proved a strong convergence theorem
for approximating J-fixed points of a J-pseudocontractive map. As an application of
this theorem, they proved the following strong convergence theorem for approximating
a zero of an m-accretive operator.

Theorem 1.1. (Chidume and Idu [7]) Let E be a uniformly smooth real Banach
space with modulus of smoothness ρE, and let A : E → 2E be a multi-valued bounded
m-accretive operator with D(A) = E such that the inclusion 0 ∈ Au has a solution.
For arbitrary x1 ∈ E, define a sequence {xn} by:

xn+1 = xn − λnun − λnθn(xn − x1), un ∈ Axn, n ≥ 1,

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:
(i) lim θn = 0, {θn} is decreasing,

(ii)
∑

λnθn =∞,
∑

ρE(λnM1) <∞ for some constant M1 > 1 and

(iii) lim

[
θn−1

θn
− 1
]

λnθn
= 0.

There exists a constant γ0 > 0 such that

ρE(λnM1)

λn
≤ γ0θn.

Then, the sequence {xn} converges strongly to a zero of A.

Motivated by the works of these authors, it is our purpose in this paper to continue the
study of J-fixed points and some of its applications. Here, we study a new iterative
algorithm of Krasnoselskii-type and prove a strong convergence theorem for obtaining
a common element between solutions of a generalized mixed equilibrium problem and
common fixed points of a countable family of generalized-J-nonexpansive maps in a
uniformly smooth and uniformly convex real Banach space. In the special case of a
real Hilbert space, our theorem complements and extends the results of Pen and Yao
[24], Nakajo and Takahashi [21], Martinez-Yanes and Xu [17], Qin and Su [27] and a
host of other recent results.

2. Preliminaries

Let E be a real normed linear space with dual space E∗. A map J : E → 2E
∗

defined by

J(x) :=
{
x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2

}
is called the normalized duality map on E. For some properties of J relevant to this
work (see e.g., Chidume [6], Cioranescu [10] and the references contained in them).
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In the sequel, we shall need the following definition and results. Let E be a smooth
real Banach space with dual space E∗. Consider a map φ : E × E → R defined by

φ(x, y) = ||x||2 − 2〈x, Jy〉+ ||y||2 for all x, y ∈ E,

where J is the normalized duality map from E into 2E
∗

will play a central role in
the sequel. It was introduced by Alber and was first studied by Alber [1], Alber and
Guerre-Delabriere [2], Kamimura and Takahashi [13].

Remark 1. If, in addition, E is strictly convex, then the duality map J is one-to-one.
Hence, we have that

φ(x, y) = 0 ⇐⇒ x = y. (2.1)

If E = H, a real Hilbert space, then we have that φ(x, y) = ||x− y||2 for all x, y ∈ H.
It is obvious from the definition of φ that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x||+ ||y||)2 ∀ x, y ∈ E.

Definition 2.1. Let C be a nonempty closed and convex subset of a real Banach
space E and T be a map from C to E. A map T is called relatively nonexpansive if the
fixed points set of T denoted by F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x) for all x ∈ C, p ∈ F (T )

and F (T ) = F̂ (T ) where F̂ (T ) is a set of asymptotic fixed points of T . A map R
from E onto C is said to be a retraction if R2 = R. A map R is said to be sunny if
R(Rx+ t(x−Rx)) = Rx for all x ∈ E and t ≤ 0. A nonempty closed subset C of a
smooth Banach space E is said to be a sunny generalized nonexpansive retract of E
if there exists a sunny generalized nonexpansive retraction R from E onto C.

We now list some lemmas which will be used in the sequel.

Lemma 2.2. (Koshaka and Takahashi, [15]) Let C be a nonempty closed and convex
subset of a smooth, strictly convex and reflexive Banach space E. Then, the following
are equivalent.

(i) C is a sunny generalized nonexpansive retract of E;
(ii) C is a generalized nonexpansive retract of E and
(iii) JC is closed and convex.

Lemma 2.3. (Ibaraki and Takahashi, [12]) Let C be a nonempty closed and convex
subset of a smooth and strictly convex Banach space E such that there exists a sunny
generalized nonexpansive retraction R from E onto C. Then, the following hold.

(i) z = Rx iff 〈y − z, Jz − Jx〉 ≥ 0 for all y ∈ C;
(ii) φ(x,Rx) + φ(Rx, z) ≤ φ(x, z) for all z ∈ C.

Lemma 2.4. (Xu, [31]) Let E be a uniformly convex real Banach space. Let r > 0.
Then, there exists a strictly increasing continuous and convex function g : [0,∞) →
[0,∞) such that g(0)=0 and the following inequality holds:

||λx+ (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 − λ((1− λ))g(||x− y||) for all x,y ∈ Br(0),

where Br(0) := {v ∈ E : ||v|| ≤ r} and λ ∈ [0, 1].
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Lemma 2.5. (Kamimura and Takahashi, [13]) Let E be a uniformly convex and
uniformly smooth real Banach space and {xn}, {yn} be sequences in E such that
either {xn} or {yn} is bounded. If lim

n→∞
φ(xn, yn) = 0, then, lim

n→∞
||xn − yn|| = 0.

Lemma 2.6. (Ibaraki and Takahashi, [12]) Let C be a nonempty closed sunny gener-
alized nonexpansive retract of a smooth and strictly convex Banach space E. Then the
sunny generalized nonexpansive retraction from E onto C is uniquely determined.

Remark 2. Let C be a nonempty closed subset of a smooth, strictly convex and
reflexive real Banach space E with dual space E∗ such that JC is closed and convex.
Let ϕ be a lower semicontinuous and convex function from JC to R. Let A, a non-
linear map from C to E∗ be continuous and monotone. For solving the generalized
equilibrium problems, we assume that the bifunctional f : JC×JC → R satisfies the
following conditions:

(A1) f(x∗, x∗) = 0 for all x∗ ∈ JC,
(A2) f is monotone, i.e. f(x∗, y∗) + f(y∗, x∗) ≤ 0 for all x∗, y∗ ∈ JC,
(A3) lim sup

t↓0
f(x∗ + t(z∗ − x∗), y∗) ≤ f(x∗, y∗) for all x∗, y∗, z∗ ∈ JC,

(A4) for all x∗ ∈ JC, f(x∗, ·) is convex and lower semi continuous.

NST-Condition . (Klin-eam et al. [14]) Let {Tn} and Γ be two families of generalized

nonexpansive maps from C into E such that

∞⋂
n=1

F (Tn) = F (Γ) 6= ∅, where F (Tn) is

the set of fixed points of Tn and F (Γ) is the set of fixed points of Γ. A sequence {Tn}
from C to E is said to satisfy the NST-condition with Γ if for each bounded sequence
{xn} ⊂ C, lim

n→∞
||xn − Tnxn|| = 0 =⇒ lim

n→∞
||xn − Txn|| = 0 ∀ T ∈ Γ.

Remark 3. In particular, if T = {T}, i.e., T consists of one mapping T , then {Tn} is
said to satisfy the NST-condition with T . It is obvious that {Tn} with Tn = T for all
n ∈ N satisfies NST-condition with Γ = {T}. For more examples of sequences with
NTS-condition, see e.g., Klin-eam et al. [14].

3. Main results

Let C be a nonempty closed and convex subset of a uniformly smooth and uniformly
convex real Banach space E with dual space E∗. Let J be the normalized duality
map on E and J−1 be the normalized duality map on E∗. Obviously, J−1 = J∗ exists
under this setting.

Definition 3.1. (Chidume and Idu [7]) Let T : C → E∗ be a map. A point x∗ ∈ C
is called a J-fixed point of T if and only if Tx∗ = Jx∗. The set of J-fixed points of T
will be denoted by FJ(T ).

Definition 3.2. A map T : C → E∗ will be called generalized J-nonexpansive if
FJ(T ) 6= ∅ and φ((J−1oT )x, p) ≤ φ(x, p) for all x ∈ C, for all p ∈ FJ(T ).

NST-Condition . Let {Tn} and Γ be two families of generalized-J-nonexpansive
maps from C into E∗ such that ∩∞n=1F (Tn) = F (Γ) 6= ∅, where F (Tn) is the set
of fixed points of Tn and (Γ) is the set of fixed points of Γ. A sequence {Tn} from
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C to E∗ is said to satisfy the NST-condition with Γ if for each bounded sequence
{xn} ⊂ C, lim

n→∞
||Jxn − Tnxn|| = 0 =⇒ lim

n→∞
||Jxn − Txn|| = 0, ∀ T ∈ Γ.

We now prove the following new lemmas which will be needed in the sequel.

Lemma 3.3. Let C be a nonempty closed and convex subset of a uniformly smooth
and uniformly convex real Banach space E, with dual space E∗, such that JC is closed
and convex. Let ϕ : JC → R be a lower semi-continuous and convex function. Let
A : C → E∗ be continuous and monotone, and f : JC ×JC → R be a bifunction. Let
r > 0 and x ∈ E be any point. Define a map Tr : E → C by

Tr(x) = {u ∈ C : f(Ju, Jz) + ϕ(Jz)− ϕ(Ju) + 〈Au, z − u〉

+
1

r
〈u− x, Jz − Ju〉 ≥ 0, ∀ z ∈ C}.

Then, the following conclusions hold:

(a) Tr is single-valued,

(b) Tr is a firmly nonexpansive-type map, i.e.,

∀ x, y ∈ E,
〈
Trx− Try, JTrx− JTry

〉
≤
〈
x− y, JTrx− JTry

〉
,

(c) F (Tr) = GMEP (f, ϕ,A),

(d) GMEP (f, ϕ,A) is closed and J(GMEP (f, ϕ,A)) is closed and convex,

(e) φ(x, Trx) + φ(Trx, q) ≤ φ(x, q),∀ q ∈ F (Tr), x ∈ E.

Proof. (a) Let x ∈ E and r > 0. Let u1, u2 ∈ Tr(x). Then, we have that

f(Ju1, Ju2) + ϕ(Ju2)− ϕ(Ju1) + 〈Au1, u2 − u1〉+
1

r
〈u1 − x, Ju2 − Ju1〉 ≥ 0,

f(Ju2, Ju1) + ϕ(Ju1)− ϕ(Ju2) + 〈Au2, u1 − u2〉+
1

r
〈u2 − x, Ju1 − Ju2〉 ≥ 0.

From the above inequalities and condition (A2) and the monotonicity of A, we have
that

1

r
〈u1 − u2, Ju2 − Ju1〉 ≥ 0. (3.1)

From monotonicity of J and strict convexity of E, we have that u1 = u2, which
implies that Tr is single-valued.

(b) For any x, y ∈ C, we have that

f(JTrx, JTry) + ϕ(JTry)− ϕ(JTrx) + 〈ATrx, Try − Trx〉

+
1

r
〈Trx− x, JTry − JTrx〉 ≥ 0,

f(JTry, JTrx) + ϕ(JTrx)− ϕ(JTry) + 〈ATry, Trx− Try〉

+
1

r
〈Try − y, JTrx− JTry〉 ≥ 0.

From the above inequalities, condition (A2) and the monotonicity of A, we conclude
that 〈

Trx− Try, JTrx− JTry
〉
≤
〈
x− y, JTrx− JTry

〉
.
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(c) Claim. F (Tr) = GMEP (f, ϕ,A). Let u ∈ F (Tr).

⇐⇒ u = Tru

⇐⇒ f(Ju, Jz) + ϕ(Jz)− ϕ(Ju) + 〈Au, z − u〉+
1

r
〈u− u, Jz − Ju〉 ≥ 0, z ∈ C

⇐⇒ f(Ju, Jz) + ϕ(Jz)− ϕ(Ju) + 〈Au, z − u〉 ≥ 0, ∀ z ∈ C
⇐⇒ u ∈ GMEP (f, ϕ,A).

(d) Claim. GMEP (f, ϕ,A) is closed, and J(GMEP (f, ϕ,A)) is closed and con-
vex. Clearly, GMEP (f, ϕ,A) is closed. Let {u∗n} ⊂ J(GMEP (Θ, χ,B)) such that
u∗n → u∗, for some u∗ ∈ E∗. Since JC is closed, we have that u∗ ∈ JC. Hence, there
exist u ∈ C and {un} ⊂ (GMEP (f, ϕ,A)) such that u∗ = Ju and u∗n = Jun, ∀ n ∈ N.
Utilizing the definitions of f , A, ϕ and the fact that J−1 is uniformly continuous on
bounded subset of E∗, we have:

ϕ(u∗) ≤ lim inf ϕ(u∗n) ≤ lim inf
[
f(u∗n, Jy) + ϕ(Jy) + 〈AJ−1u∗n, y − J−1u∗n〉

]
≤ lim sup

[
f(u∗n, Jy) + ϕ(Jy) + 〈AJ−1u∗n, y − J−1u∗n〉

]
≤ f(u∗, Jy) + ϕ(Jy) + 〈AJ−1u∗, y − J−1u∗〉.

Hence, J(GMEP (f, ϕ,A)) is closed.

Let u∗1, u
∗
2 ∈ J(GMEP (f, ϕ,A)). Then, u∗1 = Ju1, u

∗
2 = Ju2, for some u1, u2 ∈ C.

For λ, t ∈ (0, 1], let u∗λ = λu∗1+(1−λ)u∗2 ∈ JC. For any y ∈ C, set z∗t = tJy+(1−t)u∗λ.
By conditions (A1) to (A4), we have that

0 = f(z∗t , z
∗
t ) + ϕ(z∗t )− ϕ(z∗t ) + 〈A(J−1z∗t ), y − J−1z∗t 〉 − 〈A(J−1z∗t ), y − J−1z∗t 〉

≤ f(z∗t , Jy) + ϕ(Jy)− ϕ(z∗t ) + 〈A(J−1z∗t ), y − J−1z∗t 〉
= f(u∗λ + t(Jy − u∗λ), Jy) + ϕ(Jy)− ϕ(u∗λ + t(Jy − u∗λ))

+
〈
AJ−1(u∗λ + t(Jy − u∗λ)), y − J−1(u∗λ + t(Jy − u∗λ))

〉
.

Applying condition (A3) we conclude that

f(u∗λ, Jy) + ϕ(Jy)− ϕ(u∗λ) + 〈A(J−1u∗λ), y − J−1u∗λ〉 ≥ 0.

Hence, u∗λ ∈ J(GMEP (f, ϕ,A)). Therefore, J(GMEP (Θ, χ,B)) is convex.

(e) Claim. φ(x, Trx) + φ(Trx, q) ≤ φ(x, q), ∀ q ∈ F (Tr), x ∈ E. Let x, y ∈ C. Then,
we have:

φ(Trx, Try) + φ(Try, Trx) = 2〈Trx− Try, JTrx− JTry〉 (3.2)

φ(x, Try) + φ(y, Trx)− φ(x, Trx)− φ(y, Try) = 2〈x− y, JTrx− JTry〉.(3.3)

Applying Lemma 3.3 (b), equations (3.2) and (3.3), we have that

φ(Trx, Try) + φ(Try, Trx) ≤ φ(x, Try) + φ(y, Trx)− φ(x, Trx)− φ(y, Try), ∀ x, y ∈ C.
(3.4)

For y = u ∈ F (Tr), we have that

φ(Trx, u) + φ(u, Trx) ≤ φ(x, u) + φ(u, Trx)− φ(x, Trx)− φ(u, u), ∀ x ∈ C. (3.5)
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Hence, we conclude that

φ(x, Trx) + φ(Trx, u) ≤ φ(x, u), ∀ x,∈ C, u ∈ F (Tr). (3.6)

This proof is complete. �

Lemma 3.4. Let E be a uniformly convex and uniformly smooth real Banach space
with dual space E∗. Let C be a closed subset of E such that JC is closed and convex.
Let T be a generalized J-nonexpansive map from C to E∗ with FJ(T ) 6= ∅. Then,
FJ(T ) is closed and JFJ(T ) is closed and convex.

Proof. First, we prove that JFJ(T ) is convex. Let u∗, v∗ ∈ JFJ(T ) and α, β ∈ (0, 1)
with α+ β = 1. Then, using the definition of φ, we compute as follows:

φ((J−1oT )J−1(αu∗ + βv∗), J−1(αu∗ + βv∗))

= ||(J−1oT )J−1(αu∗ + βv∗)||2 − 2
〈
(J−1oT )J−1(αu∗ + βv∗), αu∗ + βv∗

〉
+||αu∗ + βv∗||2 + α||u||2 + β||v||2 − (α||u||2 + β||v||2)

= α(||(J−1oT )J−1(αu∗ + βv∗)||2 − 2
〈
(J−1oT )J−1(αu∗ + βv∗), Ju

〉
+ ||u||2)

+β(||(J−1oT )J−1(αu∗ + βv∗)||2 + ||αu∗ + βv∗||2 − (α||u||2 + β||v||2)

−2
〈
(J−1oT )J−1(αu∗ + βv∗), Jv

〉
+ ||v||2)

= αφ((J−1oT )J−1(αu∗ + βv∗), u) + βφ((J−1oT )J−1(αu∗ + βv∗), v)

+||αu∗ + βv∗||2 − (α||u||2 + β||v||2)

≤ αφ
(
(J−1(αu∗ + βv∗), u

)
+ βφ

(
(J−1(αu∗ + βv∗), v

)
+ ||αu∗ + βv∗||2

−α||u||2 + β||v||2)

= α(||αu∗ + βv∗||2 − 2
〈
(J−1(αu∗ + βv∗), Ju

〉
+ ||u||2) + β(||αu∗ + βv∗||2

−2
〈
(J−1(αu∗ + βv∗), Jv

〉
+ ||v||2) + ||αu∗ + βv∗||2 − (α||u||2 + β||v||2)

= 2||αu∗ + βv∗||2 − 2
〈
(J−1(αu∗ + βv∗), αu∗ + βv∗

〉
= 0.

By Remark 1, we get that (J−1oT )J−1(αu∗ + βv∗) = J−1(αu∗ + βv∗). This implies
that J−1(αu∗+βv∗) ∈ FJ(T ). Thus, αu∗+βv∗ ∈ JFJ(T ). Hence, JFJ(T ) is convex.

Next, we prove that FJ(T ) and JFJ(T ) are closed. Obviously FJ(T ) is closed. Let
{v∗n} ⊂ JFJ(T ) such that v∗n → v∗ for some v∗ ∈ E∗. Since JC is closed, we have
that v∗ ∈ JC. Hence, there exist v ∈ C and {vn} ⊂ FJ(T ) such that v∗ = Jv and
v∗n = Jvn ∀ n ∈ N. Utilizing the definition of T , we have that

φ((J−1oT )v, v) = lim
n→∞

φ((J−1oT )v, vn) ≤ lim
n→∞

(||v||2 − 2
〈
v, Jvn

〉
+ ||vn||2)

= lim
n→∞

(||v||2 − 2
〈
v, v∗n

〉
+ ||v∗n||2) = φ(v, v) = 0.

By Remark 1, we have that v∗ = Jv ∈ JFJ(T ). Hence, JFJ(T ) is closed. �

Using Lemmas 2.2 and 2.3, we obtain the following lemma.

Lemma 3.5. Let E be a smooth, strictly convex and reflexive real Banach with dual
space E∗. Let C be a closed subset of E such that JC is closed and convex. Let T be
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a generalized-J-nonexpansive map from C to E∗ such that FJ(T ) 6= ∅. Then, FJ(T )
is a sunny generalized-J-nonexpansive retract of E.

Remark 4. From Lemmas 3.3 and 3.4, we have that JFJ(T ) and JGMEP are closed
and convex. Since E is strictly convex, we have that

J(FJ(T ) ∩GMEP (f,A, ϕ)) = JFJ(T ) ∩ JGMEP (f,A, ϕ).

By Lemma 2.2, we obtain that FJ(T ) ∩ GMEP (f,A, ϕ) is a sunny generalized-J-
nonexpansive retract of E.

We now prove the following theorem.

Theorem 3.6. Let E be a uniformly convex and uniformly smooth real Banach space
with dual space E∗. Let C be a nonempty closed and convex subset of E such that JC
is closed and convex. Let ϕ : JC → R be a lower semicontinuous and convex function.
Let A : C → E∗ be a continuous and monotone map. Let f : JC × JC → R be a
bifunction satisfying conditions (A1)− (A4). Let Tn : C → E∗ be a countable family
of generalized-J-nonexpansive maps and Γ be a family of closed and generalized-J-
nonexpansive maps from C to E∗ such that

∞⋂
n=1

FJ(Tn) ∩GMEP (f,A, ϕ) = FJ(Γ) ∩GMEP (f,A, ϕ) 6= ∅,

α ∈ (0, 1) and {rn} ⊂ [a,∞) for some a > 0. Let {xn} be a sequence generated by:
x1 = x ∈ C, C1 = C,

yn = αxn + (1− α)J−1oTnxn, vn = Krnyn,

Cn+1 =
{
v ∈ Cn : φ(vn, v) ≤ φ(xn, v)

}
,

xn+1 = RCn+1x, n ≥ 1.

(3.7)

Assume that {Tn} satisfies the NST-condition with Γ, then {xn} converges strongly
to RFJ (Γ)∩GMEP (f,A,ϕ)x, where RFJ (Γ)∩GMEP (f,A,ϕ) is the sunny generalized-J-
nonexpansive retraction of E onto FJ(Γ) ∩GMEP (f,A, ϕ).

Proof. Step 1. The sequence {xn} is well defined and FJ(Γ) ∩GMEP (f,A, ϕ) ⊂ Cn.
First, we show that JCn is closed and convex. Clearly JC1 = JC is closed and convex.
Assume that JCn is closed and convex for some n ≥ 1, utilizing the definition of Cn+1,
it is easy to see that

Cn+1 = {v ∈ Cn : 2〈xn − vn, Jv〉 ≤ ||xn||2 − ||vn||2}.

Thus, JCn+1 is closed and convex, for each n ≥ 1. Hence JCn is closed and convex.
By Lemma 2.2, Cn is a sunny generalized-J-nonexpansive retract of E. Hence, {xn}
is well defined.
Next, we prove that

FJ(Γ) ∩GMEP (f,A, ϕ) ⊂ Cn,∀ n ≥ 1.

Clearly FJ(Γ) ∩GMEP (f,A, ϕ) is a subset of C1. Assume that

FJ(Γ) ∩GMEP (f,A, ϕ) ⊂ Cn
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for some n ≥ 1. Let p ∈ FJ(Γ) ∩GMEP (f,A, ϕ). By a Lemma 3.3 (e) and definition
of Tn, We have that

φ(vn, p) = φ(Krnyn, p) ≤ φ(yn, p)

= ||αxn + (1− α)J−1oTnxn||2 − 2
〈
αxn + (1− α)J−1oTnxn, Jp

〉
+ ||p||2

≤ α(||xn||2 − 2
〈
xn, Jp

〉
+ ||p||2) + (1− α)

(
||J−1oTnxn||2

−2
〈
J−1oTnxn, Jp

〉
+ ||p||2

)
− α(1− α)g(||xn − J−1oTnxn||)

≤ φ(xn, p)− α(1− α)g(||xn − J−1oTnxn||) ≤ φ(xn, p). (3.8)

Which implies that p ∈ Cn+1. Hence, FJ(Γ) ∩GMEP (f,A, ϕ) ⊂ Cn ∀ n ≥ 1.

Step 2. lim
n→∞

||xn − vn|| = lim
n→∞

||xn − yn|| = lim
n→∞

||vn − yn|| = 0.

First, we prove that {xn} is bounded. From the definition of {xn} and Lemma 2.3,
we have that

φ(x, xn) = φ(x,RCnx) ≤ φ(x, p)− φ(RCnx, p) ≤ φ(x, p),

∀ p ∈ FJ(Γ) ∩GMEP (f,A, ϕ) ⊂ Cn. This implies that {φ(x, xn)} is bounded.
It follows from the definition of φ that {xn} is bounded. Since

xn+1 = RCn+1
x ∈ Cn+1 ⊂ Cn

and xn = RCn
x, we have that φ(x, xn) ≤ φ(x, xn+1) and this implies that {φ(x, xn)}

is nondecreasing. Hence lim
n→∞

φ(x, xn) exists. Also, from Lemma 3.3 and xn = RCnx,

we have that

φ(xn, xm) = φ(RCn
x,RCm

x) ≤ φ(x,RCm
x)− φ(x,RCn

x)

= φ(x, xm)− φ(x, xn)→ 0 as n→∞.

So lim
n→∞

φ(xn, xm) = 0. It follows from Lemma 2.5 that lim
m,n→∞

||xn−xm|| = 0. Hence

{xn} is Cauchy. Thus, there exists x∗ ∈ C such that lim
n→∞

xn = x∗. From inequality

(3.8) it follows that φ(vn, xm) ≤ φ(xn, xm)→ 0 as n→∞. By lemma 2.5, we have

lim
m,n→∞

||vn − xm|| = 0. Hence, lim
n→∞

||vn − xn|| = 0. (3.9)

From inequality (3.8), Lemma 3.3 (e) and inequality (3.9), we get that

φ(yn, vn) = φ(yn, krnyn) ≤ φ(yn, p)− φ(vn, p)

≤ φ(xn, p)− φ(vn, p) ≤ ||vn − xn||
(
||xn||+ ||vn||

)
+ 2||vn − xn||||p|| → 0.

By Lemma 2.5, it follows that

lim
n→∞

||vn − yn|| = 0.

Using this and equation (3.9), we conclude that

lim
n→∞

||xn − vn|| = lim
n→∞

||vn − yn|| = lim
n→∞

||xn − yn|| = 0.
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Step 3. lim
n→∞

||Jxn − Txn|| = 0 ∀ T ∈ Γ.

From inequality (3.2), and setting µ = α(1− α), we obtain that

µg(||xn−J−1oTnxn||) ≤ φ(xn, p)−φ(vn, p) ≤ ||xn− vn||M + 2||xn− vn||||p||. (3.10)

First, we observe that {(J−1oTn)xn} is bounded in E. Using step 2 and property of
g in inequality (3.10), we obtain that

lim
n→∞

||xn − J−1oTnxn|| = 0.

By uniform continuity of J on bounded subset of E, we get that

lim
n→∞

||Jxn − Tnxn|| = 0.

Since {Tn} satisfies the NST-condition with Γ, we conclude that

lim
n→∞

||Jxn − Txn|| = 0.

Step 4. x∗ ∈ FJ(Γ) ∩GMEP (f,A, ϕ).
From step 3, we have that lim

n→∞
||Jxn − Txn|| = 0 ∀ T ∈ Γ. We also proved that

xn → x∗ ∈ C. Since T is closed, we conclude that x∗ ∈ FJ(Γ). Furthermore, from
step 2, we get that

lim
n→∞

||Jyn − Jvn|| = 0.

Since {rn} ⊂ [a,∞) by assumption, we obtain that

lim
n→∞

||Jyn − Jvn||
rn

= 0.

Since vn = Krnyn in equation (3.7) and by Lemma 3.3, we have that

F (Jvn, Jy) +
1

rn

〈
y − vn, Jvn − Jyn

〉
≥ 0 ∀ y ∈ C. (3.11)

By A2 of Remark 2, we have that

1

rn

〈
y − vn, Jvn − Jyn

〉
≥ F (Jy, Jvn).

Since y 7→ F (Ju, Jy) is convex and lower semicontinuous, we obtain from the above
inequality that 0 ≥ F (Jy, Jx∗) ∀ y ∈ C.
For t ∈ (0, 1] and y ∈ C, letting y∗t = tJy + (1 − t)Jx∗, then y∗t ∈ JC since JC is
closed and convex. Hence, 0 ≥ F (y∗t , Jx

∗) ∀ y ∈ C. By A1 of Remark 2, we have that

0 = F (y∗t , y
∗
t ) ≤ tF (y∗t , Jy) + (1− t)F (y∗t , Jx

∗) ≤ F (Jx∗ + t(Jy − Jx∗), Jy).

Letting t ↓ 0, by A3 of Remark 2, we obtain that F (Jx∗, Jy) ≥ 0. Hence,

x∗ ∈ GMEP (f,A, ϕ).

Using this and the fact that x∗ ∈ FJ(T ), we conclude x∗ ∈ FJ(Γ) ∩GMEP (f,A, ϕ).

Step 5. xn → RFJ (Γ)∩GMEP (f,A,ϕ)x. From Lemma 2.3, we obtain that

φ(x,RFJ (Γ)∩GMEP (f,A,ϕ)x) ≤ φ(x, x∗). (3.12)
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Also, for x∗ ∈ FJ(Γ) ∩GMEP (f,A, ϕ) ⊂ Cn+1, xn+1 = RCn+1
x, and by Lemma 2.3,

we have that φ(x, xn+1) ≤ φ(x,RFJ (Γ)∩GMEP (f,A,ϕ)x). Since xn → x∗ as n→∞, we
get that φ(x, x∗) ≤ φ(x,RFJ (Γ)∩GMEP (f,A,ϕ)x).
Using this and inequality (3.12) we get that φ(x, x∗) = φ(x,RFJ (Γ)∩GMEP (f,A,ϕ)x).
By uniqueness of RFJ (Γ)∩GMEP (f,A,ϕ)x, we conclude that x∗ = RFJ (Γ)∩GMEP (f,A,ϕ)x.
This proof is complete. �

4. An example

Let E = lp, 1 < p <∞, 1
p + 1

q = 1, C = Blp(0, 1) = {u ∈ lp : ||u||lp ≤ 1}.
Consider the following maps:

ϕ : JC → R defined by ϕ(u∗) = ||u∗||, ∀ u∗ ∈ JC;

f : JC × JC → R defined by f(u∗, v∗) = 〈J−1u∗, v∗ − u∗〉, ∀ v∗ ∈ JC;

A : C → lq defined by Au = J(u1, u2, u3, · · · ), ∀ u = (u1, u2, u3, · · · ) ∈ C;

T : C → lq defined by Tu = J(0, u1, u2, u3, · · · ), ∀ u = (u1, u2, u3, · · · ) ∈ C;

Tn : K → lq defined by Tnu = J(βnu + (1 − βn)J−1oTu), ∀ n ≥ 1, u ∈ C, α = 1
2 ,

βn ⊂ (0, 1), {rn} ⊂ [1,∞), ∀ n ≥ 1 and Γ = T .

Proof. Then, (a) E, C, JC, ϕ, f and A satisfy all the conditions of Theorem 3.6.
In particular, f satisfies conditions (A1) to (A4) as follows: conditions (A1) and
(A4) follow easily from direct computation; (A2) follows from the monotonicity of the
normalized duality map J−1, and condition (A3) follows from the continuity of J−1.
Furthermore, 0 ∈ GMEP (f,A, ϕ).

(b) Tn is a generalized-J-nonexpansive map and satisfies the NST-condition with Γ.
FJ(T ) = FJ(Tn) = FJ(Γ) = {0}, ∀ n ≥ 1. Moreover, FJ(Γ)∩GMEP (f,A, ϕ) = {0}.

Hence, by Theorem 3.6, the sequence {xn} generated by equation (3.7) converges
strongly to an element of F (Γ) ∩GMEP (f,A, ϕ). This completes the example. �

Remark 5. Theorem 3.6 is applicable in Lp, lp or W
m
p (Ω) spaces, 1 < p <∞, where

Wm
p (Ω) denote the usual Sobolev space, since these spaces are uniformly convex and

uniformly smooth. The analytical representations of the duality map in these spaces
where p−1 + q−1 = 1 (see e.g., Theorem 3.5, Alber and Ryazantseva [3]; page 36).

5. Application in Hilbert spaces

Theorem 5.1. Let E = H be a real Hilbert space. Let C be a nonempty closed and
convex subset of H. Let ϕ : C → R be a lower semicontinuous and convex function.
Let A : C → H be a continuous and monotone map. Let f : C × C → R be a
bifunction satisfying conditions (A1) − (A4). Let Tn : C → H be a countable family
of nonexpansive maps and Γ be a family of closed and generalized nonexpansive maps
from C to H such that

∞⋂
n=1

F (Tn) ∩GMEP (f,A, ϕ) = F (Γ) ∩GMEP (f,A, ϕ) 6= ∅,
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α ∈ (0, 1) and {rn} ⊂ [a,∞) for some a > 0. Let {xn} generated by:
x1 = x ∈ C, C1 = C,

yn = αxn + (1− α)Tnxn, vn = Krnyn,

Cn+1 =
{
v ∈ Cn : ||vn − v|| ≤ ||xn − v||

}
,

xn+1 = PCn+1
x, n ≥ 1.

(5.1)

Assume that {Tn} satisfies the NST-condition with Γ, then, {xn} converges strongly
to PF (Γ)∩GMEP (f,A,ϕ)x.

Proof. In Hilbert space, J is the identity map and φ(x, y) = ||x − y||2 ∀ x, y ∈ H.
The result follows from Theorem 3.6. �

Remark 6. Theorem 3.6 is a complementary analogue of the theorem of Klin-eam
et al. [14] in the sense that, in the theorem of Klin-eam et al. [14], Tn, maps a subset
C ⊂ E to the space E while in Theorem 3.6, Tn, maps a subset C ⊂ E to the dual
space E∗. Also, in Theorem 3.6, generalized mixed equilibrium problem is studied
which is not the case in the theorem of Klin-ea et al. [14]. Finally, the condition that
lim(1− αn) > 0 in the theorem of Klin-eam [14] is dispensed with in Theorem 3.6.

Remark 7. Theorem 5.1 improves significantly the result of Pen and Yao [24], Nakajo
and Takahashi [21], Martinez-Yanes and Xu [17], Qin and Su [27] in the following
sense:

(1) In theorem 5.1, the set of generalized mixed equilibrium problem is studied
which is not considered in Nakajo and Takahashi [21], Martinez-Yanes and
Xu [17], Qin and Su [27].

(2) Theorem 5.1 extends the result in Pen and Yao [24], Nakajo and Takahashi
[21], Martinez-Yanes and Xu [17], Qin and Su [27] from a nonexpansive self-
map to a countable family of generalized nonexpansive non self-maps.

(3) The iteration process of Theorem 5.1 is more efficient than that considered in
Pen and Yao [24], Martinez-Yanes and Xu [17] which requires more arithmetic
at each stage to implement because of the extra yn and zn terms involved in
the iteration process, respectively.

(4) The control parameter in the algorithm considered in Theorem 5.1 is one
arbitrarily fixed constant α ∈ (0, 1), which is to be computed once and then
used at each step of the iteration process, whereas the parameters in the
algorithm studied in Pen and Yao [24], Nakajo and Takahashi [21], Martinez-
Yanes and Xu [17], Qin and Su [27] are αn ∈ (0, 1) and βn ∈ (0, 1) which have
to be computed at each step of the iteration process.

(5) Finally, the sequence of Krasnoselskii-type algorithm is known to converge
as fast as a geometric progression whereas that of a Mann-type algorithm is
known to converge like 1

n .
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